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PALEY-WIENER-TYPE THEOREM FOR POLYNOMIAL ULTRADIFFERENTIABLE
FUNCTIONS

The image of the space of ultradifferentiable functions with compact supports under Fourier-
Laplace transformation is described. An analogue of Paley-Wiener theorem for polynomial ultra-
differentiable functions is proved.
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INTRODUCTION

In general Paley-Wiener theorem is any theorem that relates decay properties of a function
or distribution at infinity with analyticity of its Fourier transform [16]. For example, the Paley—
Wiener theorem for the space of smooth functions with compact supports gives a characte-
rization of its image as rapidly decreasing functions having a holomorphic extension to C of
exponential type.

There are plenty of Paley—Wiener-type theorems since there are many kinds of bound for
decay rates of functions and many types of characterizations of smoothness. In this regard
a wide number of papers have been devoted to the extension of the theory on many other
integral transforms and different classes of functions (see [1-3, 6,9, 15,17, 18, 20-22] and the
references given there).

LetG }g =G }g (R?) be the space of Roumieu ultradistributions on R? and G g :=0p (R%) be its
predual. A Fréchet-Schwartz space (briefly, (FS) space) is one that is Fréchet and Schwartz si-
multaneously (see [23]). It is known (see e.g. [10, 19]) that the spaces Qk and Gg are nuclear
Fréchet-Schwartz and dual Fréchet-Schwartz spaces ((DFS) for short), respectively. These
facts are crucial for our investigation.

In this article we consider Fourier-Laplace transformation, defined on the space Gg of ultra-
differentiable functions and on the corresponding algebra P (G k) of polynomials over G /g [12],

which have the tensor structure of the form P ;, QE)” (see Theorem 1).

We completely describe the image of test space Gz under Fourier-Laplace transformation
(see Corollary 1 and Theorem 2) and prove Paley—Wiener-type Theorem 3 for polynomial ul-
tradifferentiable functions.
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1 PRELIMINARIES AND NOTATIONS

Let .Z(X) denote the space of continuous linear operators over a locally convex space X
and let X’ be the dual of X. Throughout, we will endow .#(X) and X’ with the locally convex
topology of uniform convergence on bounded subsets of X.

Let ®, denote completion of algebraic tensor product with respect to the projective topo-
logy p. Let X®", n € IN, be the symmetric nth tensor degree of X, completed in the projective
tensor topology. Note, that here and subsequently we omit the index p to simplify notations.
For any x € X we denote x®" :=x® - - Q@ x € X®",n € N. Set X&0 .— C,x®0.=1€eC.

—_—

n
To define the locally convex space P,(X’) of n-homogeneous polynomials on X’ we use

the canonical topological linear isomorphism
PalX') = (X7EnY

described in [4]. Namely, given a functional p, € (X’ @)’ we define an n-homogeneous poly-
nomial P, € P, (X’) by Py(x) := pn(x®"), x € X'. We equip P, (X’) with the locally convex
topology b of uniform convergence on bounded sets in X’. Set Py(X”) := C. The space P(X")
of all continuous polynomials on X’ is defined to be the complex linear span of all P, (X"),
n € Z, endowed with the topology b. Denote

I(X) =Py, X" C @ A"

nezZ., neZ4

Note, that we consider only the case when the elements of direct sum consist of finite but not
fixed number of addends. For simplicity of notation we write I'(X') instead of commonly used

r fin (X ) :
We have the following assertion (see also [12, Proposition 2.1]).

Theorem 1. There exists the linear topological isomorphism
Yy: T(X) — P(X)
for any nuclear (F) or (DF) space X.

Let A : X — Y be any linear and continuous operator, where X, Y are locally convex
spaces. It is easy to see, that the operator A ® Iy, defined on the tensor product X ® Y by the
formula

(ARIy)(x®y) = Ax®y, xeX, yevy,

is linear, where Iy denotes the identity on Y. The operator A ® Iy is continuous in projective
topology p and it has a unique extension to linear continuous operator onto the space X @, Y.
The following assertion essentially will be used in the proof of Theorem 3.

Proposition 1 ([13]). For any nuclear (F) or (DF) spaces X, Y, and any operator A € £ (X,Y)
the following equality holds

ker(A®Iy) = ker(A) ®, Y.
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2 SPACES OF FUNCTIONS

Let us consider the definition and some properties of the space of Gevrey ultradifferen-
tiable functions with compact supports. For more details we refer the reader to [10, 11].

