ISSN 2075-9827 e-ISSN 2313-0210

Carpathian Math. Publ. 2015, 7 (2), 271–279 doi:10.15330/cmp.7.2.271-279

SHARYN S.V.

PALEY-WIENER-TYPE THEOREM FOR POLYNOMIAL ULTRADIFFERENTIABLE FUNCTIONS

The image of the space of ultradifferentiable functions with compact supports under Fourier-Laplace transformation is described. An analogue of Paley-Wiener theorem for polynomial ultra-differentiable functions is proved.

Key words and phrases: ultradifferentiable function, ultradistribution, polynomial test function, Paley–Wiener-type theorem.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: sharyn.sergii@gmail.com

Introduction

In general Paley–Wiener theorem is any theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform [16]. For example, the Paley–Wiener theorem for the space of smooth functions with compact supports gives a characterization of its image as rapidly decreasing functions having a holomorphic extension to C of exponential type.

There are plenty of Paley–Wiener-type theorems since there are many kinds of bound for decay rates of functions and many types of characterizations of smoothness. In this regard a wide number of papers have been devoted to the extension of the theory on many other integral transforms and different classes of functions (see [1–3, 6, 9, 15, 17, 18, 20–22] and the references given there).

Let $\mathcal{G}'_{\beta} := \mathcal{G}'_{\beta}(\mathbb{R}^d)$ be the space of Roumieu ultradistributions on \mathbb{R}^d and $\mathcal{G}_{\beta} := \mathcal{G}_{\beta}(\mathbb{R}^d)$ be its predual. A Fréchet-Schwartz space (briefly, (FS) space) is one that is Fréchet and Schwartz simultaneously (see [23]). It is known (see e.g. [10, 19]) that the spaces \mathcal{G}'_{β} and \mathcal{G}_{β} are nuclear Fréchet-Schwartz and dual Fréchet-Schwartz spaces ((DFS) for short), respectively. These facts are crucial for our investigation.

In this article we consider Fourier-Laplace transformation, defined on the space \mathcal{G}_{β} of ultradifferentiable functions and on the corresponding algebra $\mathcal{P}(\mathcal{G}'_{\beta})$ of polynomials over \mathcal{G}'_{β} [12], which have the tensor structure of the form $\bigoplus_{fin} \mathcal{G}^{\hat{\otimes}n}_{\beta}$ (see Theorem 1).

We completely describe the image of test space \mathcal{G}_{β} under Fourier-Laplace transformation (see Corollary 1 and Theorem 2) and prove Paley–Wiener-type Theorem 3 for polynomial ultradifferentiable functions.

УДК 517.98

2010 Mathematics Subject Classification: 46F05, 46F12.

1 Preliminaries and notations

Let $\mathcal{L}(X)$ denote the space of continuous linear operators over a locally convex space X and let X' be the dual of X. Throughout, we will endow $\mathcal{L}(X)$ and X' with the locally convex topology of uniform convergence on bounded subsets of X.

Let $\otimes_{\mathfrak{p}}$ denote completion of algebraic tensor product with respect to the projective topology \mathfrak{p} . Let $X^{\hat{\otimes} n}$, $n \in \mathbb{N}$, be the symmetric nth tensor degree of X, completed in the projective tensor topology. Note, that here and subsequently we omit the index \mathfrak{p} to simplify notations. For any $x \in X$ we denote $x^{\otimes n} := \underbrace{x \otimes \cdots \otimes x}_{} \in X^{\hat{\otimes} n}$, $n \in \mathbb{N}$. Set $X^{\hat{\otimes} 0} := \mathbb{C}$, $x^{\otimes 0} := 1 \in \mathbb{C}$.

To define the locally convex space $\mathcal{P}_n(\mathcal{X}')$ of n-homogeneous polynomials on \mathcal{X}' we use the canonical topological linear isomorphism

$$\mathcal{P}_n(\mathcal{X}') \simeq (\mathcal{X}'^{\widehat{\otimes}n})'$$

described in [4]. Namely, given a functional $p_n \in (\mathcal{X}'^{\hat{\otimes} n})'$, we define an n-homogeneous polynomial $P_n \in \mathcal{P}_n(\mathcal{X}')$ by $P_n(x) := p_n(x^{\otimes n})$, $x \in \mathcal{X}'$. We equip $\mathcal{P}_n(\mathcal{X}')$ with the locally convex topology \mathfrak{b} of uniform convergence on bounded sets in \mathcal{X}' . Set $\mathcal{P}_0(\mathcal{X}') := \mathbb{C}$. The space $\mathcal{P}(\mathcal{X}')$ of all continuous polynomials on \mathcal{X}' is defined to be the complex linear span of all $\mathcal{P}_n(\mathcal{X}')$, $n \in \mathbb{Z}_+$, endowed with the topology \mathfrak{b} . Denote

$$\Gamma(\mathcal{X}) := \bigoplus_{n \in \mathbb{Z}_+} \mathcal{X}^{\hat{\otimes} n} \subset \bigoplus_{n \in \mathbb{Z}_+} \mathcal{X}^{\hat{\otimes} n}.$$

Note, that we consider only the case when the elements of direct sum consist of finite but not fixed number of addends. For simplicity of notation we write $\Gamma(\mathcal{X})$ instead of commonly used $\Gamma_{fin}(\mathcal{X})$.

