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INVERSE CAUCHY PROBLEM FOR FRACTIONAL TELEGRAPH EQUATION WITH
DISTRIBUTIONS

The inverse Cauchy problem for the fractional telegraph equation
uf™ —r(tulP +a?(~8)7%u = Fy(x)g(t), (x,1) €R" % (0,T],

with given distributions in the right-hand sides of the equation and initial conditions is studied.
Our task is to determinate a pair of functions: a generalized solution u (continuous in time variable
in general sense) and unknown continuous minor coefficient 7(t). The unique solvability of the
problem is established.

Key words and phrases: generalized function, fractional derivative, inverse problem, Green vector-
function.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: lhp@ukr.net (Lopushanska H.), vrapita@gmail.com (Rapita V.)

INTRODUCTION

The existence and uniqueness theorems were proved, and the representation (in terms of
the Green function) of classical solution of a time- and a time-space-fractional Cauchy problem
was obtained, for example, in [1,3-5,14]. The unique solvability of a time-space-fractional
Cauchy problem in spaces of distributions was proved in [8,10].

Inverse problems for such equations arise in many branches of science and engineering.
The inverse boundary value problems for determination of a leading coefficient, or a part
of the right-hand side, or an order of a diffusion-wave equation, or an unknown boundary
condition, were studied, for example, in [2,6,11,12,15].

In the present paper we prove the existence and uniqueness of a solution (u, r) of the inverse
Cauchy problem

ul™ — (P + 2 (=A)2u = Fy(x)g(t), (x,t) € R" x (0,T], )
u(x,0) = Fi(x), ut(x,0) = F(x), x eR", ()
(u(- ), 9o(-)) = F(t), te(0,T) (3)

(@)  (B)

with the Riemann-Liouville fractional derivatives u, ', u,"’, where Fy, F;, F, are given distribu-
tions, F, g, ¢o are given smooth functions, the symbol (f, ¢) stands for the value of the distri-
bution f on the test function @, a2 is a positive constant, (—A)7/?u is defined with the use of
the Fourier transform as follows

F[(=A)"2u] = |A["F[u],
and the following assumption holds:
(L) ae(1,2),8€(0,1),y>a min{n2,y}>(n-1)/2.
YAK 517.95
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1 NOTATIONS AND AUXILIARY RESULTS

Denote the set of natural numbers by symbol N. Let Z; := N U {0}, Q := R" x (0, T],
n € N. Let £(R") := C®(R") and D(R") be the space of infinitely differentiable functions com-
pactly supported in R". D(Q) is the space of infinitely differentiable functions having compact
supports with respect to space variables and such that ( at) vli—r = 0, k € Z,, D¥(R") is the

space of functions from C¥(R") having compact supports, ¢l pr(rny = ‘m|a>li max |ID*p(x)|,
<k Xxesuppg

. olx
where k = (x1,...,%n), ki €Zi, ] € {1,...,n}, |x| = k1 4+ -+ +xn, D*@(x) := ﬁ,
) Loy
while D'(R"), £'(R") and D'(Q) are spaces of linear continuous functionals (distributions)
over D(R"), £(R") and D(Q), respectively. Note that £'(R") is the space of generalized func-
tions with compact supports. Let

D' (R):={fe€D'(R): f=0,Vt<0},
De(Q) = {v € D(Q) : (v(-1), () € C(0,T] forall p € D(R")}.
We denote by fx*g the convolution of the generalized functions f and g, and use the function
o(t)A 1 A>0
=4 e 0
fiza(t), A <0,

where I'(z) is the gamma-function, 8(t) is the Heaviside function. Note that f, * f, = fa1,-
Recall that the Riemann-Liouville derivative of order § > 0 is defined as

vt(ﬁ)(x,t) = f,[;(t) xv(x,t),

and the Caputo fractional derivative is defined in [3] by

1 3 | v(x, 7) v(x,0)
va(x't)zl"(l—ﬁ) [§O/(t—r)5dl-_ e ], B e (0,1),

1 0 t vr(x, T) v¢(x,0)
Do(xt) = 175 [ﬁo/(t—r)ﬁld _(t—T)ﬁl]' pe2)

Denote by
Cay(Q) = {v € C(Q) : (=4)"?v,Dfv € C(Q)},
Cay(Q) = {v € Cun(Q) | v, v € C(Q)},
(Lo)(x, ) := 0\ (x, 1) + a2 (= A) 20 (x, 1),
(L™80)(x, t) := D¥v(x, t) 4+ a?(—A)"20(x, t),
(L) (1,6) 1= £ a(Ds0(x, 1) + (A Po(x,8), (x,) € Q,
where f_,(t)%v(x, t) = (f-a(7),v(x,t + 7)), v € D(Q). The Green formula holds [8]:

