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OPTIMAL CONTROL PROBLEM FOR SYSTEMS GOVERNED BY NONLINEAR
PARABOLIC EQUATIONS WITHOUT INITIAL CONDITIONS

An optimal control problem for systems described by Fourier problem for nonlinear
parabolic equations is studied. Control functions occur in the coefficients of the state equations.
The existence of the optimal control in the case of final observation is proved.
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INTRODUCTION

Optimal control of determined systems governed by partial differential equations (PDEs)
is currently of much interest. Optimal control problems for PDEs are most completely studied
for the case in which the control functions occur either on the right-hand sides of the state
equations, or the boundary or initial conditions [8,22,26]. So far, problems in which control
functions occur in the coefficients of the state equations are less studied.

The main ideas and methods of solving different optimal control problems for systems
governed by evolutionary equations and variational inequalities are considered in monograph
[18]. Problem, where control functions occur in the coefficients of the state equations, is given
as only one among many other problems which were considered there by author.

A lot of various generalizations of this problem were investigated in many papers, includ-
ing [1,2,4,5,10-13,15, 20, 21, 24, 25], where the state of controlled system is described by the
initial-boundary value problems for parabolic equations.

In [1,21,24,25] the state of controlled system is described by linear parabolic equations and
systems, while in [1] and [21] control functions appears as coefficients at lower derivatives,
and in [24,25] the control functions are coefficients at higher derivatives. In [21] the existence
and uniqueness of optimal control in the case of final observation was shown and a necessary
optimality condition in the form of the generalized rule of Lagrange multipliers was obtained.
In paper [1] authors proved the existence of at least one optimal control for system governed by
a system of general parabolic equations with degenerate discontinuous parabolicity coefficient.
In papers [24, 25] the authors consider cost function in general form, and as special case it
includes different kinds of specific practical optimization problems. The well-posedness of
the problem statement is investigated and a necessary optimality condition in the form of the
generalized principle of Lagrange multiplies is established in this papers.
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In papers [2,10-13, 15,20] authors investigate optimal control of systems governed by non-
linear PDEs. In particular, in [2] the problem of allocating resources to maximize the net benefit
in the conservation of a single species is studied. The population model is an equation with
density dependent growth and spatial-temporal resource control coefficient. The existence of
an optimal control and the uniqueness and the characterization of the optimal control are es-
tablished. Numerical simulations illustrate several cases with Dirichlet and Neumann bound-
ary conditions. In [11] the optimal control problem is converted to an optimization problem
which is solved using a penalty function technique. The existence and uniqueness theorems
are investigated. The derivation of formula for the gradient of the modified function is ex-
plained by solving the adjoint problem. Paper [15] presents analytical and numerical solutions
of an optimal control problem for quasilinear parabolic equations. The existence and unique-
ness of the solution are shown. The derivation of formula for the gradient of the modified cost
function by solving the conjugated boundary value problem is explained. In [16] the authors
consider the optimal control of a degenerate parabolic equation governing a diffusive popula-
tion with logistic growth terms. The optimal control is characterized in terms of the solution of
the optimality system, which is the state equation coupled with the adjoint equation. Unique-
ness for the solutions of the optimality system is valid for a sufficiently small time interval due
to the opposite time orientations of the two equations involved. In paper [20] optimal control
for semilinear parabolic equations without Cesari-type conditions is investigated.

In this paper, we study an optimal control problem for systems whose states are described
by problems without initial conditions or, other words, Fourier problems for nonlinear para-
bolic equations.

The problem without initial conditions for evolution equations describes processes that
started a long time ago and initial conditions do not affect on them in the actual time mo-
ment. Such problem were investigated in the works of many mathematicians (see [3,7,23] and
bibliography there).

As we know among numerous works devoted to the optimal control problems for PDEs,
only in papers [4,5] the state of controlled system is described by the solution of Fourier prob-
lem for parabolic equations. In the current paper, unlike the above two, we consider optimal
control problem in case when the control functions occur in the coefficients of the state equa-
tion. The main result of this paper is existence of the solution of this problem.

The outline of this paper is as follows. In Section 1, we give notations, definitions of func-
tion spaces and auxiliary results. In Section 2, we prove existence and uniqueness of the solu-
tions for the state equations. Furthermore, we construct a priori estimates for the weak solu-
tions of the state equations. In Section 3, we formulate the optimal control problem. Finally,
the existence of the optimal control is presented in Section 4.