We have the following assertion (see also [12, Proposition 2.1]).

Theorem 1. There exists the linear topological isomorphism

$$Y_{\mathcal{X}} : \Gamma(\mathcal{X}) \longrightarrow \mathcal{P}(\mathcal{X}')$$

for any nuclear (F) or (DF) space \mathcal{X} .

Let $A: X \longrightarrow Y$ be any linear and continuous operator, where X, Y are locally convex spaces. It is easy to see, that the operator $A \otimes I_Y$, defined on the tensor product $X \otimes Y$ by the formula

$$(A \otimes I_Y)(x \otimes y) := Ax \otimes y, \qquad x \in X, \quad y \in Y,$$

is linear, where I_Y denotes the identity on Y. The operator $A \otimes I_Y$ is continuous in projective topology $\mathfrak p$ and it has a unique extension to linear continuous operator onto the space $X \otimes_{\mathfrak p} Y$.

The following assertion essentially will be used in the proof of Theorem 3.

Proposition 1 ([13]). For any nuclear (F) or (DF) spaces X, Y, and any operator $A \in \mathcal{L}(X,Y)$ the following equality holds

$$\ker(A \otimes I_Y) = \ker(A) \otimes_{\mathfrak{p}} Y.$$

2 SPACES OF FUNCTIONS

Let us consider the definition and some properties of the space of Gevrey ultradifferentiable functions with compact supports. For more details we refer the reader to [10,11].

We use the following notations: $t^k := t_1^{k_1} \cdot \ldots \cdot t_d^{k_d}$, $k^{k\beta} := k_1^{k_1\beta} \cdot \ldots \cdot k_d^{k_d\beta}$, $|k| := k_1 + \cdots + k_d$ for all $t = (t_1, \ldots, t_d) \in \mathbb{R}^d$ (or \mathbb{C}^d), $k = (k_1, \ldots, k_d) \in \mathbb{Z}_+^d$ and $\beta > 1$. Let $\partial^k := \partial_1^{k_1} \ldots \partial_d^{k_d}$, where $\partial_j^{k_j} := \partial^{k_j}/\partial t_j^{k_j}$, $j = 1, \ldots, d$. The notation $\mu \prec \nu$ with $\mu, \nu \in \mathbb{R}^d$ means that $\mu_1 < \nu_1, \ldots, \mu_d < \nu_d$ (similarly, $\mu \succ \nu$). Let $[\mu, \nu] := [\mu_1, \nu_1] \times \ldots \times [\mu_d, \nu_d]$ and $(\mu, \nu) := (\mu_1, \nu_1) \times \ldots \times (\mu_d, \nu_d)$ for any $\mu \prec \nu$. In the following $t \in [\mu, \nu]$ means that $t_j \in [\mu_j, \nu_j]$ and $t \to \infty$ (resp. $t \to 0$) means that $t_j \to \infty$ (resp. $t_j \to 0$) for all $j = 1, \ldots, d$.

A complex infinitely smooth function φ on \mathbb{R}^d is called a Gevrey ultradifferentiable with $\beta > 1$ (see [10, II.2.1]) if for every $[\mu, \nu] \subset \mathbb{R}^d$ there exist constants h > 0 and C > 0 such that

$$\sup_{t \in [\mu, \nu]} |\partial^k \varphi(t)| \le C h^{|k|} k^{k\beta} \tag{1}$$

holds for all $k \in \mathbb{Z}_+^d$.

For a fixed h > 0, consider the subspace $\mathcal{G}^h_{\beta}[\mu, \nu]$ of all functions supported by $[\mu, \nu] \subset \mathbb{R}^d$ and such that there exists a constant $C = C(\varphi) > 0$, that inequality (1) holds for all $k \in \mathbb{Z}^d_+$. Therefore, the space of ultradifferentiable functions with compact supports is defined as follows

$$\mathcal{G}^h_{\beta}[\mu,\nu] := \big\{ \varphi \in C^{\infty}(\mathbb{R}^d) : \operatorname{supp} \varphi \subset [\mu,\nu], \|\varphi\|_{\mathcal{G}^h_{\beta}[\mu,\nu]} < \infty \big\},\,$$

with the norm

$$\|\varphi\|_{\mathcal{G}^h_{eta}[\mu,
u]} := \sup_{k \in \mathbb{Z}^d_+} \sup_{t \in [\mu,
u]} \frac{|\partial^k \varphi(t)|}{h^{|k|} k^{keta}}.$$

