Carpathian Math. Publ. 2013, **5** (2), 310–314 doi:10.15330/cmp.5.2.310-314

POPOVYCH R.

LOWER BOUNDS ON THE ORDERS OF SUBGROUPS CONNECTED WITH AGRAWAL CONJECTURE

Explicit lower bounds are obtained on the multiplicative orders of subgroups of a finite field connected with primality proving algorithm.

Key words and phrases: primality proving, finite field, multiplicative order.

Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine

E-mail: rombp07@gmail.com

INTRODUCTION

Prime numbers are of fundamental importance in mathematics in general: there are few better known or more easily understood problems in pure mathematics than the question of rapidly determining whether a given number is prime or composite. Efficient primality tests are also useful in practice: a number of cryptographic protocols need big prime numbers.

In 2002 M.Agrawal, N.Kayal and N.Saxena [1] presented a deterministic polynomial-time algorithm AKS that determines whether an input number n is prime or composite. It was proved [4] that AKS algorithm runs in $(\log n)^{7,5+o(1)}$ time. H.Lenstra and C.Pomerance [5] gave a significantly modified version of AKS with $(\log n)^{6+o(1)}$ running time.

Probabilistic versions of AKS are also known [3] with $(\log n)^{4+o(1)}$ time complexity. The Agrawal conjecture [1, 4] was proposed for further improvement of AKS running time. A heuristic argument was given [5] which suggests that the above conjecture is false. However, it was pointed out [1] that some variant of the conjecture may still be true. A modified conjecture is given in [7]. A strongly ascending chain of subgroups of the multiplicative group of a finite field appears in this conjecture.

Using results from [8], we obtain in this paper lower bounds on the orders of these subgroups.

1 Preliminaries

Let q be a power of an odd prime number p, and F_q be a finite field with q elements. We use F_q^* to denote the multiplicative group of F_q . A partition of an integer C is a sequence of nonnegative integers $u_1, ..., u_C$ such that $\sum_{j=1}^C ju_j = C$. U(C) denotes the number of the partitions of C. U(C,d) denotes the number of such partitions of C, for which $u_1, ..., u_C \leq d$, i.e., each part

appears no more than d times. $\langle v_1, ..., v_k \rangle$ denotes the group generated by elements $v_1, ..., v_k$, and $G \times H$ — the direct product of groups G and H. |G| denotes the multiplicative order of the group G.

Let q be a primitive root modulo r, that is the multiplicative order of q modulo r equals to r-1. Set $F_q(\theta)=F_{q^{r-1}}=F_q[x]/\Phi_r(x)$, where $\Phi_r(x)=x^{r-1}+x^{r-2}+...+x+1$ is the r-th cyclotomic polynomial and $\theta=x\pmod{\Phi_r(x)}$. It is clear that the equality $\theta^r=1$ holds. The element $\beta=\theta+\theta^{-1}$ is called a Gauss period of type ((r-1)/2,2). It generates normal base over F_q [2].

The following strongly ascending chain of subgroups of the multiplicative group appears (if to take q = p is a prime number and r < p) in the modified conjecture [7]:

$$\langle \theta \rangle \subset \langle \theta + 1 \rangle \subset \langle \theta - 1 \rangle \subset \langle \theta - 1, \theta + 2 \rangle$$
.

It was shown in [2], that the order of Gauss period β is at least U((r-3)/2, p-1). In [8, Theorem 1], this result was improved and generalized, i.e. the following theorem was proved.

Theorem 1. Let q be a power of an odd prime number p, r = 2s + 1 be a prime number coprime with q, q be a primitive root modulo r, θ generates the extension $F_q(\theta) = F_{q^{r-1}}$, e be any integer, f be any integer coprime with r, a be any non-zero element in the finite field F_q . Then $(a) \theta^e(\theta^f + a)$ has the multiplicative order at least U(r - 2, p - 1),

- (b) $(\theta^{-f} + a)(\theta^f + a)$ for $a^2 \neq \pm 1$ has the multiplicative order at least U((r-3)/2, p-1) and this order divides $q^{(r-1)/2} 1$,
- (c) $\theta^{-2e}(\theta^{-f}+a)(\theta^f+a)^{-1}$ for $a^2\neq 1$ has the multiplicative order at least U((r-3)/2,p-1) and this order divides $q^{(r-1)/2}+1$,
- (d) $\theta^e(\theta^f + a)$ for $a^2 \neq \pm 1$ has the multiplicative order at least $[U((r-3)/2, p-1)]^2/2$.