1 PRELIMINARIES

Let n be a natural number, R” be the linear space of ordered collections x = (x1,...,X,)
of real numbers with the norm |x| := (|x{|> + ... + |x,4]?)!/2. Suppose that Q is a bounded
domain in R"” with piecewise smooth boundary I'. Set S := (—00,0], Q:=Q x §, X :=T x S.

Denote by L{° (Q) the linear space of measurable functions on Q such that their restrictions

to any bounded measurable set Q" C Q belong to the space L*(Q’).
Let X be an arbitrary Hilbert space with the scalar product (-,-)x and the norm || - ||x.



OPTIMAL CONTROL OF PROBLEM WITHOUT INITIAL CONDITIONS 23

Denote by L? (S; X) the linear space of measurable functions defined on S with values in X,
whose restrictions to any segment [a,b] C S belong to the space L?(a, b; X).

Letw € R, a € C(S) be such that a(t) > 0forallt € S, = a ory = 1/a, and let X be as
above. Put by definition

12,,(5X) = {feuxsx\/ﬁ Pt < eo).

This space is a Hilbert space with respect to the scalar product

()13, 5%) = /# 0 0, g0 a
and the norm

fa(s)ds 1/2
1£112,,5:x) = /7 o) at)

Denote by Cl(a,b), where —co < a < b < +oo, the linear space of continuously differen-
tiable functions on (a, b) with compact supports.
Let H(Q) := {v € L(Q) | vy, € Lo(Q) (i = 1,n)} be a Sobolev space, which is a Hilbert

n
space with respect to the scalar product (v, w) 1 (q) := [ { L vxwy, +vw} dx and the corre-
O =1
n 1/2 l
sponding norm |[v]| 1 () == (f { ¥ |ox, >+ [0]*} dx) . Under H}(Q) we mean the closure
O i=1

in H1(Q) of the space C®(Q)) consisting of infinitely differentiable functions on () with com-
pact supports. Denote by

[ Vo] dx
K:= inf 2 1
veH}(Q), 020 [ [0?dx M
@)

where Vo = (vy,,...,0y,), |Vo> = Z |0y, |2

It is well known that the Constant K is finite and coincides with the first eigenvalue of the
following eigenvalue problem:
—Av = Av, 0|y =0. (2)

From (1) it clearly follows the Friedrichs inequality

/|Vv|2dx > K/ I0[2 dx for all v € HY(Q). 3)

Also define dpz =z, 9djz = Zx; if j € {1,...,n}. Further, an important role will be played
by the following statement.

Lemma 1. Suppose that a function z € L?(t1,tp; H{(Q)), where t,t, € R (# < t2), satisfies
the identity

//{—ZW +Zg18¢<v}dxdt—0 Y € Hy(Q), ¢ € Cl(t, t2), (4)

t1 Q)
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for some g; € L%(t1,t2; L>(Q)) (i = 0,n). Then
(i) the function z belongs to the space C([t1,t]; L>(Q)) and for every 6 € C'([t1,t2]) and
forallt,p € [t1, 1] (11 < T2) we have

/\z x, t) lzdxt e -5 /]2\29'dxdt+//{2g18 z}0dxdt = 0; (5)
T

10 710 -

(i) the derivative z; of the function z in the sense D'(t1,ty; H~1(Q)) (the distributions
space) belongs to L?(ty,tp; H~1(Q)), furthermore

/ Izt (s ) mr ey t < 2 18R 110 ©)

Proof. The first statement follows directly from Lemma 2 of [6]. Let us prove the second state-
ment. Firstly note that the following continuous and dense embeddings hold

H(Q) c L2(Q) c HYQ). 7)

Let C(ty,t2) be the space of functions on (t1,t,) which are infinitely continuously dif-
ferentiable and have compact supports. Under D’(t;,tp; H-1(Q))) we mean the space of dis-
tributions which are defined on C®(t;,t,) with values in H1(Q) (see, for example, [14]).
Since the spaces L2(t1,tp; H{(Q)), L*(t1,t2; H1(Q))) can be identified with subspaces of the
space of distributions D'(t1, tp; H=1(Q))), then it allows us to speak about derivatives of func-
tions from L?(t1,t;H{(Q))) in the sense D'(t1,t;;H Q1)) and their belonging to the space
Lz(tl,tz;Hil(Q».

