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INTRODUCTION

Optimal control of determined systems governed by partial differential equations (PDEs)

is currently of much interest. Optimal control problems for PDEs are most completely studied

for the case in which the control functions occur either on the right-hand sides of the state

equations, or the boundary or initial conditions [8, 22, 26]. So far, problems in which control

functions occur in the coefficients of the state equations are less studied.

The main ideas and methods of solving different optimal control problems for systems

governed by evolutionary equations and variational inequalities are considered in monograph

[18]. Problem, where control functions occur in the coefficients of the state equations, is given

as only one among many other problems which were considered there by author.

A lot of various generalizations of this problem were investigated in many papers, includ-

ing [1, 2, 4, 5, 10–13, 15, 20, 21, 24, 25], where the state of controlled system is described by the

initial-boundary value problems for parabolic equations.

In [1,21,24,25] the state of controlled system is described by linear parabolic equations and

systems, while in [1] and [21] control functions appears as coefficients at lower derivatives,

and in [24, 25] the control functions are coefficients at higher derivatives. In [21] the existence

and uniqueness of optimal control in the case of final observation was shown and a necessary

optimality condition in the form of the generalized rule of Lagrange multipliers was obtained.

In paper [1] authors proved the existence of at least one optimal control for system governed by

a system of general parabolic equations with degenerate discontinuous parabolicity coefficient.

In papers [24, 25] the authors consider cost function in general form, and as special case it

includes different kinds of specific practical optimization problems. The well-posedness of

the problem statement is investigated and a necessary optimality condition in the form of the

generalized principle of Lagrange multiplies is established in this papers.
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In papers [2, 10–13, 15, 20] authors investigate optimal control of systems governed by non-

linear PDEs. In particular, in [2] the problem of allocating resources to maximize the net benefit

in the conservation of a single species is studied. The population model is an equation with

density dependent growth and spatial-temporal resource control coefficient. The existence of

an optimal control and the uniqueness and the characterization of the optimal control are es-

tablished. Numerical simulations illustrate several cases with Dirichlet and Neumann bound-

ary conditions. In [11] the optimal control problem is converted to an optimization problem

which is solved using a penalty function technique. The existence and uniqueness theorems

are investigated. The derivation of formula for the gradient of the modified function is ex-

plained by solving the adjoint problem. Paper [15] presents analytical and numerical solutions

of an optimal control problem for quasilinear parabolic equations. The existence and unique-

ness of the solution are shown. The derivation of formula for the gradient of the modified cost

function by solving the conjugated boundary value problem is explained. In [16] the authors

consider the optimal control of a degenerate parabolic equation governing a diffusive popula-

tion with logistic growth terms. The optimal control is characterized in terms of the solution of

the optimality system, which is the state equation coupled with the adjoint equation. Unique-

ness for the solutions of the optimality system is valid for a sufficiently small time interval due

to the opposite time orientations of the two equations involved. In paper [20] optimal control

for semilinear parabolic equations without Cesari-type conditions is investigated.

In this paper, we study an optimal control problem for systems whose states are described

by problems without initial conditions or, other words, Fourier problems for nonlinear para-

bolic equations.

The problem without initial conditions for evolution equations describes processes that

started a long time ago and initial conditions do not affect on them in the actual time mo-

ment. Such problem were investigated in the works of many mathematicians (see [3,7,23] and

bibliography there).

As we know among numerous works devoted to the optimal control problems for PDEs,

only in papers [4,5] the state of controlled system is described by the solution of Fourier prob-

lem for parabolic equations. In the current paper, unlike the above two, we consider optimal

control problem in case when the control functions occur in the coefficients of the state equa-

tion. The main result of this paper is existence of the solution of this problem.

The outline of this paper is as follows. In Section 1, we give notations, definitions of func-

tion spaces and auxiliary results. In Section 2, we prove existence and uniqueness of the solu-

tions for the state equations. Furthermore, we construct a priori estimates for the weak solu-

tions of the state equations. In Section 3, we formulate the optimal control problem. Finally,

the existence of the optimal control is presented in Section 4.

1 PRELIMINARIES

Let n be a natural number, R
n be the linear space of ordered collections x = (x1, . . . , xn)

of real numbers with the norm |x| := (|x1|
2 + . . . + |xn|2)1/2. Suppose that Ω is a bounded

domain in R
n with piecewise smooth boundary Γ. Set S := (−∞, 0], Q := Ω × S, Σ := Γ × S.

Denote by L∞
loc(Q) the linear space of measurable functions on Q such that their restrictions

to any bounded measurable set Q′ ⊂ Q belong to the space L∞(Q′).

Let X be an arbitrary Hilbert space with the scalar product (·, ·)X and the norm ‖ · ‖X.
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Denote by L2
loc(S; X) the linear space of measurable functions defined on S with values in X,

whose restrictions to any segment [a, b] ⊂ S belong to the space L2(a, b; X).

Let ω ∈ R, α ∈ C(S) be such that α(t) > 0 for all t ∈ S, γ = α or γ = 1/α, and let X be as

above. Put by definition

L2
ω,γ(S; X) :=

{

f ∈ L2
loc(S; X)

∣

∣

∣

∫

S

γ(t)e
2ω

t
∫

0

α(s)ds

‖ f (t)‖2
X dt < ∞

}

.