[ o0 @)y, Ddydr = [(L0)(y, T)p(y, dyde
Q Q

/ v(y,0 dy/fZa T)Pc(y, T dT+/vty, d]//thx y,7)dT,

R



120 LOPUSHANSKA H., RAPITA V.

forallv € Cy,(Q), ¥ € D(Q).
Assumptions:

(Al) Fo, Fi, F, € &'(R"), t°¢(t) is a continuous function on [0, T] for some ¢ € (0,a/2);
(A2) F,F®) € C(0,T], i(nf ] |FB)(1)] = f = const > 0, t°F®)(t) is a continuous function on
te(0,T
[0, T] for some ¢ € (0,a/2), ¢9 € D(R").

Definition 1. A pair of functions (u,r) € D-(Q) x C(0, T| satisfying the identity
T

T
:/g(t)(Fo(- dt+/ dt+z () fiea(t), W(x, ) @)
0 0

for allp € D(Q) and the condition (3) is called a solution of the problem (1)—3).
We use the Green function method to prove the solvability of this problem.

Definition 2. A vector-function (Go(x,t), G1(x,t), Go(x, t)) such that under rather regular g,
g1, &2 the function

u(x,t) /dT/GOx—y,t—rgoy, dy+2/G gi(y)dy, (x,t)eQ (5)

R" J=1Rn
is a classical (from C,,,(Q)) solution of the Cauchy problem
LSu(x,t) = o(x,t), (0 € Q,
u(x,0) = g1(x), ui(x,0) = g2(x), x€R",
is called a Green vector-function of this problem.

Denote by

T
(Gop) (v, 1) = | [ Golex =y, = )l

T Rn

//G (x,t)dxdt, j=1,2.

0 Rn

Lemma 1 ([8]). The following relations hold:
Gi(x,t) = (fi—a(1),Go(x,t = 7)), (x,t)€Q, j=1,2 (6)

GoLy) (v, 1) =y, 1), (11 €Q, o
GLY)W) = (fi-a(0), 9, 7), yeR", j=12, forallp € D(Q).

Lemma 2 ([1,4]). The Green vector-function of the Cauchy problem (1), (2) exists.

We also use the notations

t) :/G]-(x—y,t)q)(x) dx, j=0,1,2.
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Lemma 3. Forallk € Z., multi-index «, || =k, ¢ € D(R") we have
D(Gg) € CQ), j=012,
and for alle € (0,1) the following estimates hold:
D5(Go) (v, 1)| < et @]l pi (g

D5(GrLo) (v, )| < e+ | I t])]| @]l iy,
ID}(G29) (v, )| < ckll@llprry, (1) € Q-

Hereinafter b;, c;, i € Z., are positive constants.

Proof. Lemma can be proved with the use of the estimates of the Green vector-function compo-
nents, which were obtained in [8] by using the properties of the H-functions of Fox [7,13]. [

Theorem 1. Assume that (L), (A1) hold. Then there exists a unique solution u € D(-(Q) of the
problem (1), (2) withr(t) = 0, t € [0, T|. It is defined by

<u(-,t),q)(-)) — hy(t) forall g € DRY), t € (0,T], (8)

where
2 t
ho(®) = Y- (F () (Go)0) + [ () (Bl), (Gop)(t = 7)), t€ (0,T]
j=1 0

Proof. A distribution from £’(R") has a finite order of the singularity. So, there exist ko, ky, k €
Z. and the functions gox, §1x, $2x € L1(R") such that

(o) = ¥ [8x)Dp()dy forallge DRY), j=0,1,2 ©)

[l <kj g

It means that s(F]-) <kj,j=0,1,2

Using (9) and Lemma 3, similarly to [9], we show that the function (8) belongs to D (Q),
and using (7), show that it satisfies the equality (4) with 7(t) = 0, t € [0, T]. The uniqueness of
a solution can be proved as in [9]. O

2 THE EXISTENCE AND UNIQUENESS THEOREMS FOR THE INVERSE PROBLEM

As we know from the Theorem 1, under assumptions (L), (A1) the solution u € D(Q) of
the Cauchy problem (1), (2) satisfies the equation

~

(u(,1),9()) = o(t) + [ (1) (" (), (Cop) (-t =) )dr, g € DR"),t € (0,T),  (10)
0

and h, € C(0, T] for all ¢ € D(R"). Conversely, any solution u € D(Q) of (10) is the solution
of the problem (1), (2).
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From the equation (1) we obtain