Let us rewrite equality (4) in the form

//21/J¢ dxdt = // Zgla Yodxdt, e HO( ), ¢ € C}(tl,tz). (8)

t1 Q) fQZ

According to the definition of the derivative of distributions from D’(t,t,; H~1(Q)), (8) im-
plies that z; belongs to the space L?(t1, to; H-1(Q))), and for almost all t € (t1, t5)

< zi(-, 1), 9(+) >Hi(Q /Zgl x, 1) (x

where < -, - > H(Q) denotes the canonical scalar product in H~1(Q) x H}(Q). From this,
using the Cauchy-Schwarz inequality, for almost all t € (t1,t) we obtain

| <z 1), 9() >mia !<Z|!gz, M2l ()l 2

< (Ll 0lEe) 19O ooy

From (9) it follows that for almost all t € (¢, t) the following estimate is valid

n
[EAON] N Zng ot

which easily implies (6). ]

)
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2 WELL-POSEDNESS OF THE PROBLEM WITHOUT INITIAL CONDITIONS FOR NONLINEAR
PARABOLIC EQUATIONS

Consider the equation
Yt — Z i (x,t,y,Vy) +ao(x, t,y, Vy) = f(x,t), (x,t)€Q, (10)

where y : Q — R is an unknown function and data-in satisfies following conditions:
(Ap) foreveryie€ {0,1,...,n}
QxR xR"> (x,t,5,&) —aj(x,ts,¢) €ER

is the Caratheodory function, i.e., a;(x,t,-,-) : R x R” — R is the continuous function
fora.e. (x,t) € Q,and a;(-,-,5,&) : Q — R is the measurable function for every (s,{) €
R x R"; moreover, a;(x,t,0,0) = 0 fora. e. (x,t) € Q;

(Ap) foreveryi e {0,1,...,n}, forevery (s,¢) € R x R", and for a.e. (x,t) € Q the following
estimate is valid |a;(x,t,5,8)] < Ci(Js| + |&]) + hi(x, t), where C; = const > 0, h; €
(S;L*(Q));
loc

(A3z) forevery (s1,&l), (s2,¢%) € R x R" and for a.e. (x,t) € Q the following inequality holds

n

Y (ai(x,t,51,8") — ai(x,t,52,8%)) (& — &F)
i—1
+ (a0 (x,t,51,81) — ao(x,£,52,6%)) (51 = 52) > a(B)[" = &2,
where a € C(S) such that a(t) > 0 forallt € S;
(F) f € L, (S L2(Q)).
Additionally, we impose the boundary condition
ylg =0 (11)
on a solution of equation (10).

Definition 1. The function y is called a weak solution of equation (10) satistfying boundary
condition (11) if it belongs to L2 (S; H}(€Q)) N C(S; L?(QY)) and the following integral equality
holds

loc

//{ _W/’qo’ + iai(x, t,y, Vy)azlqu)} dxdt
’ - (12)
= //fl[)q)dxdt, P e H%(Q), ¢ € Ccl(—OO,O).

Q
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There may exist many weak solutions of equation (10) satisfying boundary condition (11).
To ensure uniqueness of the weak solution of equation (10) satisfying condition (11), we have
to impose some additional conditions on solutions, for instance, some restrictions on their
behavior as t — —oo. We will consider the problem of finding a weak solution of equation (10)
satisfying boundary condition (11) and the analogue of the initial condition

-

) w [a(s)ds
lim e © ly( Dll2() =0, (13)

t——o0

where w € R. We will briefly call this problem by problem (10), (11), (13), and the function y is
called the weak solution of problem (10), (11), (13).

Lemma 2. Let w < K, where K is a constant defined in (1), and conditions (A;)-(A3) are
satisfied. Then two following statements are true.

(i) If y is a weak solution of problem (10), (11), (13) and

f S Lw 1/0((5; LZ(Q))f (14)
theny € L2, ,(S; H)(Q)) and the following estimates hold:

T T £

2w [a(s)ds ) . 2w [ a(s)ds
e 0 DRy <G [T 0 I Rt TES, (15)
||]/||L§,l“(s,-H3( < CZ”fHLZ L(SL2 ()7 (16)

where C1, C; are positive constants depending on K and w only.