Proposition 2 ([10]). Each $\mathcal{G}^h_{\beta}[\mu, \nu]$ is a Banach space, and all inclusions $\mathcal{G}^h_{\beta}[\mu, \nu] \hookrightarrow \mathcal{G}^l_{\beta}[\mu, \nu]$ with h < l are compact. Moreover, if $[\mu, \nu] \subset [\mu', \nu']$, then $\mathcal{G}^h_{\beta}[\mu, \nu]$ is closed subspace in $\mathcal{G}^h_{\beta}[\mu', \nu']$.

This proposition implies that the set of Banach spaces

$$\left\{\mathcal{G}^h_{\beta}[\mu,\nu]: [\mu,\nu] \subset \mathbb{R}^d, h > 0\right\}$$

is partially ordered. Therefore we can consider this set as inductive system with respect to stated above compact inclusions. Hence, we define the space

$$\mathcal{G}_{\beta}(\mathbb{R}^d) := \bigcup_{\mu \prec \nu, \, h > 0} \mathcal{G}^h_{\beta}[\mu, \nu], \qquad \mathcal{G}_{\beta}(\mathbb{R}^d) \simeq \liminf_{\mu \prec \nu, \, h > 0} \mathcal{G}^h_{\beta}[\mu, \nu],$$

and endow it with the topology of inductive limit.

The strong dual space $\mathcal{G}'_{\beta}(\mathbb{R}^d)$ is called the space of Roumieu ultradistributions on \mathbb{R}^d .

Proposition 3 ([10]). The spaces $\mathcal{G}_{\beta}(\mathbb{R}^d)$ and $\mathcal{G}'_{\beta}(\mathbb{R}^d)$ are nonempty locally convex nuclear reflexive spaces. Moreover, $\mathcal{G}_{\beta}(\mathbb{R}^d)$ is (DFS) space, and $\mathcal{G}'_{\beta}(\mathbb{R}^d)$ is (FS) space.

Next define the space of entire functions of exponential type, which will be an image of the space $\mathcal{G}_{\beta}(\mathbb{R}^d)$ under the Fourier-Laplace transformation (see Section 3).

Let M be a set in \mathbb{R}^d . The support function of the set M is defined to be a function

$$H_M(x) = \sup_{t \in M} (t, x), \qquad x \in \mathbb{R}^d,$$

where $(t, x) := t_1x_1 + \cdots + t_dx_d$ denotes the scalar product. It is known [7], that $H_M(\eta)$ is convex, lower semi-continuous function, that may take the value $+\infty$. If M is bounded set, then its support function is continuous.

Let $B_r \subset \mathbb{C}^d$ be a ball of a radius r > 0. The space $E(\mathbb{C}^d)$ of entire functions of exponential type we will endow with locally convex topology of uniform convergence on compact sets. This topology can be defined by the system of seminorms

$$p_{r,M}(\psi) := \sup_{z \in B_r} |\psi(z)| e^{-H_M(\eta)},$$

where $\eta = (\eta_1, \dots, \eta_d) \in \mathbb{R}^d$ is imaginary part of $z = (z_1, \dots, z_d) \in \mathbb{C}^d$.

Fix an arbitrary real $\beta > 1$. For a positive number h > 0 and vectors $\mu = (\mu_1, \dots, \mu_d)$, $\nu = (\nu_1, \dots, \nu_d) \in \mathbb{R}^d$, such that $\mu \prec \nu$, in the space of entire functions of exponential type we define the subspace $E^h_\beta[\mu, \nu]$ of functions $\mathbb{C}^d \ni z \longmapsto \psi(z) \in \mathbb{C}$ with finite norm

$$\|\psi\|_{E^h_{\beta}[\mu,\nu]} := \sup_{k \in \mathbb{Z}^d_+} \sup_{z \in \mathbb{C}^d} \frac{|z^k \psi(z) e^{-H_{[\mu,\nu]}(\eta)}|}{h^{|k|} k^{k\beta}}.$$
 (2)

Since for any r > 0 and $\psi \in E^h_{\beta}[\mu, \nu]$ the next inequality $p_{r,[\mu,\nu]}(\psi) \leq \|\psi\|_{E^h_{\beta}[\mu,\nu]}$ is valid, then all inclusions $E^h_{\beta}[\mu, \nu] \hookrightarrow E(\mathbb{C}^d)$ are continuous.

Proposition 4. Each space $E^h_{\beta}[\mu, \nu]$ is Banach space, and all inclusions

$$E^h_{\beta}[\mu,\nu] \hookrightarrow E^{h'}_{\beta}[\mu',\nu']$$
 with $[\mu,\nu] \subset [\mu',\nu'], h < h',$

are compact.