This space is a Hilbert space with respect to the scalar product

( f , g)L2
ω,γ(S;X) =

∫

S

γ(t) e
2ω

t
∫

0

α(s) ds

( f (t), g(t))X dt

and the norm

‖ f‖L2
ω,γ(S;X) :=

(

∫

S

γ(t) e
2ω

t
∫

0

α(s) ds

‖ f (t)‖2
X dt

)1/2
.

Denote by C1
c (a, b), where −∞ ≤ a < b ≤ +∞, the linear space of continuously differen-

tiable functions on (a, b) with compact supports.

Let H1(Ω) := {v ∈ L2(Ω) | vxi
∈ L2(Ω) (i = 1, n)} be a Sobolev space, which is a Hilbert

space with respect to the scalar product (v, w)H1(Ω) :=
∫

Ω

{
n

∑
i=1

vxi
wxi

+ vw
}

dx and the corre-

sponding norm ‖v‖H1(Ω) :=
(

∫

Ω

{
n

∑
i=1

|vxi
|2 + |v|2

}

dx
)1/2

. Under H1
0(Ω) we mean the closure

in H1(Ω) of the space C∞
c (Ω) consisting of infinitely differentiable functions on Ω with com-

pact supports. Denote by

K := inf
v∈H1

0 (Ω), v 6=0

∫

Ω

|∇v|2 dx

∫

Ω

|v|2 dx
, (1)

where ∇v = (vx1 , . . . , vxn), |∇v|2 =
n

∑
i=1

|vxi
|2.

It is well known that the constant K is finite and coincides with the first eigenvalue of the

following eigenvalue problem:

−∆v = λv, v|∂Ω = 0. (2)

From (1) it clearly follows the Friedrichs inequality
∫

Ω

|∇v|2 dx ≥ K
∫

Ω

|v|2 dx for all v ∈ H1
0(Ω). (3)

Also define ∂0z = z, ∂jz = zxj
if j ∈ {1, . . . , n}. Further, an important role will be played

by the following statement.

Lemma 1. Suppose that a function z ∈ L2(t1, t2; H1
0(Ω)), where t1, t2 ∈ R (t1 < t2), satisfies

the identity

t2
∫

t1

∫

Ω

{

− zψϕ′ +
n

∑
i=0

gi∂iψϕ
}

dxdt = 0, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (t1, t2), (4)
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for some gi ∈ L2(t1, t2; L2(Ω)) (i = 0, n). Then

(i) the function z belongs to the space C([t1, t2]; L2(Ω)) and for every θ ∈ C1([t1, t2]) and

for all τ1, τ2 ∈ [t1, t2] (τ1 < τ2) we have

1

2
θ(t)

∫

Ω

|z(x, t)|2 dx
∣

∣

∣

t=τ2

t=τ1

−
1

2

τ2
∫

τ1

∫

Ω

|z|2θ′ dxdt +

τ2
∫

τ1

∫

Ω

{

n

∑
i=0

gi∂iz
}

θ dxdt = 0; (5)

(ii) the derivative zt of the function z in the sense D′(t1, t2; H−1(Ω)) (the distributions

space) belongs to L2(t1, t2; H−1(Ω)), furthermore

t2
∫

t1

‖zt(·, t)‖2
H−1(Ω) dt ≤

n

∑
i=0

‖gi‖
2
L2(Ω×(t1,t2))

. (6)

Proof. The first statement follows directly from Lemma 2 of [6]. Let us prove the second state-

ment. Firstly note that the following continuous and dense embeddings hold

H1
0(Ω) ⊂ L2(Ω) ⊂ H−1(Ω). (7)

Let C∞
c (t1, t2) be the space of functions on (t1, t2) which are infinitely continuously dif-

ferentiable and have compact supports. Under D′(t1, t2; H−1(Ω)) we mean the space of dis-

tributions which are defined on C∞
c (t1, t2) with values in H−1(Ω) (see, for example, [14]).

Since the spaces L2(t1, t2; H1
0(Ω)), L2(t1, t2; H−1(Ω)) can be identified with subspaces of the

space of distributions D′(t1, t2; H−1(Ω)), then it allows us to speak about derivatives of func-

tions from L2(t1, t2;H1
0(Ω)) in the sense D′(t1, t2;H−1(Ω)) and their belonging to the space

L2(t1, t2;H−1(Ω)).

Let us rewrite equality (4) in the form

−

t2
∫

t1

∫

Ω

zψϕ′ dxdt = −

t2
∫

t1

∫

Ω

n

∑
i=0

gi∂iψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (t1, t2). (8)

According to the definition of the derivative of distributions from D′(t1, t2; H−1(Ω)), (8) im-

plies that zt belongs to the space L2(t1, t2; H−1(Ω)), and for almost all t ∈ (t1, t2)

< zt(·, t), ψ(·) >H1
0(Ω)= −

∫

Ω

n

∑
i=0

gi(x, t)∂iψ(x) dx,

where < · , · >H1
0(Ω) denotes the canonical scalar product in H−1(Ω) × H1

0(Ω). From this,

using the Cauchy-Schwarz inequality, for almost all t ∈ (t1, t2) we obtain

| < zt(·, t), ψ(·) >H1
0 (Ω) | ≤

n

∑
i=0

‖gi(·, t)‖L2(Ω)‖∂iψ(·)‖L2(Ω)

≤
( n

∑
i=0

‖gi(·, t)‖2
L2(Ω)

)1/2
‖ψ(·)‖H1(Ω).