(ii) If y; and y, are two weak solutions of problem (10), (11), (13) with f = fi and f = f
correspondingly, and

fe € Loa/a(SL2(Q)) (k=1,2), (17)
then the following estimates hold:
2w frrx(s) ds
e 1 1)~ 6 D)lk6
. 1 wafrx(s) ds (18)
<G [RO1e 0 IACGH = AEDE g TES,
1 =v2lliz, (smpc0)) < Callfi = £olliz | sz (19)
where Cy, C; are positive constants such as in (15) and (16).
Proof. First we prove statement (ii). For function z : Q — IR let us denote
a;(z)(x, t) == a;(x,t,z(x,t), Vz(x,t)), (x,t)€Q,i=0,n. (20)
From (12) for difference y15 := y1 — y» we get such an integral identity
n
//{ —y2pe + ) (aily1) — ai(yz))ai¢§0} dxdt
=0
° | @)

= //f12¢¢ dxdt, € Hé(Q), P € Cg(—oo,O),
Q
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where f1p := f; — f». According to Lemma 1, (21) implies that

/ o] - / [ lynal?e’ dxat
=0

e (22)
n
+// Z ]/1 — a; yz))alylz]f)dxdt //flzylzf)dxdt
n0 =0 T Q)
where § € C!(S) and 71, » € S (Ty < o) are arbitrary. Using Cauchy inequality with e:
ab<2a +—b2 ,beR, e>0, (23)
let us estimate the right side of equahty (22) as follows:
(]
‘//flzylze dxdt’ // |y12|29 dxdt + — 26 // 1|f12|29 dxdt (24)
1 Q T Q
where e > 0 is arbitrary From Cond1t10n (A3) we obtain followmg
n
// Z a;(y1) — a; yz))alylz dedt > //a]Vylz\Zdedt (25)
710 - 710
where Vy := (yxl, .+, Yx, ). According to (24) and (25), (22) implies the inequality
0( /|y12 X, T)|? dx — —6 (1 /|y12 x,1)|?dx — = //|y12|29’dxdt
10
+//a|Vy12|26dxdt <= //oc|y12|29dxdt+ 9 // 7Y f12 |0 dxdt,
Q0 10
where & > 0 is arbitrary.
2w _[t‘tx(s)ds
From this taking 6(t) = 2e 0 ,t € S, we obtain
Zw}z 2w i [ a(s)ds )
e /|y12 X, T)|?dx — e 0 /|y12(x,1'1)| dx
warx(s) Zw Ja(s)ds
- Zw//rx(t)e 0 ]ylz\zdxdt + 2// 0 |Vy1o|? dxdt (26)
Q) T Q
2 wattx(s)ds 2 2wffrx(s) ds
< s//(x(t)e 0 \yu]zdxdt%—%//[rx(t)]le 0 | fi2|* dxdt.
1 Q 710
Due to (26) using (3) we obtain
)
2w [ a(s)ds 2w [ a(s)ds
e 0 /]ylz(x,rz)lzdx—e 0 /]ylz(x,rl)lzdx
t (27)
Zw a(s) wazx(s)ds
x(K, w, e// 0 |Vy12|2dxdt < - // 0 | fio|? duxdt,

Q0 10
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where x (K, w, ¢) := (2(K—w) —¢)/Kif0 < w < K, and x(K,w,¢) := (2K —¢) /K if w < 0.
Taking e = Kif w < 0,and ¢ = K — w if 0 < w < K in (27), we obtain

Zw}z 2w Tla(s)ds )
e /|y12 X, T)|?dx—e 0 /|y12(x,1'1)| dx
o t (28)
T .
Zw rx(s) ds 2w [ a(s)ds
4G // 0 | Vynal? dxdt < Cy //[a(t)]*le 0 | fial? ducdt,
10 10
where C3, C4 are positive constants depending on K and w only.
From (13) it easily follows the condition
t
waa
e /|y12 x,t)?dx -0 as t— —oo. (29)

Taking into account (29) and (17), we let 7 — —oco in (28). As a result, adopting » = 7 € S,
we obtain

Zw a(s) ds
/Wm2x1-|¢»+c3//" 2 Ty

0 (30)
walX(S)dS
< c //[a(t)rle 0 | fia? docdt.

—oo()

Hence, using inequality (3), we easily obtain estimates (18) and (19).

Now let us prove statement (i). Using the condition (A1) one can easily see that y = 0
is a weak solution of problem (10), (11), (13) with f = 0, thus estimates (18) and (19) with
1=y f = fandy, =0, f, = 0 imply estimates (15) and (16). Estimate (16) implies that
v € L3, (S; Hi(Q). O

Lemma 3. If w < K, where K is a constant defined by (1), then problem (10), (11), (13) has at
most one weak solution.