Proof. Let us prove the completeness of the space $E^h_{\beta}[\mu,\nu]$. Let $\{\psi_m\}_{m\in\mathbb{N}}$ be a Cauchy sequence in $E^h_{\beta}[\mu,\nu]$. It means that for every $\varepsilon>0$ there exists an integer $N_{\varepsilon}\in\mathbb{N}$ such that $\forall\,m,n>N_{\varepsilon}$ the next inequality $\|\psi_m-\psi_n\|_{E^h_{\alpha}[\mu,\nu]}<\varepsilon$ is valid.

The following inequality

$$\sup_{z \in B_r} \frac{|z^k \psi(z)|}{h^{|k|} k^{k\beta}} e^{-H_{[\mu,\nu]}(\eta)} \le \|\psi\|_{E^h_{\beta}[\mu,\nu]}, \qquad \psi \in E^h_{\beta}[\mu,\nu],$$

is obvious for all $k \in \mathbb{Z}_+^d$ and r > 0. It follows that $\{\varphi_m\}_{m \in \mathbb{N}}$, where $\varphi_m(z) := \frac{z^{\kappa} \psi_m(z)}{h^{|k|} k^{k\beta}}$, is fundamental sequence in the space of entire functions of exponential type. Therefore for any $k \in \mathbb{Z}_+^d$ and r > 0 we have

$$\sup_{z \in B_r} \frac{|z^k(\psi_m(z) - \psi_n(z))|}{h^{|k|} k^{k\beta}} e^{-H_{[\mu,\nu]}(\eta)} < \varepsilon, \quad \forall \, m, n > N_{\varepsilon}.$$
(3)

Since $\{\varphi_m\}_{m\in\mathbb{N}}$ is fundamental sequence, it is bounded in $E(\mathbb{C}^d)$. From the Bernstein theorem on compactness [14, theorem 3.3.6] it follows that there exist a subsequence $\{\varphi_{k_m}\}_{k_m\in\mathbb{N}}$ and a function $\varphi\in E(\mathbb{C}^d)$ such that the following equality is satisfied

$$\lim_{k_m \to \infty} \sup_{z \in B_r} \frac{|z^k(\psi_{k_m}(z) - \psi(z))|}{h^{|k|} k^{k\beta}} e^{-H_{[\mu,\nu]}(\eta)} = 0, \qquad k \in \mathbb{Z}_+^d, \quad r > 0.$$

Let us pass to the limit in (3) as $m = k_m \to \infty$. Consequently, for all $k \in \mathbb{Z}_+^d$ and r > 0 we obtain the inequality

$$\sup_{z\in B_r}\frac{|z^k(\psi(z)-\psi_n(z))|}{h^{|k|}k^{k\beta}}e^{-H_{[\mu,\nu]}(\eta)}<\varepsilon,$$

which satisfies for all $n > N_{\varepsilon}$. Hence from the triangle inequality we obtain

$$\sup_{z \in B_r} \frac{|z^k \psi(z)|}{h^{|k|} k^{k\beta}} e^{-H_{[\mu,\nu]}(\eta)} \le \sup_{z \in B_r} \frac{|z^k \psi_{n_0}(z)|}{h^{|k|} k^{k\beta}} e^{-H_{[\mu,\nu]}(\eta)} + \varepsilon,$$

where $n_0 = N_{\varepsilon} + 1$.

Taking a supremum over k and r in the above inequality, we obtain

$$\|\psi\|_{E^h_{\beta}[\mu,\nu]} \leq \|\psi_{n_0}\|_{E^h_{\beta}[\mu,\nu]} + \varepsilon,$$

therefore $\psi \in E^h_\beta[\mu, \nu]$. Hence, the space $E^h_\beta[\mu, \nu]$ is complete.

The compactness of inclusions $E^h_{\beta}[\mu,\nu] \hookrightarrow E^{h'}_{\beta}[\mu',\nu']$ with $[\mu,\nu] \subset [\mu',\nu']$, h < h' follows from obvious inequality $e^{-H_{[\mu',\nu']}} \leq e^{-H_{[\mu,\nu]}}$ and from [10, pp. 38–40].

Define the space

$$E_{\beta}(\mathbb{C}^d) := \bigcup_{\mu \prec \nu, \, h > 0} E_{\beta}^h[\mu, \nu], \qquad E_{\beta}(\mathbb{C}^d) \simeq \liminf_{\mu \prec \nu, \, h > 0} E_{\beta}^h[\mu, \nu],$$

and endow it with the topology of inductive limit with respect to compact inclusions from the Proposition 4.