We take to the end of the paper that q = p > 3 is a prime number and r < p.

Explicit lower bounds on the orders of subgroups connected with Agrawal conjecture in terms of p and r are of special interest. That is why we use in this paper Theorem 1 and some known estimate from [6] to derive explicit lower bounds on the multiplicative orders of $\langle \theta + 1 \rangle$, $\langle \theta - 1 \rangle$ and $\langle \theta - 1, \theta + 2 \rangle$.

If C < d, then clearly U(C,d) = U(C). Explicit lower bound on U(C) for all integers C is proposed in [6]. According to [6, Theorem 4.2], the following inequality holds for all integers C:

$$U(C) > \frac{\exp\left(\pi\sqrt{\frac{2}{3}}\cdot\sqrt{C}\right)}{13C}.$$
 (1)

2 Lower bounds on the orders

We obtain in this section lower bounds on the orders of subgroups connected with Agrawal conjecture. First of all, it is clear that $|\langle \theta \rangle| = r$.

Lemma 2.1.
$$\langle \theta + 1 \rangle = \langle \theta \rangle \times \langle \theta + \theta^{-1} \rangle$$
.

Proof. Let us show first that $\langle \theta^2 + 1 \rangle = \langle \theta + 1 \rangle$. Since p is primitive modulo r, an integer i exists such that $p^i \equiv 2 \mod r$. Then $(\theta + 1)^{p^i} = \theta^2 + 1 \pmod p$, $\Phi_r(\theta)$. Analogously an integer j exists such that $p^j \equiv 2^{-1} \mod r$. Then we have $(\theta^2 + 1)^{p^j} = \theta + 1 \pmod p$, $\Phi_r(\theta)$.

POPOVYCH R.

Now we show that $\langle \theta \rangle \cdot \langle \theta + \theta^{-1} \rangle = \langle \theta^2 + 1 \rangle$. Indeed, $\theta(\theta + \theta^{-1}) = \theta^2 + 1$ and the inclusion $\langle \theta \rangle \cdot \langle \theta + \theta^{-1} \rangle \supseteq \langle \theta^2 + 1 \rangle$ is obvious. As $\theta \in \langle \theta + 1 \rangle = \langle \theta^2 + 1 \rangle$, $\theta^{-1}(\theta^2 + 1) = \theta + \theta^{-1} \in \langle \theta^2 + 1 \rangle$ and we have the inclusion $\langle \theta \rangle \cdot \langle \theta + \theta^{-1} \rangle \subseteq \langle \theta^2 + 1 \rangle$.

To prove that the intersection of $\langle \theta \rangle$ and $\langle \theta + \theta^{-1} \rangle$ equals to the trivial subgroup, consider the automorphism σ of the field $F_p(\theta)$, which sends θ to θ^{-1} . For every element $a \in F_p(\theta)$ we take $t(a) = a \cdot (\sigma(a))^{-1}$. It is clear that t(ab) = t(a)t(b) and $t(a^i) = [t(a)]^i$. Then it is easy to obtain $t((\theta + \theta^{-1})^u) = 1$ and $t(\theta^c) = \theta^{2c}$. Suppose $\theta^c = (\theta + \theta^{-1})^u$ for some integers c, u. Use for $\alpha = \theta^c$ and $\beta = (\theta + \theta^{-1})^u$ the fact that $\alpha = \beta$ implies t(a) = t(b). Then $\theta^{2c} = 1$, and therefore c is divided by c and c and

Hence, the result follows.

As a consequence of Lemma 2.1, we have the following more precisely specified chain of subgroups:

$$\langle\theta\rangle\subset\langle\theta\rangle\times\left\langle\theta+\theta^{-1}\right\rangle=\langle\theta+1\rangle\subset\langle\theta-1\rangle\subset\langle\theta-1,\theta+2\rangle\,.$$

Theorem 2. The Gauss period $\beta = \theta + \theta^{-1}$ has the multiplicative order larger than

$$\frac{\exp\left(\pi\sqrt{\frac{2}{3}}\cdot\sqrt{r-2}\right)}{13(r-2)}$$

and this order divides $p^{(r-1)/2} - 1$.