We use the following notations: t* := 1,‘]1(1 Cee t]:ld, Kk = k];”g e k’;"ﬁ, k| ==k +---+ky
forallt = (t1,...,t;) € R%(or C%), k = (ky,..., k) € Z”i and B > 1. Let oF .= 8]1(1 .. .asd,where
8? = akf/at;(j,j =1,...,d. The notation y < v with u,v € R? means that < vy, Hg < Vg
(similarly, > v). Let [, v] := [p1,v1] X ... X [Hg,vq) and (p,v) := (p1,v1) X ... X (Ug,v4) for
any p < v. In the following t € [, v] means that t; € [u;,v;] and t — oo (resp. t — 0) means
that t; — oo (resp. t; — 0) forallj =1,...,d.

A complex infinitely smooth function ¢ on R is called a Gevrey ultradifferentiable with
B > 1 (see [10, I1.2.1]) if for every [, v] C R? there exist constants 1 > 0 and C > 0 such that

sup [9"g(t)| < ChMKH (1)
tep,v]

holds for all k € Z4..

For a fixed h > 0, consider the subspace g’g [1,v] of all functions supported by [y, v] C RY
and such that there exists a constant C = C(¢) > 0, that inequality (1) holds for all k €
Z“.. Therefore, the space of ultradifferentiable functions with compact supports is defined as
follows

Gilu vl = {g € C*(R7) :supp g C [1,v], [ @llgy, < o},

with the norm

05 (t)|
HIFIKKB

19l gapy0) == sup sup
gl kezd te[uy]

Proposition 2 ([10]). Each QE [, v] is a Banach space, and all inclusions QE i, v] & Qlﬁ[y, v| with
h < I are compact. Moreover, if [u,v] C [i',V'], then Qg [, v] is closed subspace in Qg W', V']

This proposition implies that the set of Banach spaces
{gg[}l, v]: [uv] CRY B> 0}

is partially ordered. Therefore we can consider this set as inductive system with respect to
stated above compact inclusions. Hence, we define the space

Qﬁ(le) = U Qg[y,v], Qﬁ(le) ~ limind Qg[y,v],

Ji<v, h>0 u=v,h>0

and endow it with the topology of inductive limit.
The strong dual space G [’3 (R%) is called the space of Roumieu ultradistributions on R%.

Proposition 3 ([10]). The spaces Gg(R?) and Ql’3 (R%) are nonempty locally convex nuclear re-
flexive spaces. Moreover, Gg (R%) is (DFS) space, and g/g(le) is (FS) space.

Next define the space of entire functions of exponential type, which will be an image of the
space Gg (R%) under the Fourier-Laplace transformation (see Section 3).
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Let M be a set in R?. The support function of the set M is defined to be a function

Hy(x) = sup(t, x), x € RY,
teM

where (f,x) := tjx1 + - - - + t4x; denotes the scalar product. It is known [7], that Hy () is
convex, lower semi-continuous function, that may take the value +co. If M is bounded set,
then its support function is continuous.

Let B, C C% be a ball of a radius r > 0. The space E(C?) of entire functions of exponential
type we will endow with locally convex topology of uniform convergence on compact sets.
This topology can be defined by the system of seminorms

prm(1p) := sup [ip(z)|e~Hu ),

zE€B,

where 7 = (171, ...,14) € R is imaginary part of z = (z1,...,z4) € C*.
Fix an arbitrary real § > 1. For a positive number i1 > 0 and vectors u = (p1,..., ta),
v = (vy,...,v4) € R% such that 4 < v, in the space of entire functions of exponential type we

define the subspace Eg [1,v] of functions C¥ > z — 1(z) € C with finite norm

— |2t p()e”inai )
11y = sup sup = . @

kez? zeC?

Since forany » > 0and ¢ € Eg [, v] the next inequality p, [, , () < HIP”EZ (v 18 valid, then all

inclusions Eg [1,v] & E(C?) are continuous.

Proposition 4. Each space E’é (i, v] is Banach space, and all inclusions

Eg[y,v] G EZ/[]/,V’] with  [uv] C[W, V], h < W,

are compact.

Proof. Let us prove the completeness of the space E’é (1, v]. Let {¢m }men be a Cauchy sequence

in EE (i, v]. It means that for every ¢ > 0 there exists an integer N; € N such that Vm,n > N
the next inequality ||¢, — IP””EZ[W] < eis valid.
The following inequality

()] 0 ;
ngpr Lk kB € < HlPHEg[W], Y e Eﬁ[‘u,v],
. . d Zkll)m(z) '
is obvious for all k € Z% and r > 0. It follows that {¢,; },nen, Where @, (z) = T, s

fundamental sequence in the space of entire functions of exponential type. Therefore for any
k € Z% and r > 0 we have

2 (W (z) = @) b0
Ikl kB ¢

sup <e Vm,n> Ng. (3)

zE€B,
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Since { @ } men is fundamental sequence, it is bounded in E(C*). From the Bernstein theorem
on compactness [14, theorem 3.3.6] it follows that there exist a subsequence { ¢y, }x, cn and a
function ¢ € E(C?) such that the following equality is satisfied

-k —
km_mzeB hlkl kB

=0, kezi, r>o.