In what follows to simplify the notations we will write $\mathcal{G}_{\beta} := \mathcal{G}_{\beta}(\mathbb{R}^d)$, $\mathcal{G}'_{\beta} := \mathcal{G}'_{\beta}(\mathbb{R}^d)$, $E_{\beta} := E_{\beta}(\mathbb{C}^d)$, $E'_{\beta} := E'_{\beta}(\mathbb{C}^d)$.

3 FOURIER-LAPLACE TRANSFORM AND PALEY-WIENER-TYPE THEOREM

Consider the inductive limits of Banach spaces

$$E_{\beta}[\mu,\nu] := \bigcup_{h>0} \mathcal{G}_{\beta}^{h}[\mu,\nu], \qquad E_{\beta}[\mu,\nu] \simeq \liminf_{h\to\infty} \mathcal{G}_{\beta}^{h}[\mu,\nu],$$

and

$$\mathcal{G}_{\beta}[\mu,\nu] := \bigcup_{h>0} \mathcal{G}^h_{\beta}[\mu,\nu], \qquad \mathcal{G}_{\beta}[\mu,\nu] \simeq \liminf_{h\to\infty} \mathcal{G}^h_{\beta}[\mu,\nu].$$

On the space \mathcal{G}_{β} we define the Fourier-Laplace transform

$$\widehat{\varphi}(z) := (F\varphi)(z) = \int_{\mathbb{R}^d} e^{-i(t,z)} \varphi(t) \, dt, \qquad \varphi \in \mathcal{G}_\beta, \quad z \in \mathbb{C}^d. \tag{4}$$

Our main task is to show, that the function $\hat{\varphi}(z)$ belongs to the space E_{β} , moreover, we will prove that the mapping $F: \mathcal{G}_{\beta} \longrightarrow E_{\beta}$ is surjective. For this end we prove the following auxiliary statement, which can be found in [8, Lemma 1], but our proof is different.

Proposition 5. The image of the space $\mathcal{G}_{\beta}[\mu, \nu]$ with respect to mapping F is the space $E_{\beta}[\mu, \nu]$.

Proof. Let $\varphi \in \mathcal{G}_{\beta}[\mu, \nu]$. Properties of the Fourier transform imply $\widehat{\partial^k \varphi}(z) = z^k \widehat{\varphi}(z)$ for all $k \in \mathbb{Z}^d_+$. Therefore for any z and k we have

$$\begin{split} |z^k\widehat{\varphi}(z)| &= \Big| \int_{\mathbb{R}^d} e^{-i(t,z)} \partial^k \varphi(t) \, dt \Big| \leq \int_{[\mu,\nu]} |e^{-i(t,\xi)} e^{(t,\eta)} \partial^k \varphi(t)| \, dt \\ &\leq h^{|k|} k^{k\beta} e^{H_{[\mu,\nu]}(\eta)} \|\varphi\|_{\mathcal{G}^h_{\beta}[\mu,\nu]} \int_{[\mu,\nu]} \, dt. \end{split}$$

It follows

$$\|\widehat{\varphi}\|_{E^h_{\beta}[\mu,\nu]} \le C \|\varphi\|_{\mathcal{G}^h_{\beta}[\mu,\nu]'} \tag{5}$$

where $C = \prod_{j=1}^d (\nu_j - \mu_j)$. Hence, $F(\mathcal{G}^h_{\beta}[\mu, \nu]) \subset E^h_{\beta}[\mu, \nu]$.

Vice versa. Let $\psi \in E^h_{\beta}[\mu, \nu]$. It is known, that the norm of the space $E^h_{\beta}[\mu, \nu]$ can be defined by the formula

$$\|\psi\|_{E^h_{eta}[\mu,
u]} := \sup_{k \in \mathbb{Z}^d} \sup_{z \in \mathbb{C}^d} rac{|z^k \psi(z) e^{-H_{[\mu,
u]}(\eta)}|}{h^{|k|} |k|!^{eta}},$$

moreover, the topology, defined by this norm, is equivalent to earlier defined (see (2)). It follows that for each function $\psi \in E^h_\beta[\mu, \nu]$ there exists a constant C such that the inequality

$$|z^{k}\psi(z)| \le Ch^{|k|}|k|!^{\beta}e^{H_{[\mu,\nu]}(\eta)} \tag{6}$$

holds for all $z \in \mathbb{C}^d$.