Proof. Since

$$(\theta + \theta^{-1})^{p^{(r-1)/2} - 1} = (\theta^{p^{(r-1)/2}} + \theta^{-p^{(r-1)/2}})(\theta + \theta^{-1})^{-1} = (\theta^{-1} + \theta)(\theta + \theta^{-1})^{-1} = 1,$$

the multiplicative order of β divides $p^{(r-1)/2} - 1$. The fact that the order of $\beta = \theta + \theta^{-1} = \theta^{-1}(\theta^2 + 1)$ is at least U(r - 2, p - 1) follows from Theorem 1, part (a).

Since p > r, we have r - 2 < p and U(r - 2, p - 1) = U(r - 2). Then it follows from inequality (1) that the multiplicative order $L_1(r)$ of $\beta = \theta + \theta^{-1} = \theta^{-1}(\theta^2 + 1)$ satisfies the bound

$$L_1(r) \ge U(r-2, p-1) = U(r-2) > \frac{\exp\left(\pi\sqrt{\frac{2}{3}}\cdot\sqrt{r-2}\right)}{13(r-2)}.$$

We obtain from Lemma 2.1 and Theorem 2 the following explicit lower bound.

Corollary 2.1.
$$|\langle \theta+1 \rangle| > \frac{r}{13(r-2)} \exp\left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)$$
.

Since $\langle \theta + 1 \rangle \subset \langle \theta - 1 \rangle$, the following result is clear.

Lemma 2.2. $|\langle \theta - 1 \rangle| \ge 2 |\langle \theta + 1 \rangle|$.

Remark. The order of element $\theta + 1$ in the case r = 5 and $p \equiv 2 \mod r$ divides 2r(p+1), because $(\theta + 1)^{p+1} = (\theta^p + 1)(\theta + 1) = (\theta^2 + 1)(\theta + 1) = \theta^3 + \theta^2 + \theta + 1 = -\theta^4$, and the order of $-\theta^4$ equals to 2r. On the other hand, one can show that $(\theta - 1)^{2r(p+1)} \neq 1$.

Taking into account Corollary 2.1 and Lemma 2.2, we have the following lower bound.

Corollary 2.2.
$$|\langle \theta - 1 \rangle| > \frac{2r}{13(r-2)} \exp\left(\pi \sqrt{\frac{2}{3}} \cdot \sqrt{r-2}\right)$$
.

Now we are ready to give the lower bound on the order of $\langle \theta - 1, \theta + 2 \rangle$.

Theorem 3.
$$|\langle \theta - 1, \theta + 2 \rangle| > \frac{\exp\left(\pi\sqrt{\frac{2}{3}}\cdot(1+\frac{\sqrt{2}}{2})\sqrt{r-3}\right)}{169(r-2)(r-3)}$$
.

Proof. Recall that the order of $F_{p^{r-1}}^*$ equals to $p^{r-1}-1=(p^{(r-1)/2}-1)(p^{(r-1)/2}+1)$. The factors $p^{(r-1)/2}-1$ and $p^{(r-1)/2}+1$ have the greatest common divisor 2, since their sum equals to $2p^{(r-1)/2}$.

Consider the subgroup of $F_{p^{r-1}}^*$ generated by $\theta-1$ and $\theta+2$. This subgroup contains two subgroups: first one is generated by $\beta=\theta+\theta^{-1}$ (because $\langle \theta-1 \rangle$ contains $\langle \theta+1 \rangle$, and $\langle \theta+1 \rangle$ contains $\langle \theta+\theta^{-1} \rangle$), and second one — by $\gamma=(\theta-2)^{p^{(r-1)/2}-1}=(\theta^{-1}-2)(\theta-2)^{-1}$.

According to Theorem 2, β has the order that divides $p^{(r-1)/2} - 1$ and is at least

$$\frac{\exp\left(\pi\sqrt{\frac{2}{3}}\cdot\sqrt{r-2}\right)}{13(r-2)}.$$

As $2^2 \neq 1 \pmod{p}$, according to Theorem 1, part (c) (if to put e = 0, f = 1), the γ has the order that divides $p^{(r-1)/2} + 1$ and is at least U((r-3)/2, p-1).

