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Explicit lower bounds are obtained on the multiplicative orders of subgroups of a finite field

connected with primality proving algorithm.

Key words and phrases: primality proving, finite field, multiplicative order.

Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine

E-mail: rombp07@gmail.com

INTRODUCTION

Prime numbers are of fundamental importance in mathematics in general: there are few

better known or more easily understood problems in pure mathematics than the question of

rapidly determining whether a given number is prime or composite. Efficient primality tests

are also useful in practice: a number of cryptographic protocols need big prime numbers.

In 2002 M.Agrawal, N.Kayal and N.Saxena [1] presented a deterministic polynomial-time

algorithm AKS that determines whether an input number n is prime or composite. It was

proved [4] that AKS algorithm runs in (log n)7,5+o(1) time. H.Lenstra and C.Pomerance [5]

gave a significantly modified version of AKS with (log n)6+o(1) running time.

Probabilistic versions of AKS are also known [3] with (log n)4+o(1) time complexity. The

Agrawal conjecture [1, 4] was proposed for further improvement of AKS running time. A

heuristic argument was given [5] which suggests that the above conjecture is false. However, it

was pointed out [1] that some variant of the conjecture may still be true. A modified conjecture

is given in [7]. A strongly ascending chain of subgroups of the multiplicative group of a finite

field appears in this conjecture.

Using results from [8], we obtain in this paper lower bounds on the orders of these sub-

groups.

1 PRELIMINARIES

Let q be a power of an odd prime number p, and Fq be a finite field with q elements. We use

F∗
q to denote the multiplicative group of Fq. A partition of an integer C is a sequence of non-

negative integers u1, ..., uC such that ∑
C
j=1 juj = C. U(C) denotes the number of the partitions

of C. U(C, d) denotes the number of such partitions of C, for which u1, ..., uC ≤ d, i.e., each part
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appears no more than d times. 〈v1, ..., vk〉 denotes the group generated by elements v1, ..., vk,

and G × H — the direct product of groups G and H. |G| denotes the multiplicative order of

the group G.

Let q be a primitive root modulo r, that is the multiplicative order of q modulo r equals to

r − 1. Set Fq(θ) = Fqr−1 = Fq[x]/Φr(x), where Φr(x) = xr−1 + xr−2 + ... + x + 1 is the r-th

cyclotomic polynomial and θ = x (mod Φr(x)). It is clear that the equality θr = 1 holds. The

element β = θ + θ−1 is called a Gauss period of type ((r − 1)/2, 2). It generates normal base

over Fq [2].

The following strongly ascending chain of subgroups of the multiplicative group appears

(if to take q = p is a prime number and r < p) in the modified conjecture [7]:

〈θ〉 ⊂ 〈θ + 1〉 ⊂ 〈θ − 1〉 ⊂ 〈θ − 1, θ + 2〉 .

It was shown in [2], that the order of Gauss period β is at least U((r − 3)/2, p − 1). In [8,

Theorem 1], this result was improved and generalized, i.e. the following theorem was proved.

Theorem 1. Let q be a power of an odd prime number p, r = 2s+ 1 be a prime number coprime

with q, q be a primitive root modulo r, θ generates the extension Fq(θ) = Fqr−1, e be any integer,

f be any integer coprime with r, a be any non-zero element in the finite field Fq. Then

(a) θe(θ f + a) has the multiplicative order at least U(r − 2, p − 1),

(b) (θ− f + a)(θ f + a) for a2 6= ±1 has the multiplicative order at least U((r − 3)/2, p − 1) and

this order divides q(r−1)/2 − 1,

(c) θ−2e(θ− f + a)(θ f + a)−1 for a2 6= 1 has the multiplicative order at least U((r − 3)/2, p − 1)

and this order divides q(r−1)/2 + 1,

(d) θe(θ f + a) for a2 6= ±1 has the multiplicative order at least [U((r − 3)/2, p − 1)]2/2.

We take to the end of the paper that q = p > 3 is a prime number and r < p.