The following inequality

$$e^{\beta t^{1/\beta}} = \left(e^{t^{1/\beta}}\right)^{\beta} = \left(\sum_{m=0}^{\infty} \frac{t^{m/\beta}}{m!}\right)^{\beta} \ge \frac{|t|^m}{m!^{\beta}},$$

holds for all $t \in \mathbb{R}$ and $m \in \mathbb{Z}_+$. In particular, for t = |z|/h and m = |k|, we obtain

$$e^{\beta\left(\frac{|z|}{h}\right)^{1/\beta}} \geq \frac{|z|^{|k|}}{h^{|k|}|k|!^{\beta}}.$$

Hence from the inequality $|z^k| \le |z|^{|k|}$ it follows

$$\frac{h^{|k|}|k|!^{\beta}}{|z^k|}e^{H_{[\mu,\nu]}(\eta)} \geq \frac{e^{H_{[\mu,\nu]}(\eta)}}{e^{(L|z|)^{1/\beta}}},$$

where $L = \frac{\beta^{\beta}}{h}$. So, if the function ψ satisfies the inequality (6), i.e. belongs to the space $E_{\beta}^{h}[\mu, \nu]$, then it satisfies the inequality

$$|\psi(z)| < Ce^{-(L|z|)^{1/\beta} + H_{[\mu,\nu]}(\eta)}$$

From the theorem [10, theorem 2.22] it follows that there exists a function $\varphi \in \mathcal{G}_{\beta}[\mu, \nu]$ such that $\widehat{\varphi} = \psi$, i.e. $E_{\beta}^h[\mu, \nu] \subset F(\mathcal{G}_{\beta}^h[\mu, \nu])$.

Hence, we have proved $F(\mathcal{G}^h_{\beta}[\mu,\nu]) = E^h_{\beta}[\mu,\nu]$. Since the constant h > 0 is arbitrary, properties of inductive limit imply the desired equality

$$F(\mathcal{G}_{\beta}[\mu,\nu]) = E_{\beta}[\mu,\nu].$$

The immediate consequence of the Proposition 5 and of the properties of inductive limit is the following assertion.

Corollary 1. The image of the space \mathcal{G}_{β} with respect to mapping F is the space E_{β} .

Therefore, we may consider the adjoint mapping $F': E'_{\beta} \longrightarrow \mathcal{G}'_{\beta}$.

Theorem 2. There exist the following topological isomorphisms

$$F(\mathcal{G}_{\beta}) \simeq E_{\beta}$$
 and $F'(E'_{\beta}) \simeq \mathcal{G}'_{\beta}$.

Proof. The inequality (5) implies, that the mapping

$$F: \mathcal{G}_{\beta}[\mu, \nu] \ni \varphi \longmapsto \widehat{\varphi} \in E_{\beta}[\mu, \nu]$$

is continuous. From the Proposition 5 we obtain the surjectivity of the map. Therefore, the open map theorem [5, theorem 6.7.2] implies the topological isomorphism $F(\mathcal{G}_{\beta}[\mu,\nu]) \simeq E_{\beta}[\mu,\nu]$. Since the segment $[\mu,\nu]$ is arbitrary, the properties of inductive limit imply the desired topological isomorphisms.

Using the Theorem 1 and a tensor structure of the space

$$\Gamma(\mathcal{G}_{\beta}) := \bigoplus_{n \in \mathbb{Z}_{+}} \mathcal{G}_{\beta}^{\hat{\otimes} n} \subset \bigoplus_{n \in \mathbb{Z}_{+}} \mathcal{G}_{\beta}^{\hat{\otimes} n},$$

we extend the mapping F to the mapping F^{\otimes} , that defined on $\Gamma(\mathcal{G}_{\beta})$.

At first, take an element $\varphi^{\otimes n} \in \mathcal{G}_{\beta}^{\widehat{\otimes} n}$, with $\varphi \in \mathcal{G}_{\beta}$, from the total subset of $\mathcal{G}_{\beta}^{\widehat{\otimes} n}$. Define the operator $F^{\otimes n}$ as follows

$$F^{\otimes n}: \varphi^{\otimes n} \longmapsto \widehat{\varphi}^{\otimes n} \quad \text{and} \quad F^{\otimes 0}:=I_{\mathbb{C}},$$

where $\hat{\varphi}^{\otimes n} := (F\varphi)^{\otimes n}$. Next, we extend the map $F^{\otimes n}$ onto whole space $\mathcal{G}_{\beta}^{\hat{\otimes} n}$ by linearity and continuity. So, we obtain $F^{\otimes n} \in \mathcal{L}(\mathcal{G}_{\beta}^{\hat{\otimes} n}, E_{\beta}^{\hat{\otimes} n})$. Finally, we define F^{\otimes} as the mapping

$$F^{\otimes} := (F^{\otimes n}) : \Gamma(\mathcal{G}_{\beta}) \ni \mathbf{p} := (p_n) \longmapsto \hat{\mathbf{p}} := (\hat{p}_n) \in \Gamma(E_{\beta}), \tag{7}$$

where $p_n \in \mathcal{G}_{\beta}^{\widehat{\otimes} n}$, $\widehat{p}_n := F^{\otimes n} p_n \in E_{\beta}^{\widehat{\otimes} n}$.