Let us pass to the limit in (3) as m = k,, — co. Consequently, for all k € Z% and r > 0 we
obtain the inequality

2 (¥ (z) = ¥u(2)] -1,
h\klkkﬁ

which satisfies for all n > N,. Hence from the triangle inequality we obtain

Z9(z)| -1 12590 ()] ~11,,,, ()
su I V] < su N + &,
Sob HKEEB © cer MR

sup ) <,

zE€B,

where nyg = N, + 1.
Taking a supremum over k and r in the above inequality, we obtain
|’1‘I)||Eg[;4,y] S HlpnoHEg[y,v] + &

therefore ¢ € Eg[;/l, v]. Hence, the space EE (i, v] is complete.

The compactness of inclusions Eg[y, v] Egl [, v'] with [u,v] C [¢/, V], h < I follows
from obvious inequality e~ i) < ¢~ Hintl and from [10, pp. 38-40]. O
Define the space
E.(Cd) — h dy
p€i= [ Effurl,  Ep(C) = timind Effu,
u=v,h>0

and endow it with the topology of inductive limit with respect to compact inclusions from the
Proposition 4.
In what follows to simplify the notations we will write Gg := Gg(IR%), Gy = Qk(]Rd),
Eg := Eg(C7), Ej := ER(CY).
3 FOURIER-LAPLACE TRANSFORM AND PALEY-WIENER-TYPE THEOREM

Consider the inductive limits of Banach spaces

= U g’é[y,v], Eglp, v] ~ liigigdgg[y,v],

h>0
and
— h ~ 1o S h
= U Gglu v, Gplp, v] ~ l1ﬁ1or;d Gglp, v.
h>0
On the space Gz we define the Fourier-Laplace transform

() = (Fo)(z) = fw et dt,  geGp zeCh )

Our main task is to show, that the function ¢(z) belongs to the space E p, MoOreover, we
will prove that the mapping F : Gg — Eg is surjective. For this end we prove the following
auxiliary statement, which can be found in [8, Lemma 1], but our proof is different.
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Proposition 5. The image of the space Gg[u, v] with respect to mapping F is the space Eg|u, v].

Proof. Let ¢ € Gg[p,v]. Properties of the Fourier transform imply a/kzo(z) = ZF¢(z) for all
k € Z“.. Therefore for any z and k we have

vwa “wwkﬁ#<wwmw
wv

< hlk\kkﬁeHw](”)||€0||g’g[;4 V]J &
"]

It follows
||¢||E’1yy] CHq)thyy]’ (5)

where C = H7:1(Vj — ;). Hence, F(Qﬁ ,v]) C EE [, v].
Vice versa. Let ¢ € Eg[y, v]. It is known, that the norm of the space Eg[y, v] can be defined
by the formula
|2 p(z)e” i)
ikl k|1 ’

[#451 = sup sup
kez? zeC?

moreover, the topology, defined by this norm, is equivalent to earlier defined (see (2)). It fol-
lows that for each function ¢ € Eg [, v] there exists a constant C such that the inequality

129 ()| < ChlM k| 1BeHinn (1) o

holds for all z € C%.
The following inequality

>t BB |t
BB (UB\B t" 1™
P = (e )_<Z m!)zm!ﬁ'
m=0
holds forall t € R and m € Z... In particular, for t = |z|/h and m = |k|, we obtain
|IK]

z[\1/P

e’s ( %) > |Z .
= hlkl|k|1p
Hence from the inequality |z¥| < |z|¥I it follows

k Hy,y

AL ) s € ()

|| ~ LIz’
where L = %ﬁ So, if the function ¢ satisfies the inequality (6), i.e. belongs to the space E’é (1, v],
then it satisfies the inequality

‘IP(Z) ’ S Ce_(L‘ZDl/ﬁ”‘H[]A,v](U)_

From the theorem [10, theorem 2.22] it follows that there exists a function ¢ € Gg[p, v] such
that ¢ = ¢, i.e. E’é [, v] C F(gg (1, v]).

Hence, we have proved F (gg (,v]) = EZ [i, v]. Since the constant & > 0 is arbitrary, prop-
erties of inductive limit imply the desired equality

F(Gplp,v]) = Eglu, v].
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The immediate consequence of the Proposition 5 and of the properties of inductive limit is
the following assertion.