Construct the element

$$\delta = \begin{cases} \beta^2 \gamma, & \text{if } \rho_2(p^{(r-1)/2} - 1) = 2, \\ \beta \gamma^2, & \text{if } \rho_2(p^{(r-1)/2} + 1) = 2. \end{cases}$$

Obviously the group $\langle \theta - 1, \theta + 2 \rangle$ contains the subgroup generated by δ . If

$$\rho_2(p^{(r-1)/2}-1)=2,$$

then $(p^{(r-1)/2}-1)/2$ is odd and coprime with $p^{(r-1)/2}+1$. Clearly the order of β^2 is a divisor of $(p^{(r-1)/2}-1)/2$. Hence, in this case, we have the following direct product of subgroups $<\delta>=<\beta^2>\times<\gamma>$.

If $\rho_2(p^{(r-1)/2}+1)=2$, then $(p^{(r-1)/2}+1)/2$ is odd and coprime with $p^{(r-1)/2}-1$. Clearly the order of γ^2 is a divisor of $(p^{(r-1)/2}+1)/2$. Hence, in this case, we have the following direct product of subgroups $<\delta>=<\beta>\times<\gamma^2>$.

In both cases, the order of δ is the product of orders of β and γ divided by 2.

Since (r-3)/2 < p, we have U((r-3)/2, p-1) = U((r-3)/2). Applying to U((r-3)/2) the inequality (1), we obtain that the multiplicative order $L_2(r)$ of δ satisfies the bound

$$L_{2}(r) \geq \frac{\exp\left(\pi\sqrt{\frac{2}{3}}\cdot\sqrt{r-2}\right)}{13(r-2)} \cdot U((r-3)/2)/2$$

$$> \frac{\exp\left(\pi\sqrt{\frac{2}{3}}\cdot\sqrt{r-2}\right)}{13(r-2)} U((r-3)/2)/2 > \frac{\exp\left(\pi\sqrt{\frac{2}{3}}\cdot(1+\frac{\sqrt{2}}{2})\sqrt{r-3}\right)}{169(r-2)(r-3)}.$$

This finishes the proof.

POPOVYCH R.

REFERENCES

- [1] Agrawal M., Kayal N., Saxena N. *PRIMES is in P.* Annals of Mathematics 2004, **160** (2), 781–793. doi: 10.4007/annals.2004.160.781
- [2] Ahmadi O., Shparlinski I.E., Voloch J.F. *Multiplicative order of Gauss periods*. Intern. J. Number Theory 2010, **6** (4), 877–882. doi:10.1142/S1793042110003290
- [3] Bernstein D.J. Proving primality in essentially quartic random time. Math. Comp. 2007, 76 (257), 389-403.
- [4] Granville A. It is easy to determine whether a given integer is prime. Bull. Amer. Math. Soc. 2005, **42** (1), 3–38. doi:10.1090/S0273-0979-04-01037-7
- [5] Lenstra H.W. Jr., Pomerance C. *Remarks on Agrawal's conjecture*. In: Proc. ARCC workshop "Future directions in algorithmic number theory", Palo Alto, USA, March 24–28, 2003, The American Institute of Mathematics. http://www.aimath.org/WWN/primesinp/primesinp.pdf
- [6] Maróti A. On elementary lower bounds for the partition function. Integers: Electronic J. Comb. Number Theory 2003, **3** (A10).
- [7] Popovych R. A note on Agrawal conjecture. Cryptology ePrint Archive 2009. http://eprint.iacr.org/2009/008
- [8] Popovych R. Elements of high order in finite fields of the form $F_q[x]/\Phi_r(x)$. Finite Fields Appl. 2012, **18** (4), 700-710. doi:10.1016/j.ffa.2012.01.003

Received 10.01.2013

Попович Р. Нижні оцінки для порядків підгруп, пов'язаних з гіпотезою Агравала // Карпатські математичні публікації. — 2013. — Т.5, \mathbb{N}^2 2. — С. 310–314.

Отримано нижні оцінки для мультиплікативних порядків підгруп скінченого поля, пов'язаних з алгоритмом доведення простоти числа.

Ключові слова і фрази: нижні оцінки, скінченне поле, мультиплікативний порядок.

Поповыч Р. Нижние оценки для порядков подгрупп, связанных с гипотезой Агравала // Карпатские математические публикации. — 2013. — Т.5, \mathbb{N}^2 . — С. 310–314.

Получены нижние оценки для порядков подгрупп конечного поля, связанных с алгоритмом доказательства простоты числа.

Ключевые слова и фразы: нижние оценки, конечное поле, мультипликативный порядок.