(9)

From (9) it follows that for almost all t ∈ (t1, t2) the following estimate is valid

‖zt(·, t)‖2
H−1(Ω) ≤

n

∑
i=0

‖gi(·, t)‖2
L2(Ω),

which easily implies (6).
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2 WELL-POSEDNESS OF THE PROBLEM WITHOUT INITIAL CONDITIONS FOR NONLINEAR

PARABOLIC EQUATIONS

Consider the equation

yt −
n

∑
i=1

d

dxi
ai(x, t, y,∇y) + a0(x, t, y,∇y) = f (x, t), (x, t) ∈ Q, (10)

where y : Q → R is an unknown function and data-in satisfies following conditions:

(A1) for every i ∈ {0, 1, . . . , n}

Q × R × R
n ∋ (x, t, s, ξ) 7→ ai(x, t, s, ξ) ∈ R

is the Caratheodory function, i.e., ai(x, t, ·, ·) : R × R
n → R is the continuous function

for a.e. (x, t) ∈ Q, and ai(·, ·, s, ξ) : Q → R is the measurable function for every (s, ξ) ∈

R × R
n; moreover, ai(x, t, 0, 0) = 0 for a. e. (x, t) ∈ Q;

(A2) for every i ∈ {0, 1, . . . , n}, for every (s, ξ) ∈ R × R
n, and for a.e. (x, t) ∈ Q the following

estimate is valid |ai(x, t, s, ξ)| ≤ C1

(

|s| + |ξ|
)

+ hi(x, t), where C1 = const > 0, hi ∈

L2
loc(S; L2(Ω));

(A3) for every (s1, ξ1), (s2, ξ2) ∈ R × R
n and for a.e. (x, t) ∈ Q the following inequality holds

n

∑
i=1

(

ai(x, t, s1, ξ1)− ai(x, t, s2, ξ2)
)

(ξ1
i − ξ2

i )

+
(

a0(x, t, s1, ξ1)− a0(x, t, s2, ξ2)
)

(s1 − s2) ≥ α(t)|ξ1 − ξ2|2,

where α ∈ C(S) such that α(t) > 0 for all t ∈ S;

(F ) f ∈ L2
loc(S; L2(Ω)).

Additionally, we impose the boundary condition

y
∣

∣

Σ
= 0 (11)

on a solution of equation (10).

Definition 1. The function y is called a weak solution of equation (10) satisfying boundary

condition (11) if it belongs to L2
loc(S; H1

0(Ω)) ∩ C(S; L2(Ω)) and the following integral equality

holds

∫∫

Q

{

− yψϕ′ +
n

∑
i=0

ai(x, t, y,∇y)∂iψϕ
}

dxdt

=
∫∫

Q

f ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0).

(12)
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There may exist many weak solutions of equation (10) satisfying boundary condition (11).

To ensure uniqueness of the weak solution of equation (10) satisfying condition (11), we have

to impose some additional conditions on solutions, for instance, some restrictions on their

behavior as t → −∞. We will consider the problem of finding a weak solution of equation (10)

satisfying boundary condition (11) and the analogue of the initial condition

lim
t→−∞

e
ω

t
∫

0

α(s)ds

‖y(·, t)‖L2 (Ω) = 0, (13)

where ω ∈ R. We will briefly call this problem by problem (10), (11), (13), and the function y is

called the weak solution of problem (10), (11), (13).

Lemma 2. Let ω < K, where K is a constant defined in (1), and conditions (A1)–(A3) are

satisfied. Then two following statements are true.

(i) If y is a weak solution of problem (10), (11), (13) and

f ∈ L2
ω,1/α(S; L2(Ω)), (14)

then y ∈ L2
ω,α(S; H1

0(Ω)) and the following estimates hold:

e
2ω

τ
∫

0

α(s) ds

‖y(·, τ)‖2
L2(Ω) ≤ C1

τ
∫

−∞

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt, τ ∈ S, (15)

‖y‖L2
ω,α(S;H1

0(Ω)) ≤ C2‖ f‖L2
ω,1/α(S;L2(Ω)), (16)

where C1, C2 are positive constants depending on K and ω only.

(ii) If y1 and y2 are two weak solutions of problem (10), (11), (13) with f = f1 and f = f2

correspondingly, and

fk ∈ L2
ω,1/α(S; L2(Ω)) (k = 1, 2), (17)

then the following estimates hold:

e
2ω

τ
∫

0

α(s) ds

‖y1(·, τ)− y2(·, τ)‖2
L2(Ω)

≤ C1

τ
∫

−∞

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f1(·, t)− f2(·, t)‖2
L2(Ω) dt, τ ∈ S,

(18)

‖y1 − y2‖L2
ω,α(S;H1

0(Ω)) ≤ C2‖ f1 − f2‖L2
ω,1/α(S;L2(Ω)), (19)

where C1, C2 are positive constants such as in (15) and (16).