The following commutative diagram

uniquely defines the operator $F_{\mathcal{P}}^{\otimes}: \mathcal{P}(\mathcal{G}'_{\beta}) \longrightarrow \mathcal{P}(E'_{\beta})$. The map $F_{\mathcal{P}}^{\otimes}$ we will call the polynomial Fourier-Laplace transformation.

We proved above that the mappings $F: \mathcal{G}_{\beta} \longrightarrow E_{\beta}$ and $F': E'_{\beta} \longrightarrow \mathcal{G}'_{\beta}$ are topological isomorphisms. Let us prove the analogue of this result. The next theorem may be considered as Paley–Wiener-type theorem.

Theorem 3. Polynomial Fourier-Laplace transformation is topological isomorphism from the algebra $\mathcal{P}(\mathcal{G}'_{\beta})$ into the algebra $\mathcal{P}(E'_{\beta})$.

Proof. From the Theorem 1 and commutativity of the diagram (8) it follows that it is enough to show that the mapping $F^{\otimes}: \Gamma(\mathcal{G}_{\beta}) \longrightarrow \Gamma(E_{\beta})$ is topological isomorphism.

Theorem 2 and Corollary 1 imply the following equalities

$$\ker F = \{0\}, \quad \ker F^{-1} = \{0\}.$$

Let us consider the operators

$$I_{\mathcal{G}_{\beta}} \otimes F : \mathcal{G}_{\beta} \otimes \mathcal{G}_{\beta} \longrightarrow \mathcal{G}_{\beta} \otimes E_{\beta}, \qquad F \otimes I_{E_{\beta}} : \mathcal{G}_{\beta} \otimes E_{\beta} \longrightarrow E_{\beta} \otimes E_{\beta},$$

$$I_{E_{\beta}} \otimes F^{-1} : E_{\beta} \otimes E_{\beta} \longrightarrow E_{\beta} \otimes \mathcal{G}_{\beta}, \qquad F^{-1} \otimes I_{\mathcal{G}_{\beta}} : E_{\beta} \otimes \mathcal{G}_{\beta} \longrightarrow \mathcal{G}_{\beta} \otimes \mathcal{G}_{\beta}.$$

Since spaces \mathcal{G}_{β} and E_{β} are nuclear (DF) spaces, Proposition 1 implies the equalities

$$\ker(I_{\mathcal{G}_{\beta}}\otimes F)=\{0\}, \qquad \ker(F\otimes I_{E_{\beta}})=\{0\},$$

 $\ker(I_{E_{\beta}}\otimes F^{-1})=\{0\}, \qquad \ker(F^{-1}\otimes I_{\mathcal{G}_{\beta}})=\{0\}.$

Therefore, compositions of these operators have the trivial kernels, i.e.

$$\ker \left((F \otimes I_{E_{\beta}}) \circ (I_{\mathcal{G}_{\beta}} \otimes F) \right) = \ker(F \otimes F) = \{0\},$$

$$\ker \left((F^{-1} \otimes I_{\mathcal{G}_{\beta}}) \circ (I_{E_{\beta}} \otimes F^{-1}) \right) = \ker(F^{-1} \otimes F^{-1}) = \{0\}.$$

Proceeding inductively finite times, we obtain

$$\ker F^{\otimes n} = \ker \left(\underbrace{F \otimes \cdots \otimes F}_{n} \right) = \{0\},\$$
$$\ker (F^{-1})^{\otimes n} = \ker \left(\underbrace{F^{-1} \otimes \cdots \otimes F^{-1}}_{n} \right) = \{0\},\$$

for all natural n. Note, that the mappings $F^{\otimes n}$, $(F^{-1})^{\otimes n}$ are continuous as tensor products of continuous operators. Since $(F^{\otimes n})^{-1} = (F^{-1})^{\otimes n}$, the mapping $F^{\otimes n} : \mathcal{G}_{\beta}^{\hat{\otimes} n} \longrightarrow E_{\beta}^{\hat{\otimes} n}$ is topological isomorphism. Finally, the map $F^{\otimes} : \Gamma(\mathcal{G}_{\beta}) \longrightarrow \Gamma(E_{\beta})$ is topological isomorphism via the properties of direct sum topology.

REFERENCES

- [1] Andersen N.B., de Jeu M. *Real Paley-Wiener theorems and local spectral radius formulas*. Trans. Amer. Math. Soc. 2010, **362** (7), 3613–3640. doi:10.1090/S0002-9947-10-05044-0
- [2] Chen Q.H., Li L.Q., Ren G.B. *Generalized Paley-Wiener theorems*. Int. J. Wavelets Multiresolut Inf. Process 2012, **10** (2), 1250020. doi:10.1142/S0219691312500208
- [3] Chettaoui C., Othmani Y., Trimèchi K. On the range of the Dunkl transform on R. Math. Sci. Res. J. 2004, 8 (3), 85–103.
- [4] Dineen S. Complex analysis on infinite-dimensional spaces. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1999.
- [5] Edwards R.E. Functional Analysis: Theory and Applications. Dover Publ., New York, 2011.