Explicit lower bounds on the orders of subgroups connected with Agrawal conjecture in

terms of p and r are of special interest. That is why we use in this paper Theorem 1 and some

known estimate from [6] to derive explicit lower bounds on the multiplicative orders of 〈θ + 1〉,
〈θ − 1〉 and 〈θ − 1, θ + 2〉.

If C < d, then clearly U(C, d) = U(C). Explicit lower bound on U(C) for all integers C is

proposed in [6]. According to [6, Theorem 4.2], the following inequality holds for all integers

C:

U(C) >

exp

(

π
√

2
3 ·
√

C

)

13C
. (1)

2 LOWER BOUNDS ON THE ORDERS

We obtain in this section lower bounds on the orders of subgroups connected with Agrawal

conjecture. First of all, it is clear that | 〈θ〉 | = r.

Lemma 2.1. 〈θ + 1〉 = 〈θ〉 ×
〈

θ + θ−1
〉

.

Proof. Let us show first that
〈

θ2 + 1
〉

= 〈θ + 1〉. Since p is primitive modulo r, an integer i

exists such that pi ≡ 2 mod r. Then (θ + 1)pi
= θ2 + 1(mod p, Φr(θ)). Analogously an integer j

exists such that pj ≡ 2−1 mod r. Then we have (θ2 + 1)pj
= θ + 1(mod p, Φr(θ)).
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Now we show that 〈θ〉 ·
〈

θ + θ−1
〉

=
〈

θ2 + 1
〉

. Indeed, θ(θ + θ−1) = θ2 + 1 and the inclusion

〈θ〉 ·
〈

θ + θ−1
〉

⊇
〈

θ2 + 1
〉

is obvious. As θ ∈ 〈θ + 1〉 =
〈

θ2 + 1
〉

, θ−1(θ2 + 1) = θ + θ−1 ∈
〈

θ2 + 1
〉

and we have the inclusion 〈θ〉 ·
〈

θ + θ−1
〉

⊆
〈

θ2 + 1
〉

.

To prove that the intersection of 〈θ〉 and
〈

θ + θ−1
〉

equals to the trivial subgroup, consider

the automorphism σ of the field Fp(θ), which sends θ to θ−1. For every element a ∈ Fp(θ) we

take t(a) = a · (σ(a))−1. It is clear that t(ab) = t(a)t(b) and t(ai) = [t(a)]i . Then it is easy

to obtain t((θ + θ−1)u) = 1 and t(θc) = θ2c. Suppose θc = (θ + θ−1)u for some integers c, u.

Use for α = θc and β = (θ + θ−1)u the fact that α = β implies t(a) = t(b). Then θ2c = 1, and

therefore c is divided by r and θc = 1.

Hence, the result follows.

As a consequence of Lemma 2.1, we have the following more precisely specified chain of

subgroups:

〈θ〉 ⊂ 〈θ〉 ×
〈

θ + θ−1
〉

= 〈θ + 1〉 ⊂ 〈θ − 1〉 ⊂ 〈θ − 1, θ + 2〉 .

Theorem 2. The Gauss period β = θ + θ−1 has the multiplicative order larger than

exp

(

π
√

2
3 ·
√

r − 2

)

13(r − 2)

and this order divides p(r−1)/2 − 1.

Proof. Since

(θ + θ−1)p(r−1)/2−1 = (θp(r−1)/2
+ θ−p(r−1)/2

)(θ + θ−1)−1 = (θ−1 + θ)(θ + θ−1)−1 = 1,

the multiplicative order of β divides p(r−1)/2 − 1.The fact that the order of β = θ + θ−1 =

θ−1(θ2 + 1) is at least U(r − 2, p − 1) follows from Theorem 1, part (a).

Since p > r, we have r − 2 < p and U(r − 2, p − 1) = U(r − 2). Then it follows from

inequality (1) that the multiplicative order L1(r) of β = θ + θ−1 = θ−1(θ2 + 1) satisfies the

bound

L1(r) ≥ U(r − 2, p − 1) = U(r − 2) >

exp

(

π
√

2
3 ·
√

r − 2

)

13(r − 2)
.

We obtain from Lemma 2.1 and Theorem 2 the following explicit lower bound.