Proof. First we prove statement (ii). For function z : Q → R let us denote

ai(z)(x, t) := ai(x, t, z(x, t),∇z(x, t)), (x, t) ∈ Q, i = 0, n. (20)

From (12) for difference y12 := y1 − y2 we get such an integral identity
∫∫

Q

{

− y12ψϕ′ +
n

∑
i=0

(

ai(y1)− ai(y2)
)

∂iψϕ
}

dxdt

=
∫∫

Q

f12ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0),

(21)
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where f12 := f1 − f2. According to Lemma 1, (21) implies that

1

2
θ(t)

∫

Ω

|y12(x, t)|2 dx
∣

∣

∣

t=τ2

t=τ1

−
1

2

τ2
∫

τ1

∫

Ω

|y12|
2θ′ dxdt

+

τ2
∫

τ1

∫

Ω

[ n

∑
i=0

(

ai(y1)− ai(y2)
)

∂iy12

]

θ dxdt =

τ2
∫

τ1

∫

Ω

f12y12θ dxdt,

(22)

where θ ∈ C1(S) and τ1, τ2 ∈ S (τ1 < τ2) are arbitrary. Using Cauchy inequality with ε:

ab ≤
ε

2
a2 +

1

2ε
b2, a, b ∈ R, ε > 0, (23)

let us estimate the right side of equality (22) as follows:

∣

∣

∣

τ2
∫

τ1

∫

Ω

f12y12θ dxdt
∣

∣

∣
≤

ε

2

τ2
∫

τ1

∫

Ω

α|y12|
2θ dxdt +

1

2ε

τ2
∫

τ1

∫

Ω

[α]−1| f12|
2θ dxdt, (24)

where ε > 0 is arbitrary. From condition (A3) we obtain following
τ2
∫

τ1

∫

Ω

[ n

∑
i=0

(

ai(y1)− ai(y2)
)

∂iy12

]

θ dxdt ≥

τ2
∫

τ1

∫

Ω

α|∇y12|
2θ dxdt, (25)

where ∇y := (yx1 , . . . , yxn). According to (24) and (25), (22) implies the inequality

1

2
θ(τ2)

∫

Ω

|y12(x, τ2)|
2 dx −

1

2
θ(τ1)

∫

Ω

|y12(x, τ1)|
2 dx −

1

2

τ2
∫

τ1

∫

Ω

|y12|
2θ′ dxdt

+

τ2
∫

τ1

∫

Ω

α|∇y12|
2θ dxdt ≤

ε

2

τ2
∫

τ1

∫

Ω

α|y12|
2θ dxdt +

1

2ε

τ2
∫

τ1

∫

Ω

[α]−1| f12|
2θ dxdt,

where ε > 0 is arbitrary.

From this taking θ(t) = 2e
2ω

t
∫

0

α(s) ds

, t ∈ S, we obtain

e
2ω

τ2
∫

0

α(s) ds∫

Ω

|y12(x, τ2)|
2dx − e

2ω
τ1
∫

0

α(s) ds∫

Ω

|y12(x, τ1)|
2dx

− 2ω

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|y12|
2dxdt + 2

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|∇y12|
2 dxdt

≤ ε

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|y12|
2 dxdt +

1

ε

τ2
∫

τ1

∫

Ω

[α(t)]−1e
2ω

t
∫

0

α(s) ds

| f12|
2 dxdt.

(26)

Due to (26) using (3) we obtain

e
2ω

τ2
∫

0

α(s) ds ∫

Ω

|y12(x, τ2)|
2 dx − e

2ω
τ1
∫

0

α(s) ds ∫

Ω

|y12(x, τ1)|
2 dx

+ χ(K, ω, ε)

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|∇y12|
2 dxdt ≤

1

ε

τ2
∫

τ1

∫

Ω

[α(t)]−1e
2ω

t
∫

0

α(s) ds

| f12|
2 dxdt,

(27)
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where χ(K, ω, ε) := (2(K − ω)− ε)/K if 0 < ω < K, and χ(K, ω, ε) := (2K − ε)/K if ω ≤ 0.

Taking ε = K if ω ≤ 0, and ε = K − ω if 0 < ω < K in (27), we obtain

e
2ω

τ2
∫

0

α(s) ds ∫

Ω

|y12(x, τ2)|
2 dx − e

2ω
τ1
∫

0

α(s) ds ∫

Ω

|y12(x, τ1)|
2 dx

+ C3

τ2
∫

τ1

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|∇y12|
2 dxdt ≤ C4

τ2
∫

τ1

∫

Ω

[α(t)]−1e
2ω

t
∫

0

α(s) ds

| f12|
2 dxdt,

(28)

where C3, C4 are positive constants depending on K and ω only.

From (13) it easily follows the condition

e
2ω

t
∫

0

α(s)ds ∫

Ω

|y12(x, t)|2 dx → 0 as t → −∞. (29)

Taking into account (29) and (17), we let τ1 → −∞ in (28). As a result, adopting τ2 = τ ∈ S,

we obtain

e
2ω

τ
∫

0

α(s) ds ∫

Ω

|y12(x, τ)|2 dx + C3

τ
∫

−∞

∫

Ω

α(t)e
2ω

t
∫

0

α(s) ds

|∇y12|
2 dxdt

≤ C4

τ
∫

−∞

∫

Ω

[α(t)]−1e
2ω

t
∫

0

α(s) ds

| f12|
2 dxdt.

(30)

Hence, using inequality (3), we easily obtain estimates (18) and (19).

Now let us prove statement (i). Using the condition (A1) one can easily see that y = 0

is a weak solution of problem (10), (11), (13) with f = 0, thus estimates (18) and (19) with

y1 = y, f1 = f and y2 = 0, f2 = 0 imply estimates (15) and (16). Estimate (16) implies that

y ∈ L2
ω,α(S; H1

0(Ω)).

Lemma 3. If ω ≤ K, where K is a constant defined by (1), then problem (10), (11), (13) has at

most one weak solution.