- [6] Fu Y.X., Li L.Q. Real Paley-Wiener theorems for the Clifford Fourier transform. Sci. China Math. 2014, 57 (11), 2381–2392. doi: 10.1007/s11425-014-4838-7
- [7] Gardner R.J. Geometric Tomography. Cambridge University Press, New York, 1995.
- [8] Grasela K. Ultraincreasing distributions of exponential type. Univ. Iagel. Acta Math. 2003, 41, 245–253.
- [9] Khrennikov A.Yu., Petersson H. *A Paley-Wiener theorem for generalized entire functions on infinite-dimensional spaces*. Izv. Math. 2001, **65** (2), 403–424. doi:10.1070/im2001v065n02ABEH000332 (translation of Izv. Ross. Akad. Nauk Ser. Mat. 2001, **65** (2), 201–224. doi:10.4213/im332 (in Russian))
- [10] Komatsu H. An Introduction to the Theory of Generalized Functions. University Publ., Tokyo, 2000.
- [11] Komatsu H. *Ultradistributions I. Structure theorems and a characterization*. J. Fac. Sci. Tokyo, Sec. IA 1973, **20**, 25–105.
- [12] Lopushansky O.V., Sharyn S.V. Polynomial ultradistributions on cone \mathbb{R}^d_+ . Topology 2009, **48** (2–4), 80–90. doi:10.1016/j.top.2009.11.005
- [13] Mitjagin B.S. *Nuclearity and other properties of spaces of type S.* Trudy Moscow. Math. Sci. 1960, **9**, 317–328. (in Russian)
- [14] Nikol'skii S.M. Approximation of Functions of Several Variables and Imbedding Theorems. Springer-Verlag, Berlin, 1975. doi: 10.1007/978-3-642-65711-5
- [15] Musin I.Kh. *Paley–Wiener type theorems for functions analytic in tube domains*. Math. Notes 1993, **53** (4), 418–423. doi:10.1007/BF01210225 (translation of Mat. Zametki 1993, **53** (4), 92–100. (in Russian))
- [16] Paley R., Wiener N. Fourier Transform in the Complex Domain. Amer. Math. Soc., Providence RI, 1934.
- [17] Proshkina A. *Paley-Wiener's Type Theorems for Fourier Transforms of Rapidly Decreasing Functions*. Integral Transforms Spec. Funct. 2002, **13** (1), 39–48. doi:10.1080/10652460212887
- [18] Sharyn S.V. The Paley-Wiener theorem for Schwartz distributions with support on a half-line. J. Math. Sci. 1999, 96
 (2), 2985–2987. doi: 10.1007/BF02169692 (translation of Mat. Metodi Fiz.-Mekh. Polya 1997, 40 (4), 54–57. (in Ukrainian))
- [19] Smirnov A.G. *On topological tensor products of functional Frechet and DF spaces*. Integral Transforms Spec. Funct. 2009, **20** (3–4), 309–318. doi:10.1080/10652460802568150
- [20] Tuan V.K., Zayed A.I. *Paley–Wiener-Type Theorems for a Class of Integral Transforms*. J. Math. Anal. Appl. 2002, **266** (1), 200–226. doi:10.1006/jmaa.2001.7740
- [21] Vinnitskii B.V., Dilnyi V.N. *On generalization of Paley–Wiener theorem for weighted Hardy spaces*. Ufa Math. J. 2013, 5 (3), 30–36. doi:10.13108/2013-5-4-30 (translation of Ufa Math. Zh. 5 (4), 31–37. (in Russian))
- [22] Waphare B.B. *A Paley–Wiener type theorem for the Hankel type transform of Colombeau type generalized functions*. Asian J. Current Engineering and Maths 2012, **1** (3), 166–172.
- [23] Zharinov V.V. Compact families of locally convex topological vector spaces, Fréchet-Schwartz and dual Fréchet-Schwartz spaces. Russian Math. Surveys 1979, **34** (4), 105–143. doi:10.1070/RM1979v034n04ABEH002963 (translation of Uspekhi Mat. Nauk 1979, **34** (4), 97–131. (in Russian))

Received 25.08.2015

Шарин С.В. Теорема типу Пелі-Вінера для поліноміальних ультрадиференційовних функцій // Карпатські матем. публ. — 2015. — Т.7, №2. — С. 271–279.

У статті описано образ простору ультрадиференційовних функцій з компактними носіями відносно перетворення Φ ур'є-Лапласа. Доведено аналог теореми Пелі-Вінера для поліноміальних ультрадиференційовних функцій.

Ключові слова і фрази: ультрадиференційовна функція, ультрарозподіл, поліноміальна основна функція, теорема типу Пелі-Вінера.