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INTRODUCTION

Prime numbers are of fundamental importance in mathematics in general: there are few
better known or more easily understood problems in pure mathematics than the question of
rapidly determining whether a given number is prime or composite. Efficient primality tests
are also useful in practice: a number of cryptographic protocols need big prime numbers.

In 2002 M.Agrawal, N.Kayal and N.Saxena [1] presented a deterministic polynomial-time
algorithm AKS that determines whether an input number 7 is prime or composite. It was
proved [4] that AKS algorithm runs in (log n)7'5+"(1) time. H.Lenstra and C.Pomerance [5]
gave a significantly modified version of AKS with (log7)®°(1) running time.

Probabilistic versions of AKS are also known [3] with (log)*°(1) time complexity. The
Agrawal conjecture [1, 4] was proposed for further improvement of AKS running time. A
heuristic argument was given [5] which suggests that the above conjecture is false. However, it
was pointed out [1] that some variant of the conjecture may still be true. A modified conjecture
is given in [7]. A strongly ascending chain of subgroups of the multiplicative group of a finite
tield appears in this conjecture.

Using results from [8], we obtain in this paper lower bounds on the orders of these sub-
groups.

1 PRELIMINARIES

Let g be a power of an odd prime number p, and F; be a finite field with g elements. We use
Fy to denote the multiplicative group of F;. A partition of an integer C is a sequence of non-

negative integers u7, ..., uc such that ch:l juj = C. U(C) denotes the number of the partitions
of C. U(C, d) denotes the number of such partitions of C, for which uy, ..., uc < d, i.e., each part
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appears no more than d times. (vy,...,v) denotes the group generated by elements vy, ..., v,
and G x H — the direct product of groups G and H. |G| denotes the multiplicative order of
the group G.

Let g be a primitive root modulo r, that is the multiplicative order of 4 modulo r equals to
r—1. Set F(0) = Fy1 = F[x]/®Pr(x), where &r(x) = X'V x72 4+ .+ x +1is the r-th
cyclotomic polynomial and 0 = x (mod ®,(x)). Itis clear that the equality 6" = 1 holds. The
element B = 6 + 07! is called a Gauss period of type ((r —1)/2,2). It generates normal base
over F; [2].

The following strongly ascending chain of subgroups of the multiplicative group appears
(if to take g = p is a prime number and r < p) in the modified conjecture [7]:

O)yCc(+1)Cc(®—-1)Cc(6—-1,0+2).

It was shown in [2], that the order of Gauss period p is at least U((r —3)/2,p —1). In [§,
Theorem 1], this result was improved and generalized, i.e. the following theorem was proved.

Theorem 1. Let g be a power of an odd prime number p, r = 2s + 1 be a prime number coprime
with g, q be a primitive root modulor, 6 generates the extension F;(6) = F,1, e be any integer,
f be any integer coprime with r, a be any non-zero element in the finite field F;. Then

(a) 6°(6f + a) has the multiplicative order at least U(r —2,p — 1),

(b) (0=f +a)(6f +a) fora*> # +1 has the multiplicative order at least U((r —3)/2,p — 1) and
this order divides g"~1)/2 — 1,

(c)0=%(0=f +a)(6f +a)~! fora® # 1 has the multiplicative order at least U((r —3)/2,p — 1)
and this order divides g"~1/2 41,

(d) 6°(6f + a) fora® # +1 has the multiplicative order at least [U((r —3)/2,p — 1)]?/2.

We take to the end of the paper that g = p > 3 is a prime number and r < p.

Explicit lower bounds on the orders of subgroups connected with Agrawal conjecture in
terms of p and r are of special interest. That is why we use in this paper Theorem 1 and some
known estimate from [6] to derive explicit lower bounds on the multiplicative orders of (6 + 1),
(f—1)and (6 — 1,0 +2).

If C < d, then clearly U(C,d) = U(C). Explicit lower bound on U(C) for all integers C is
proposed in [6]. According to [6, Theorem 4.2], the following inequality holds for all integers

oo (19
13C ’

u(c) >

1)

2 LOWER BOUNDS ON THE ORDERS

We obtain in this section lower bounds on the orders of subgroups connected with Agrawal
conjecture. First of all, it is clear that | (f) | = r.

Lemma21. (6 +1) = (6) x (6+671).