Proof. Assume the opposite. Let y1, y2 be two weak solutions of problem (10), (11), (13). In case

ω < K according to Lemma 2 we obtain the equality

e
2ω

τ
∫

0

α(s) ds∫

Ω

|y1(x, τ)− y2(x, τ)|2 dx = 0 for all τ ∈ S. (31)

From proof of Lemma 2 it follows that estimate (31) is correct in case ω = K also. Indeed, if

ω = K, then in (27) and (30) we have χ(K, ω, ε) = 0 and C3 = 0, correspondingly, and its easily

follows from the proof that estimate (18) is correct.

Equality (31) implies equality y1(x, t)− y2(x, t) = 0 for a. e. (x, t) ∈ Q, that is, y1(x, t) =

y2(x, t) = 0 for a. e. (x, t) ∈ Q. The resulting contradiction proves our statement.
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Remark 1. Functions yc(x, t) = cv(x)e−Kt, (x, t) ∈ Q (c ∈ R), where v is an eigenfunction of

problem (2) corresponding to the first eigenvalue, are weak solutions of equation (10) satisfy-

ing condition (11), when ai = ξi (i = 1, n), a0 = 0 and f = 0. In this case we have α(t) = 1,

therefore condition (13) takes on the form: eωt‖y(·, t)‖L2(Ω) −→
t→−∞

0. Obviously in this case for

nonzero solutions we have eKt‖yc(·, t)‖L2(Ω) −→
t→−∞

C = const 6= 0, eωt‖yc(·, t)‖L2(Ω) −→
t→−∞

+∞ if

ω < K, and eωt‖yc(·, t)‖L2(Ω) −→
t→−∞

0 if ω > K. This means that the condition ω ≤ K is essen-

tial for ensuring the uniqueness of the weak solution of problem (10), (11), (13), i.e., it cannot

be simplified.

Theorem 1. Suppose that conditions (A1)–(A3) hold, and ω < K, where K is a constant

defined in (1), and

f ∈ L2
ω,1/α(S; L2(Ω)). (32)

Then there exists a unique weak solution of problem (10), (11), (13), it belongs to the space

L2
ω,α(S; H1

0(Ω)) and estimates (15) and (16) are correct.

Proof. Lemma 3 gives us a uniqueness of a weak solution of problem (10), (11), (13). It remains

to prove the existence of a weak solution of this problem.

For each m ∈ N we define fm(·, t) := f (·, t), if −m < t ≤ 0, and fm(·, t) := 0, if t ≤ −m,

and consider the problem of finding a function ym ∈ L2(−m, 0; H1
0(Ω))∩ C([−m, 0]; L2(Ω))

satisfying the initial condition

ym(x,−m) = 0, x ∈ Ω, (33)

(as an element of space C([−m, 0]; L2(Ω))) and equation (10) in Qm in the sense of the following

integral identity

∫∫

Qm

{

− ymψϕ′ +
n

∑
i=0

ai(ym)∂iψϕ
}

dxdt =
∫∫

Qm

fmψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−m, 0).

The existence and uniqueness of the solution of this problem easily follows from the known

results (see, for example, [14]). For every m ∈ N we extend ym by zero for the entire set Q and

keep the same notation ym for this extension. Note that for each m ∈ N, the function ym

belongs to L2(S; H1
0(Ω)) ∩ C(S; L2(Ω)) and satisfies integral identity (12) with fm substituted

for f , i.e.,

∫∫

Q

{

− ymψϕ′ +
n

∑
i=0

ai(ym)∂jψϕ
}

dxdt =
∫∫

Q

fmψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0). (34)

Consequently, we have shown that ym is a weak solution of problem (10), (11), (13) with fm

substituted for f . Then, in particular, statement (i) of Lemma 2 implies estimates

e
2ω

τ
∫

0

α(s) ds

‖ym(·, τ)‖2
L2(Ω) ≤ C1

τ
∫

−∞

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt, τ ∈ S, (35)

‖ym‖L2
ω,α(S;H1

0(Ω)) ≤ C2‖ f‖L2
ω,1/α(S;L2(Ω)), (36)
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where C1, C2 are positive constants such as in estimates (15), (16).

Let us take identity (34) with alternately m = k and m = l, where k, l are arbitrary positive

integers, l > k, and apply statement (ii) of Lemma 2. As a result, we obtain estimates similar

to (18), (19), i.e.

e
2ω

τ
∫

0

α(s) ds

‖yk(·, τ)− yl(·, τ)‖2
L2(Ω) ≤ C1

−k
∫

−l

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt, τ ∈ S, (37)

‖yk − yl‖L2
ω,α(S;H1

0(Ω)) ≤ C2

−k
∫

−l

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt. (38)

Condition (32) implies that the right-hand sides of inequalities (37) and (38) tend to zero when

k and l tend to +∞. This means that the sequence {ym}∞
m=1 is a Cauchy sequence in the space

L2
ω,α(S; H1

0(Ω)) and C(S; L2(Ω)). Consequently, we obtain the existence of the function y ∈

L2
ω,α(S; H1

0(Ω)) ∩ C(S; L2(Ω)) such that

ym −→
m→∞

y strongly in L2
ω,α(S; H1

0(Ω)) and C(S; L2(Ω)). (39)

Note that (39) implies

∂iym −→
m→∞

∂iy strongly in L2
loc(S; L2(Ω)), i = 0, n. (40)

Condition (A2) and estimate (36) gives us for each t1, t2 ∈ S(t1 < t2) the following:

t2
∫

t1

∫

Ω

|ai(ym)|
2 dxdt ≤ C5

t2
∫

t1

∫

Ω

(

|ym|
2 + |∇ym|

2 + |hi|
2
)

dxdt ≤ C6, (41)

where C5 and C6 are positive constants independent on m.