Proof. Assume the opposite. Let i1, 2 be two weak solutions of problem (10), (11), (13). In case
w < K according to Lemma 2 we obtain the equality

T

2w [a(s)ds
e 0 / ly1(x, 7) —yz(x,r)\zdx =Qforall Tt €8S. (31)

From proof of Lemma 2 it follows that estimate (31) is correct in case w = K also. Indeed, if
w = K, then in (27) and (30) we have x (K, w, &) = 0 and C3 = 0, correspondingly, and its easily
follows from the proof that estimate (18) is correct.

Equality (31) implies equality y1(x,t) — y2(x,t) = 0 for a. e. (x,t) € Q, thatis, y1(x,t) =
ya2(x,t) = 0fora.e. (x,t) € Q. The resulting contradiction proves our statement. O
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Remark 1. Functions y.(x,t) = co(x)e ®, (x,t) € Q (c € R), where v is an eigenfunction of
problem (2) corresponding to the first eigenvalue, are weak solutions of equation (10) satisfy-
ing condition (11), when a; = &; (i = 1,n), ap = 0 and f = 0. In this case we have a(t) = 1,
therefore condition (13) takes on the form: e*!||y(-,t)|| 2(0) , 57 0. Obviously in this case for

nonzero solutions we have e ||y, (-, t) 200 i C = const # 0, ¢! ||yc(-, 1)l 12(q) ST if
——00 ——00
w < K, and ! ||y (-, t) 200 P 0 if w > K. This means that the condition w < K is essen-
——00

tial for ensuring the uniqueness of the weak solution of problem (10), (11), (13), i.e., it cannot
be simplified.

Theorem 1. Suppose that conditions (A;)—(A3) hold, and w < K, where K is a constant
defined in (1), and
f € Le,1 /(S L2(QQ)). (32)

Then there exists a unique weak solution of problem (10), (11), (13), it belongs to the space
L2, ,(S; H{(Q)) and estimates (15) and (16) are correct.

Proof. Lemma 3 gives us a uniqueness of a weak solution of problem (10), (11), (13). It remains
to prove the existence of a weak solution of this problem.

For each m € N we define f, (-, t) := f(-,t), if —=m < t <0, and fu (-, t) :=0,if t < —m,
and consider the problem of finding a function y,, € L?(—m,0; H(Q))N C([—m,0]; L>(Q))
satisfying the initial condition

Ym(x,—m) =0, x€Q, (33)

(as an element of space C([—m, 0]; L?(Q)))) and equation (10) in Q,, in the sense of the following
integral identity

//{ —ymg’ + anoai(ym)aiw} dxdt = //fmw dxdt, € Hy(Q), ¢ € C(—m,0).
Qu = Qu

The existence and uniqueness of the solution of this problem easily follows from the known
results (see, for example, [14]). For every m € IN we extend y,, by zero for the entire set Q and
keep the same notation y;, for this extension. Note that for each m € N, the function y,,
belongs to L2(S; HY(Q))) N C(S; L*(Q2)) and satisfies integral identity (12) with f,, substituted
for f, ie,

//{ — Ympp' + Xn(:)ai(ym)aﬂPQD} dxdt = //fm¢¢dxdt,1p € H}(Q), ¢ € CH(—c0,0). (34)
Q = Q

Consequently, we have shown that y,, is a weak solution of problem (10), (11), (13) with f,,
substituted for f. Then, in particular, statement (i) of Lemma 2 implies estimates

wazx(s)ds ) - . watzx(s)ds )
e 0 Dy G [ @) e 0 A R de TES, (39

iz, (sm10)) < Callflliz |, (51200 (36)
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where Cy, C; are positive constants such as in estimates (15), (16).

Let us take identity (34) with alternately m = k and m = [, where k, | are arbitrary positive
integers, [ > k, and apply statement (ii) of Lemma 2. As a result, we obtain estimates similar
to (18), (19), i.e.

wasz(s)d e wata(s)

S
e 0 ) =T Ry < G [l e o
-1
—k
e = will 2, sy < C2 [ (] e
-1

ds
IfC D qydt, TS, (37)

t
2w [ a(s
0

)ds
£ G172 )t (38)

Condition (32) implies that the right-hand sides of inequalities (37) and (38) tend to zero when
k and I tend to +co. This means that the sequence {y;, }°_; is a Cauchy sequence in the space

L2, ,(S; HA(Q)) and C(S; L?(Q2)). Consequently, we obtain the existence of the function y €
L2, ,(S; HA(Q)) N C(S; L?(Q))) such that

Ym =2 Y strongly in L2 ,(S;Hj(Q)) and C(S;L*(Q)). (39)
Note that (39) implies
diYm maiy strongly in L2 (S;L*(Q?)), i=0,n. (40)

Condition (Ajy) and estimate (36) gives us for each t1,t; € S(t; < t) the following:

ty t
//\ai(ym)\zdxdt < Cs // (1 + |V yu ? + [13]?2) dxdt < Cs, (41)
t1 Q) t Q)

where Cs and Cg are positive constants independent on m.