Corollary 2.1. | 〈θ + 1〉 | > r
13(r−2)

exp

(

π
√

2
3 ·
√

r − 2

)

.

Since 〈θ + 1〉 ⊂ 〈θ − 1〉, the following result is clear.

Lemma 2.2. | 〈θ − 1〉 | ≥ 2| 〈θ + 1〉 |.

Remark. The order of element θ + 1 in the case r = 5 and p ≡ 2 mod r divides 2r(p + 1),

because (θ + 1)p+1 = (θp + 1)(θ + 1) = (θ2 + 1)(θ + 1) = θ3 + θ2 + θ + 1 = −θ4, and the

order of −θ4 equals to 2r. On the other hand, one can show that (θ − 1)2r(p+1) 6= 1.
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Taking into account Corollary 2.1 and Lemma 2.2, we have the following lower bound.

Corollary 2.2. | 〈θ − 1〉 | > 2r
13(r−2)

exp

(

π
√

2
3 ·
√

r − 2

)

.

Now we are ready to give the lower bound on the order of 〈θ − 1, θ + 2〉.

Theorem 3. | 〈θ − 1, θ + 2〉 | >
exp

(

π
√

2
3 ·(1+

√
2

2 )
√

r−3
)

169(r−2)(r−3)
.

Proof. Recall that the order of F∗
pr−1 equals to pr−1 − 1 = (p(r−1)/2 − 1)(p(r−1)/2 + 1). The

factors p(r−1)/2 − 1 and p(r−1)/2 + 1 have the greatest common divisor 2, since their sum equals

to 2p(r−1)/2.

Consider the subgroup of F∗
pr−1 generated by θ − 1 and θ + 2. This subgroup contains two

subgroups: first one is generated by β = θ + θ−1 (because 〈θ − 1〉 contains 〈θ + 1〉, and 〈θ + 1〉
contains

〈

θ + θ−1
〉

), and second one — by γ = (θ − 2)p(r−1)/2−1 = (θ−1 − 2)(θ − 2)−1.

According to Theorem 2, β has the order that divides p(r−1)/2 − 1 and is at least

exp

(

π
√

2
3 ·
√

r − 2

)

13(r − 2)
.

As 22 6= 1(mod p), according to Theorem 1, part (c) (if to put e = 0, f = 1), the γ has the order

that divides p(r−1)/2 + 1 and is at least U((r − 3)/2, p − 1).

Construct the element

δ =

{

β2γ, if ρ2(p(r−1)/2 − 1) = 2,

βγ2, if ρ2(p(r−1)/2 + 1) = 2.

Obviously the group 〈θ − 1, θ + 2〉 contains the subgroup generated by δ. If

ρ2(p(r−1)/2 − 1) = 2,

then (p(r−1)/2 − 1)/2 is odd and coprime with p(r−1)/2 + 1. Clearly the order of β2 is a divisor

of (p(r−1)/2 − 1)/2. Hence, in this case, we have the following direct product of subgroups

< δ >=< β2
> × < γ >.

If ρ2(p(r−1)/2 + 1) = 2, then (p(r−1)/2 + 1)/2 is odd and coprime with p(r−1)/2 − 1. Clearly

the order of γ2 is a divisor of (p(r−1)/2 + 1)/2. Hence, in this case, we have the following direct

product of subgroups < δ >=< β > × < γ2
>.

In both cases, the order of δ is the product of orders of β and γ divided by 2.

Since (r− 3)/2 < p, we have U((r− 3)/2, p− 1) = U((r− 3)/2). Applying to U((r− 3)/2)

the inequality (1), we obtain that the multiplicative order L2(r) of δ satisfies the bound

L2(r) ≥
exp

(

π
√

2
3 ·
√

r − 2

)

13(r − 2)
· U((r − 3)/2)/2

>

exp

(

π
√

2
3 ·

√
r − 2

)

13(r − 2)
U((r − 3)/2)/2 >

exp

(

π
√

2
3 ·(1 +

√
2

2 )
√

r − 3

)

169(r − 2)(r − 3)
.

This finishes the proof.
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