Hence, from (41) we obtain that ai(ym) is bounded in L2
loc(S; L2(Ω)). This and (40) yield

that there exists a subsequence of {ym}∞
m=1 (still denoted by {ym}∞

m=1) and functions χi ∈

L2,loc(S; L2(Ω)) (i = 0, n) such that

∂iym −→
m→∞

∂iy a.e. on Q, i = 0, n, (42)

ai(ym) −→
m→∞

χi weakly in L2,loc(S; L2(Ω)), i = 0, n. (43)

Condition (A1) and (42) yield

ai(ym) −→
m→∞

ai(y) a.e. on Q, i = 0, n. (44)

According to [17, Lemma 1.3], from (43) and (44) we obtain

ai(ym) −→
m→∞

ai(y) weakly in L2,loc(S; L2(Ω)), i = 0, n. (45)

Let us show that the function y is a weak solution of problem (10), (11), (13). To do this, we

let m → ∞ in identity (34), taking into account (40), (45) and the definition of the function fm.

As a result we obtain identity (12). Now, taking into account (39), we let m → +∞ in (35). From

the resulting inequality and condition (32), we obtain condition (13). Hence, we have proven

that y is a weak solution of problem (10), (11), (13).
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3 FORMULATION OF THE OPTIMAL CONTROL PROBLEM AND THE MAIN RESULT

Let U := L∞(Q) be a space of controls and U∂ :=
{

v ∈ U
∣

∣

∣
v ≥ 0 a. e. in Q

}

be the set

of admissible controls. We assume that the state of the investigated evolutionary system for a

given control v ∈ U∂ is described by a weak solution of the equation

yt −
n

∑
i=1

d

dxi
ai(x, t, y,∇y) + a0(x, t, y,∇y) + v(x, t)y = f (x, t), (x, t) ∈ Q, (46)

satisfying conditions (11) and (13) (this problem is similar to problem (10), (11), (13)). This

means that y is a function belonging to the space L2
loc(S; H1

0(Ω)) ∩ C(S; L2(Ω)) and satisfying

the integral identity

∫∫

Q

{

− yψϕ′ +
n

∑
i=0

ai(x, t, y,∇y)∂iψϕ + vyψϕ
}

dxdt

=
∫∫

Q

f ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0),

(47)

and condition (13) under assumptions (A1)–(A3), (F ).

A weak solution y of the specified problem will be called a weak solution of problem (46),

(11), (13) for control v, and will be denoted by y(v), or y(x, t), (x, t) ∈ Q, or y(x, t; v), (x, t) ∈ Q.

Further, we assume that condition (32) and the inequality ω < K hold. From the previous sec-

tion (see Theorem 1), we immediately obtain the existence and uniqueness of a weak solution

of problem (46), (11), (13) (for a given v ∈ U∂) and its estimates (15), (16).

We assume that the cost functional has the form

J(v) = ‖y(·, 0; v) − z0(·)‖
2
L2(Ω) + µ‖v‖L∞ (Q), v ∈ U, (48)

where z0 ∈ L2(Ω), µ > 0 are given.

We consider the following optimal control problem: find a control u ∈ U∂ such that

J(u) = inf
v∈U∂

J(v). (49)

We briefly call this problem (49), and its solutions will be called optimal controls.

The main result of this paper is the following theorem.

Theorem 2. Problem (49) has a solution.

4 PROOF OF THE MAIN RESULT

Proof of Theorem 2. Since the cost functional J is bounded below, there exists a minimizing se-

quence {vk} for J in U∂, i.e., J(vk) −→
k→∞

inf
v∈U∂

J(v). This and (48) imply that the sequence {vk} is

bounded in the space L∞(Q), that is

ess sup
(x,t)∈Q

|vk(x, t)| ≤ C7 for all k ∈ N, (50)
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where C7 is a constant, which does not depend on k.

Since for each k ∈ N the function yk := y(vk) (k ∈ N) is a weak solution of problem (46),

(11), (13) for v = vk, the following identity holds:

∫∫

Q

{

− ykψϕ′ +
n

∑
i=0

ai(yk)∂iψϕ + vkykψϕ
}

dxdt

=
∫∫

Q

f ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0).

(51)

According to Lemma 2 for each k ∈ N we have the estimates

e
2ω

τ
∫

0

α(s) ds

‖yk(·, τ)‖2
L2(Ω) ≤ C1

τ
∫

−∞

[α(t)]−1e
2ω

t
∫

0

α(s) ds

‖ f (·, t)‖2
L2 (Ω) dt, τ ∈ S, (52)

‖yk‖L2
ω,α(S;H1

0(Ω)) ≤ C2‖ f‖L2
ω,1/α(S;L2(Ω)) , (53)

where constants C1, C2 are independent on k ∈ N. From (A2) and (53) it follows

τ2
∫

τ1

∫

Ω

n

∑
i=0

|ai(yk)|
2 dxdt ≤ C8

τ2
∫

τ1

∫

Ω

(

|yk|
2 + |∇yk |

2 + |hi|
2
)

dxdt ≤ C9, (54)

where τ1, τ2 ∈ S (τ1 < τ2) are arbitrary, and C8, C9 are positive constants independent on k.