Hence, from (41) we obtain that a;(y,;) is bounded in L2 _(S; L?(Q))). This and (40) yield
that there exists a subsequence of {y,}"_, (still denoted by {yw}5_,) and functions x; €
L210c(S; L2(Q)) (i = 0, 1) such that

0iYm maiy ae.on Q, i=0,n, (42)
a;(Ym) 2 X weakly in  Lp10c(S; L2(Q2)), i=0,n. (43)

Condition (A;) and (42) yield
a;(Ym) W:))oai(y) ae.onQ, i=0,n. (44)

According to [17, Lemma 1.3], from (43) and (44) we obtain

ai(ym)moai(y) weakly in  Lp1,.(S; L2(QY)), i=0,n. (45)

Let us show that the function y is a weak solution of problem (10), (11), (13). To do this, we
let m — oo in identity (34), taking into account (40), (45) and the definition of the function f;,.
As aresult we obtain identity (12). Now, taking into account (39), we let m — 4-00in (35). From
the resulting inequality and condition (32), we obtain condition (13). Hence, we have proven
that y is a weak solution of problem (10), (11), (13). O
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3 FORMULATION OF THE OPTIMAL CONTROL PROBLEM AND THE MAIN RESULT

Let U := L*(Q) be a space of controls and Uy := {v ceu ’ v>0 a.ein Q} be the set

of admissible controls. We assume that the state of the investigated evolutionary system for a
given control v € Uj is described by a weak solution of the equation

" d
]/t - Z dX‘ai(x’ t;]// Vy) +ll0(x, t/y/ vy) +U(X, t)y = f(x, t), (x, t) c Q, (46)
i=1 t

satisfying conditions (11) and (13) (this problem is similar to problem (10), (11), (13)). This
means that y is a function belonging to the space L2 (S; H}(Q))) N C(S; L*(Q))) and satisfying
the integral identity

/ / {—ypo' + 2 ai(x by, V)i + oype | dxdt
Q = (47)
= //f¢¢dxdt, ¥ € H}(QY), ¢ € Cl(—00,0),

Q

and condition (13) under assumptions (\A1)-(.A3), (F).

A weak solution y of the specified problem will be called a weak solution of problem (46),
(11), (13) for control v, and will be denoted by y(v), or y(x,t), (x,t) € Q, ory(x,t;v), (x,t) € Q.
Further, we assume that condition (32) and the inequality w < K hold. From the previous sec-
tion (see Theorem 1), we immediately obtain the existence and uniqueness of a weak solution
of problem (46), (11), (13) (for a given v € Uj) and its estimates (15), (16).

We assume that the cost functional has the form

1) = lly( 0;0) — 20() 22y + Hllellim() 0 € UL, (48)

where zg € L2(Q), u > 0 are given.
We consider the following optimal control problem: find a control u € U such that

J(u) = inf J(0v). (49)

vely

We briefly call this problem (49), and its solutions will be called optimal controls.

The main result of this paper is the following theorem.
Theorem 2. Problem (49) has a solution.

4 PROOF OF THE MAIN RESULT

Proof of Theorem 2. Since the cost functional | is bounded below, there exists a minimizing se-
quence {v;} for J in Uy, i.e., J(vy) b inlf J(v). This and (48) imply that the sequence {v} is
—o0 vely

bounded in the space L*(Q), that is

esssup |vg(x, t)| < Cyforall k € N, (50)
(x1)eQ



32 BOKALO M.M., TSEBENKO A.M.

where C7 is a constant, which does not depend on k.
Since for each k € IN the function v, := y(v;) (k € IN) is a weak solution of problem (46),
(11), (13) for v = vy, the following identity holds:

//{ — Yk’ + iéai(yk)ai#’(/’ + vkyk¢¢} dxdt
S i=

= //f¢¢dxdt, ¥ € H}(Q), ¢ € Cl(—00,0). Y
Q
According to Lemma 2 for each k € IN we have the estimates
20 [ a(s)ds T 20 [ a(s)ds
e 0 D <G [ROIE S IFCOI] @ TES, (D)
lvelliz, (s;m100)) < Callfllz ,, (s2()) - (53)
where constants Cy, C; are independent on k € IN. From (.A;) and (53) it follows
LI L)
[ ol st < G [ [ (el + 1w+ f) de < € 54)

nQ = 10

where 71, 72 € S (11 < 1) are arbitrary, and Cg, Cy are positive constants independent on k.
Taking into statement (ii) of Lemma 1, from (51) for arbitrary 7, 0 € S (1 < 7») and k € N
we obtain

T T n
J il at < [ [ (X0 1) P+ low — f12 )t 55)
T no =0

Taking into account condition (32), (50) and (54), estimate (55) implies
%)
/ 1Yt 31y 4t < Cro forall k€ N, (56)
T

where 71, 2 € S (71 < T2) are arbitrary, C19 > 0 is a constant which depends on 77 and 1, but
does not depend on k.

According to the Compactness Lemma (see [19, Proposition 4.2]), and the compactness of
the embedding H}(Q)) C L?(Q) (see [18] c. 245), estimates (50), (53), (54), (56) yield that there
exists a subsequence of the sequence {v, v} (still denoted by {vy, yx}) and functions u € U,
y € L2, ,(S; H{(Q)) and x; € L2 _(S; Lo(Q)) (i = 0,n) such that

loc
Uk ]H—OZ u x-weaklyin L*(Q), (57)
Yk 2 weakly in L2, ,(S; Hj(QQ)), (58)
Ye = 2Y strongly in  L{,.(S; L*(€2)), (59)
a;i(yx) — xi weaklyin Lp1oc(S;L2(QY)), i=0,n. (60)

k—o0
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Note that (58) implies the following

alyk 2 aly weaklyin L2 (S;L*(Q))), i=0,n. (61)
Let us show that (57) and (59) yield

// YOk dxdtk—> // yup @ dxdt for all p € H}(Q), ¢ € Cl(—0,0). (62)
— 00
Q Q

Indeed, let ¢ := ¢ and t1,t, € S be such that supp ¢ C [t1, t2]. Then we have

//ykvkgdxdt // YUk — YOx + yog) g dxdt = //yvkgdxdt—l—// Y — Y)opg dxdt.  (63)

t1 Q) tQ tHQ

From (50) and (59) it follows

)]2 (yk—y)vkgdxdt) //]vkglzdxdt //\yk—y\zdxdt> IH—OZ(), (64)

tlQ tlﬂ tlﬂ

Thus, using (64) and (57), (63) implies (62). Similarly to (62) it can be easily shown that (57) and
(59) yield

//|yk|20kgodxdtk—>//|y|2ugodxdt forall ¢ € Cl(—co,0). (65)
—00
0 0

Using (61), (62), and letting k — oo in (51), we obtain
n
[ {=vwo'+ L xouwg+uyyo}dxat = [[ fpgaxdt, g € Hy(©Q), ¢ € Cl(=e,0). (66)
Q =0 Q

According to Lemma 1, identity (66) implies that y € C(S; L*(QQ)).
Now let us show that the equality

/ { gxiaitp} dx = ({ { gai(y)aﬂp} dx (67)

Q

is valid for every ¢ € H}(Q) and for a. e. t € S. For this we use the monotonicity method
(see [17]). Let us take an arbitrary functions w € L 1o.(S; HY(Q)) and 6 € Cl(—o0,0), 6(¢) > 0
for all t € (—o0,0). Using condition (Aj3) for every k € IN we have

Wy = // al (yx) — a;i(w))(diyx — aiw)}(? dxdt > 0.

From this we obtain

Wi = // iai(%‘)alyke dxdt — // i [ai(yk) 9w + a;(w) (djyx — dw)]6 >0, k€ N. (68)
o =0 g i=0
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According to Lemma 1, (51) implies
1 » L
—5//|yk| 9'dxdf+// Z (ve) ik + velyil? }Qdﬂﬁ //f]/kf)dxdf
Q g =
From (68), using (69), we obtain
1
Wi = // {310+ (fri—orlyi )} dxdt
Q
n
- // Y [ai(yk)diw + a;(w) (d;yx — 0;w)] O dxdt >0, k € N.
Taking into account (59) and (65) we have
Jim // {5 1el20/+ (fy—oilye ) 0} dxdt = // {510+ (fy—uly?)6} dxat.
By (60), (61) and (71) from (70) we get
0 < lim Wy = // {lly]29'+(fy—u\y\2)9} dxdt
T k—oo 2
Q
n
—//Z [xi9iw + a;(w) (9;y — d;w)] Odxdt.
G =0
From (66), using Lemma 1, we obtain
- Lo 2
//ZXiai]/Q dxdt = // {§|y| 0'+ (fy—uly| )9} dxdt.
g =0 Q
Thus, (72) and (73) imply that

// (1)) @y — aw) } dxdt > 0.