Proof. Let us show first that (2 +1) = (9 +1). Since p is primitive modulo r, an integer i
exists such that p' = 2 mod r. Then (8 + 1) = 6% + 1(mod p, ®,(0)). Analogously an integer j
exists such that p/ = 27! mod r. Then we have (% +1)?’ = 0 + 1(mod p, ®,(9)).
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Now we show that (6) - (6 + 6~1) = (6> +1). Indeed, (6 +6~1) = 02 + 1 and the inclusion
)+ (04+671) D (62 +1) is obvious. Asf € (B+1) = (02+1),071(0°+1) =60+6"! €
<92 + 1> and we have the inclusion (6 <9 + 6~ 1> - <62 + 1>
To prove that the intersection of <0> and (0 + 6~!) equals to the trivial subgroup, consider
the automorphism ¢ of the field F,(6), which sends 6 to 6~1. For every element a € F,(6) we
take t(a) = a- (o(a))~!. It is clear that t(ab) = t(a)t(b) and t(a’) = [t(a)]'. Then it is easy
to obtain t((6 +671)%) = 1 and t(6°) = 6%. Suppose 6° = (6 + 6~ 1)* for some integers c, u.
Use for « = 6° and B = (0 + 0~ !)" the fact that « = B implies t(a) = t(b). Then 6§ = 1, and
therefore c is divided by r and 6° = 1.
Hence, the result follows. O

As a consequence of Lemma 2.1, we have the following more precisely specified chain of
subgroups:
() C (0) x <9+9*1> —(O+1)C(O—1)C(0—10+2).

Theorem 2. The Gauss period B = 6 + 0~ has the multiplicative order larger than

o (77

13(r —2)

and this order divides p\"~1)/2 — 1.

Proof. Since

1)/2

@+0 1)y 1= (@ g T g ey = (0 a0 +0 ) =1,

the multiplicative order of 8 divides p{"~1/2 — 1.The fact that the order of § = 6 + 6! =
0-1(0% +1) is at least U(r — 2, p — 1) follows from Theorem 1, part (a).

Since p > r, wehaver —2 < pand U(r —2,p — 1) = U(r — 2). Then it follows from
inequality (1) that the multiplicative order Li(r) of B = 0 +6~1 = 071(6% + 1) satisfies the

bound
exp <7‘C\/?\/1’ — 2)

Li(r) > U(r—2,p—1)=U(r—2) > 1B(r—2)

We obtain from Lemma 2.1 and Theorem 2 the following explicit lower bound.

Corollary 2.1. [ (0 + 1) | > 37— exp( \/>\/r— )

Since (0 4+ 1) C (6 — 1), the following result is clear.
Lemma22. | (§—1)| >2[(0+1)|.

Remark. The order of element 6 + 1 in the case r = 5 and p = 2 mod r divides 2r(p + 1),
because (0 +1)P™1 = (0P +1)(0+1) = (> +1)(0+1) = B +602+0+1 = —0* and the
order of —6* equals to 2r. On the other hand, one can show that (6 — 1)2/(P+1) £ 1,
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Taking into account Corollary 2.1 and Lemma 2.2, we have the following lower bound.

Corollary 2.2. | (0 — 1) | > 13 57 €XPp < \/7\/1’— )
Now we are ready to give the lower bound on the order of (6 — 1,6 + 2).
exp (/3 (1LH ) Vi3
169(r—2)(r—3)
Proof. Recall that the order of F;r,l equals to p" 1 —1 = (p=1/2 —1)(pr=1/2 1-1). The

factors p("~1/2 — 1 and p*=1)/2 1 1 have the greatest common divisor 2, since their sum equals
to 2p(r=1/2,
Consider the subgroup of F;H generated by 6 — 1 and 6 + 2. This subgroup contains two

Theorem 3. | (6 —1,0+2) | >

subgroups: first one is generated by f = 6 + 6~ ! (because (0 — 1) contains (6 + 1), and (0 + 1)
contains (6 + 6~!)), and second one —by y = (6 — )P V21— (91— 2) (9 —2)~!
According to Theorem 2, B has the order that divides p("~1)/2 — 1 and is at least

exp <7T\/%7m>

13(r —2)

As 22 # 1(mod p), according to Theorem 1, part (c) (if to put e = 0, f = 1), the <y has the order
that divides p"~1/2 + 1 and is at least U((r —3)/2,p — 1).
Construct the element

s— 4 B i pa(pt 2 1) =2,
B3, if pp(p1/241) =2.

Obviously the group (6 — 1,60 + 2) contains the subgroup generated by J. If
p(p" N2 —1) =2,

then (p"~1/2 — 1) /2 is odd and coprime with p"~1)/2 4 1. Clearly the order of A2 is a divisor
of (p"~1/2 —1)/2. Hence, in this case, we have the following direct product of subgroups
<E>=< B> X <>

If 2 (p"~1/2 4-1) = 2, then (p"~1/2 + 1) /2 is odd and coprime with p(*~1)/2 — 1. Clearly
the order of 92 is a divisor of (p{"~1)/2 4-1) /2. Hence, in this case, we have the following direct
product of subgroups < § >=< > x < 9% >.

In both cases, the order of J is the product of orders of f and vy divided by 2.

Since (r —3)/2 < p,wehave U((r—3)/2,p—1) = U((r—3)/2). Applyingto U((r —3)/2)
the inequality (1), we obtain that the multiplicative order Ly(r) of J satisfies the bound

or(77)

La() >3 U((r—3)/2)/2
exp (n\/g-\/r—2> exp <7‘c\/?(1+§)\/1’—3>
> 13(r —2) U((r=3)/2)/2 > 169(r —2)(r — 3)

This finishes the proof. O
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