Taking into statement (ii) of Lemma 1, from (51) for arbitrary τ1, τ2 ∈ S (τ1 < τ2) and k ∈ N

we obtain
τ2
∫

τ1

‖yk,t‖
2
H−1(Ω) dt ≤

τ2
∫

τ1

∫

Ω

( n

∑
i=0

|ai(yk)|
2 + |vkyk − f |2

)

dxdt. (55)

Taking into account condition (32), (50) and (54), estimate (55) implies

τ2
∫

τ1

‖yk,t‖
2
H−1(Ω) dt ≤ C10 for all k ∈ N, (56)

where τ1, τ2 ∈ S (τ1 < τ2) are arbitrary, C10 > 0 is a constant which depends on τ1 and τ2, but

does not depend on k.

According to the Compactness Lemma (see [19, Proposition 4.2]), and the compactness of

the embedding H1
0(Ω) ⊂ L2(Ω) (see [18] c. 245), estimates (50), (53), (54), (56) yield that there

exists a subsequence of the sequence {vk, yk} (still denoted by {vk, yk}) and functions u ∈ U∂,

y ∈ L2
ω,α(S; H1

0(Ω)) and χi ∈ L2
loc(S; L2(Ω)) (i = 0, n) such that

vk −→
k→∞

u ∗ -weakly in L∞(Q), (57)

yk −→
k→∞

y weakly in L2
ω,α(S; H1

0(Ω)), (58)

yk −→
k→∞

y strongly in L2
loc(S; L2(Ω)), (59)

ai(yk) −→
k→∞

χi weakly in L2,loc(S; L2(Ω)), i = 0, n. (60)
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Note that (58) implies the following

∂iyk −→
k→∞

∂iy weakly in L2
loc(S; L2(Ω)), i = 0, n. (61)

Let us show that (57) and (59) yield

∫∫

Q

ykvkψϕ dxdt −→
k→∞

∫∫

Q

yuψϕ dxdt for all ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0). (62)

Indeed, let g := ψϕ and t1, t2 ∈ S be such that supp ϕ ⊂ [t1, t2]. Then we have

∫∫

Q

ykvkg dxdt =

t2
∫

t1

∫

Ω

(ykvk − yvk + yvk)g dxdt =

t2
∫

t1

∫

Ω

yvkg dxdt +

t2
∫

t1

∫

Ω

(yk − y)vk g dxdt. (63)

From (50) and (59) it follows

∣

∣

∣

t2
∫

t1

∫

Ω

(yk − y)vk g dxdt
∣

∣

∣
≤

(

t2
∫

t1

∫

Ω

|vkg|2 dxdt
)1/2(

t2
∫

t1

∫

Ω

|yk − y|2 dxdt
)1/2

−→
k→∞

0. (64)

Thus, using (64) and (57), (63) implies (62). Similarly to (62) it can be easily shown that (57) and

(59) yield
∫∫

Q

|yk|
2vk ϕ dxdt −→

k→∞

∫∫

Q

|y|2uϕ dxdt for all ϕ ∈ C1
c (−∞, 0). (65)

Using (61), (62), and letting k → ∞ in (51), we obtain

∫∫

Q

{

− yψϕ′+
n

∑
i=0

χi∂iψϕ+ uyψϕ
}

dxdt =
∫∫

Q

f ψϕ dxdt, ψ ∈ H1
0(Ω), ϕ ∈ C1

c (−∞, 0). (66)

According to Lemma 1, identity (66) implies that y ∈ C(S; L2(Ω)).

Now let us show that the equality

∫

Ω

{ n

∑
i=0

χi∂iψ
}

dx=
∫

Ω

{ n

∑
i=0

ai(y)∂iψ
}

dx (67)

is valid for every ψ ∈ H1
0(Ω) and for a. e. t ∈ S. For this we use the monotonicity method

(see [17]). Let us take an arbitrary functions w ∈ L2,loc(S; H1(Ω)) and θ ∈ C1
c (−∞, 0), θ(t) ≥ 0

for all t ∈ (−∞, 0). Using condition (A3) for every k ∈ N we have

Wk :=
∫∫

Q

{ n

∑
i=0

(ai(yk)− ai(w))(∂iyk − ∂iw)
}

θ dxdt ≥ 0.

From this we obtain

Wk =
∫∫

Q

n

∑
i=0

ai(yk)∂iykθ dxdt −
∫∫

Q

n

∑
i=0

[

ai(yk)∂iw + ai(w)(∂iyk − ∂iw)
]

θ ≥ 0, k ∈ N. (68)
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According to Lemma 1, (51) implies

−
1

2

∫∫

Q

|yk|
2θ′ dxdt +

∫∫

Q

{ n

∑
i=0

ai(yk)∂iyk + vk|yk|
2
}

θ dxdt =
∫∫

Q

f ykθ dxdt. (69)

From (68), using (69), we obtain

Wk =
∫∫

Q

{1

2
|yk|

2θ′+
(

f yk−vk|yk|
2
)

θ
}

dxdt

−
∫∫

Q

n

∑
i=0

[

ai(yk)∂iw + ai(w)(∂iyk − ∂iw)
]

θ dxdt ≥ 0, k ∈ N.