Corollary 1. The image of the space Gy with respect to mapping F is the space Eg.
Therefore, we may consider the adjoint mapping F’ : Ej — Gg.
Theorem 2. There exist the following topological isomorphisms
F(Gg) ~Ep and  F(Ep) =~ Gp.
Proof. The inequality (5) implies, that the mapping
F:Gglu,v] > ¢ — ¢ € Eg[p,v]

is continuous. From the Proposition 5 we obtain the surjectivity of the map. Therefore,
the open map theorem [5, theorem 6.7.2] implies the topological isomorphism F(Gg[u,v]) =~
Eglp, v]. Since the segment [p, v] is arbitrary, the properties of inductive limit imply the desired
topological isomorphisms. O

Using the Theorem 1 and a tensor structure of the space

T(gﬁ) = @fin ggn C (_B ggn’

nezZ, neZ

we extend the mapping F to the mapping F®, that defined on I'(Gg).
At first, take an element ¢®" € Qé@”, with ¢ € G B from the total subset of g?”. Define the
operator F®" as follows
FO": " — %" and F*°:= I,

where = . Next, we extend the ma onto whole space @ inearity an
here §©" := (Fp)®". N d the map F®" hole space G;" by 1 y and

continuity. So, we obtain F*" € .& (gfm, Eg@") . Finally, we define F® as the mapping
F®:= (F*"):T(Gg) > p:= (pn) +— p:=(pn) € T(Ep), (7)
where p, € gg@", pn = F®"p, € E%".
The following commutative diagram

&

P(Gh) —L—P(E})
Yg;l TYE/S (8)
I(Gg) —F——~T(Ep)

uniquely defines the operator Fj : P(G ) — P(Ep). The map F we will call the polynomial
Fourier-Laplace transformation.

We proved above that the mappings F : Gg — Egand F' : Ej — G are topological
isomorphisms. Let us prove the analogue of this result. The next theorem may be considered
as Paley—Wiener-type theorem.
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Theorem 3. Polynomial Fourier-Laplace transformation is topological isomorphism from the
algebra P(g/g) into the algebra P(E}’g).

Proof. From the Theorem 1 and commutativity of the diagram (8) it follows that it is enough
to show that the mapping F® : I'(Gg) — T'(Ep) is topological isomorphism.
Theorem 2 and Corollary 1 imply the following equalities

ker F = {0}, ker F~! = {0}.
Let us consider the operators

Igﬁ®F:gﬁ®gﬁ—>gﬁ®Eﬁ, F®IEﬁ:Q/3®E5—>E5®Eﬁ,
155®F_1:E5®E;3—>E5®g/3, F_1®IgﬁIE5®gﬁ—>gﬁ®gﬁ-

Since spaces Gg and Eg are nuclear (DF) spaces, Proposition 1 implies the equalities

ker(Ig, @ F) = {0}, ker(F @ Ig,) = {0},
ker(lg, @ F7') = {0},  ker(F'®Ig,) = {0}.

Therefore, compositions of these operators have the trivial kernels, i.e.

ker ((F® Igy) o (Ig, ® F)) =ker(F®F) = {0},
ker (F'@1Ig,) o (Ig, @ F1)) = ker(F~' @ F~1) = {0},

Proceeding inductively finite times, we obtain

ker F¥" = ker (F®---®F ) = {0},
—_——

n
ker(F1)®" =ker (F'® ---®F ') ={0},

~-
n

for all natural n. Note, that the mappings F®", (F~1)®" are continuous as tensor products of
continuous operators. Since (F®")~! = (F~1)®", the mapping F*" : QE’” — E?” is topolo-
gical isomorphism. Finally, the map F* : T'(Gg) — T'(Ep) is topological isomorphism via the
properties of direct sum topology. O
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Y crarTi omicaHo 06pa3 IpOCTOPY YABTpaAdpePeHIIMOBHIX (DYHKIIiN 3 KOMIIAKTHMMM HOCISIMI
BiaHOCHO nepeTBopeHHs1 Dyp’e-Aannaca. AoseaeHo arHaror Teopemu Ileri-Binepa aast moaiHOMI-
AABHMX YABTpaAucepeHiioBENX (PYHKIIII.

Kntouosi cnosa i ppasu: yabTpasudpepeHmiioBHa (pyHKIIsI, yABTPapO3IOAiA, IIOAIHOMiaABHA OC-
HOBHa (pyHKIIis, TeopeMa Tuiy Ileai-Binepa.