(69)

(70)

(71)

(72)

(73)

(74)

Substituting w = y — Ay in the above inequality, where ¥ € H}(Q), A > 0 are arbitrary, and

dividing the obtained inequality by A we get

// Xi —ai(u— Ap))o; ¢}9 dxdt > 0.

(75)

Letting A — 0+ in (75), using condition (A;) and the Dominated Convergence Theorem

(see [9, p. 648]), we have

// i (¥))2 }0 dxdt = 0.

i=1

(76)
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Since ¢ € H}(Q), 8 € Cl(—o0,0) are arbitrary functions, then (76) impliest (67).

Therefore y is a weak solution of equation (46), satisfying boundary condition (11). Hence,
the function y is a weak solution of equation (46) for v = u, satisfying boundary condition (11).
Let us show that y satisfies condition (13). First, we prove the following convergence:

forallt € S: y(-,7) — y(-,7) stronglyin L3(Q). (77)

k—o0

For this purpose, we subtract identity (51) from identity (47) with v = u, ¢ € H}(Q),
¢ < Cg (_Oor O>:

// (y—y)pe' + Z —ai(yx)) i + uy — Uk]/k} dxdt = 0. (78)

To the resulting identity (78), we apply Lemma 1 with 6(f) = 2(t—7+4+1), m = 7—1,
T) = T, where T € S is any fixed. Consequently, we get

T
/|yxr —uxT)Pdx— [ [ly =yl duat

—-10)

(79)
+ // —ai(yx))9i(y — yir) + (uy — veyi) (y — yk)] 0 dxdt = 0.
=10 =0
From (79), taking into account condition (.43) we obtain:
/ y(x,T) —yi(x, 7P dx < // [y = yi? = (uy — oyi) (v — yi)6] dxdt. (80)

—-1Q)

Inequality (80) implies

/|yxr —yelx, 7)1 x<2// 100)ly — il + [yl = oilly — wl]dxdt. 8D
10

Using (50) and Cauchy-Schwarz inequality, from (81) we obtain

[0 - mimnpax < cn(] [ [-ubaa) s [ [ly-wpaa), @
Q

7—10 7—1Q

where C1; > 0 is a constant which does not depend on k. From (82), according to (59), we
get (77). Taking into account (77), let k — oo in (52). The resulting inequality, according to
condition (32), implies

2w Tzx(s) ds

lim e o /|y(x,r|2 dx =0, (83)

T——00

that is condition (13) holds. Hence, we have shown thaty = y(u) = y(x,t;u), (x,t) € Q, is the
state of the controlled system for the control u.
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It remains to prove that u is a minimizing element of the functional J. Indeed, (77) implies

Iy 0) = 20() 222y — (- 0) = 20() 22 (84)

k—o0

Also, (57) and properties of x-weakly convergent sequences yield

1' i f o0 > [ee] .
Jim in [okllLo(0y = llullre(@) (85)

From (48), (84) and (85), it easily follows that klim J(vr) > J(u). Thus, we have shown that
—00

u is a solution of problem (49). O
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AOCAIAXEHO 3apauy ONTMMAABHOTO KepPYBaHHSI CHUCTEMaMM, CTaH SIKMX OIMCYEThCS 3aAauero
dDyp’e Ars HeAlHIENX Tapaboaiurmx piBHSHD. KepyBaHHS BXOAUTSD sIK KoedpillieHT B piBHSHHI CcTa-
Hy cucTtemMn. AOBEAEHO iCHyBaHHS ONTMMAABHOTO KepyBaHHs y BUIIaAKY (PiHaABHOTO CriocTepesxe-
HHSL

Kntouosi cnosa i ppasu: onTmMarbHe KepyBaHHsI, 3apada 6e3 I09aTKOBMX YMOB, HeAiHilHe Mapa-
boaiuHe piBHSHHSI.