(70)

Taking into account (59) and (65) we have

lim
k→∞

∫∫

Q

{1

2
|yk|

2θ′+
(

f yk−vk|yk|
2
)

θ
}

dxdt =
∫∫

Q

{1

2
|y|2θ′+

(

f y−u|y|2
)

θ
}

dxdt. (71)

By (60), (61) and (71) from (70) we get

0 ≤ lim
k→∞

Wk =
∫∫

Q

{1

2
|y|2θ′+

(

f y−u|y|2
)

θ
}

dxdt

−
∫∫

Q

n

∑
i=0

[

χi∂iw + ai(w)(∂iy − ∂iw)
]

θdxdt.

(72)

From (66), using Lemma 1, we obtain

∫∫

Q

n

∑
i=0

χi∂iyθ dxdt =
∫∫

Q

{1

2
|y|2θ′+

(

f y−u|y|2
)

θ
}

dxdt. (73)

Thus, (72) and (73) imply that

∫∫

Q

{ n

∑
i=0

(χi − ai(w))(∂iy − ∂iw)
}

θ dxdt ≥ 0. (74)

Substituting w = y − λψ in the above inequality, where ψ ∈ H1
0(Ω), λ > 0 are arbitrary, and

dividing the obtained inequality by λ we get

∫∫

Q

{ n

∑
i=0

(χi − ai(u − λψ))∂iψ
}

θ dxdt ≥ 0. (75)

Letting λ → 0+ in (75), using condition (A2) and the Dominated Convergence Theorem

(see [9, p. 648]), we have

∫∫

Q

{ n

∑
i=1

(χi − ai(y))∂iψ
}

θ dxdt = 0. (76)
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Since ψ ∈ H1
0(Ω), θ ∈ C1

c (−∞, 0) are arbitrary functions, then (76) impliest (67).

Therefore y is a weak solution of equation (46), satisfying boundary condition (11). Hence,

the function y is a weak solution of equation (46) for v = u, satisfying boundary condition (11).

Let us show that y satisfies condition (13). First, we prove the following convergence:

for all τ ∈ S : yk(·, τ) −→
k→∞

y(·, τ) strongly in L2(Ω). (77)

For this purpose, we subtract identity (51) from identity (47) with v = u, ψ ∈ H1
0(Ω),

ϕ ∈ C1
c (−∞, 0):

∫∫

Q

{

− (y − yk)ψϕ′ +
n

∑
i=0

(

ai(y)− ai(yk)
)

∂iψϕ + uy − vkyk

}

dxdt = 0. (78)

To the resulting identity (78), we apply Lemma 1 with θ(t) = 2(t − τ + 1), τ1 = τ − 1,

τ2 = τ, where τ ∈ S is any fixed. Consequently, we get

∫

Ω

|y(x, τ)− yk(x, τ)|2 dx −

τ
∫

τ−1

∫

Ω

|y − yk|
2 dxdt

+

τ
∫

τ−1

∫

Ω

[ n

∑
i=0

(

ai(y)− ai(yk)
)

∂i(y − yk) + (uy − vkyk)(y − yk)
]

θ dxdt = 0.

(79)

From (79), taking into account condition (A3) we obtain:

∫

Ω

|y(x, τ)− yk(x, τ)|2 dx ≤

τ
∫

τ−1

∫

Ω

[

|y − yk|
2 −(uy − vkyk)(y − yk)θ

]

dxdt. (80)

Inequality (80) implies

∫

Ω

|y(x, τ)− yk(x, τ)|2 dx ≤ 2

τ
∫

τ−1

∫

Ω

[

(1+vk)|y − yk|
2 + |y||u − vk||y − yk|

]

dxdt. (81)

Using (50) and Cauchy-Schwarz inequality, from (81) we obtain

∫

Ω

|y(x, τ)− yk(x, τ)|2 dx ≤ C11

([

τ
∫

τ−1

∫

Ω

|y − yk|
2 dxdt

]1/2
+

τ
∫

τ−1

∫

Ω

|y − yk|
2 dxdt

)

, (82)

where C11 > 0 is a constant which does not depend on k. From (82), according to (59), we

get (77). Taking into account (77), let k → ∞ in (52). The resulting inequality, according to

condition (32), implies

lim
τ→−∞

e
2ω

τ
∫

0

α(s) ds∫

Ω

|y(x, τ|2 dx = 0, (83)

that is condition (13) holds. Hence, we have shown that y = y(u) = y(x, t; u), (x, t) ∈ Q, is the

state of the controlled system for the control u.
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It remains to prove that u is a minimizing element of the functional J. Indeed, (77) implies

‖yk(·, 0)− z0(·)‖
2
L2(Ω) −→k→∞

‖y(·, 0)− z0(·)‖
2
L2(Ω). (84)

Also, (57) and properties of ∗-weakly convergent sequences yield

lim
k→∞

inf ‖vk‖L∞(Q) ≥ ‖u‖L∞(Q). (85)

From (48), (84) and (85), it easily follows that lim
k→∞

J(vk) ≥ J(u). Thus, we have shown that

u is a solution of problem (49).
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Дослiджено задачу оптимального керування системами, стан яких описується задачею

Фур’є для нелiнiйних параболiчних рiвнянь. Керування входить як коефiцiєнт в рiвняннi ста-

ну системи. Доведено iснування оптимального керування у випадку фiнального спостереже-

ння.

Ключовi слова i фрази: оптимальне керування, задача без початкових умов, нелiнiйне пара-

болiчне рiвняння.