(1 (1), 0()) = @ (-, ), (=8)"g0(4)) + (1) (1 (1), 90) + (1) (Fo, 90)-

Using (3) and (A2) find

r(t) = [F®(t) —a®(u(- 1), (—A)2@o(-)) — g(t) (Fo, @o) | [FP ()] !, te(0,T].  (11)

Denote by H(u, t) the right-hand side of (11), substitute it in (10) instead of r(¢). We obtain
the nonlinear operator equation

(u(-1£),9()) = hg(t) + [ H(w,7)(u(-,8), (Gop) (1~ T))dT, ¢ € DRY), tE€(0,T], (12)
0

relatively unknown function u € D’(Q). Conversely, if u € D'c(Q) is a solution of (12), r is
defined by (11) then, by the Theorem 1, the pair (u, r) satisfies the problem (1)—(3). So, under
assumptions (L), (A1), (A2) a pair (u,7) € D;(Q) x C(0, T] is a solution of the problem (1)—(3)
if and only if the function u € D'(Q) is a solution of (12) and r(t) is defined by (11).

Theorem 2. Assume that (L), (A1), (A2) hold. Then there exist T* € (0, T] (Q* = R" x (0, T*],
respectively) and the solution (u,r) € D-(Q*) x C(0, T*] of the problem (1)—(3): the function
u is a solution of (12), r is defined by (11).

Proof. By the Theorem 1 the right-hand side of (12) is continuous on (0, T]. It is enough to
prove the solvability of the equation (12) in D-(Q). Using (9) and Lemma 3, for all € € (0,1),
¢ € DX(R") withK € Z, K > max{ko, ki, kp}, where s(F;) < kj, j = 0,1,2, we obtain

t
¢ [ () (Fol), Gop) (- 1, 0)d| < bt gl pre, (13)
0

Flhg(B)] < [#*bo + b1] @l px(re)- (14)
LetR>0,e€ (0,a/2),

M = Mr(@ = {0 € De(Q) s ol = sup  sup L2 20)

< R}.
te(o,1] pepkrn)  1@lpx(Ry)

Define the operator P : D-(Q) — D(Q) as follows

((Po)( 1), 9()) =ho(t) + [ H(o,) (00, 8), (Gop) -t~ D)dT, @€ DERY. (15
0

We use the Banach principle to prove the solvability of the equation (12), that is
u=Pu, u€ MgreQ)C D-(Q).

At the beginning we show that there exist R > 0, T* € (0,T], Q* = R" x (0,T*] and
My, = MRe(Q*) such that P: My . — Mg,
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For every v € Mg, we have

| (0(-, ), a(~8)"2g0()| < RI(~8)"2gollpr e := baR,

and therefore

B+ bzR, where B = sup T€|F(”‘)(T) — g(t)(Fo, ¢0)|-

T|H (v, 7)| <
f 7e(0,T]

From here, taking into account (13), (14) and Lemma 3, for all v € Mg,, ¢ € D(R") we
obtain

[ ((Po) (1), () |

(G T edT
< iy by 4 BT ER /H Gog) 1t = Ol
||€0||DI<(RH) ||€0||DI< (R")
t

< t*by + by + B + bZR R /CK )4 e-lr—edr

< 72 (qoR* + 1R + q2) + by,
where g; (j € {0,1,2}) are positive constants.

To realize the inequality
t* 7% (qoR* + 1R +q2) + by < R forall t € [0, T*] (16)

with some T* € (0, T], we will at first choose R > 2b; and ty € (0, T] such that
qzta—Ze +b; <R/2forallt e [O, fo].

Then (16) follows from the inequality
(g0 +q)t* *R < = for allt € [0, T%] (17)

for some R > max{1,2b,}, where T* = min{to, 1/[2(g0 + q1)R]"/(#=28)1. We have proved the
existence R, T* such that P : MTz,e — M;‘{,g.

Now we show that P is the contraction operator on My .. For vy, v2 € Mg, ¢ € D(R") and
t € [0, T*] we have

E[((Po1) (1) = ((Po2) (1), @(1)) |

HG”HDK(RH)

+ (H(vy,7) — H(vy, 7)) (v1(+, 1), (Go@) (-, t — 7)) )dr

~

N H(PHlt:K(Rn /‘H(UZIT)(Ul('/f)—’02(-’t), (GOQD)(',t—T))

<(B+b@ﬁ/\m ~os(,1), (Gog) (£ = O)| 1Gog) ot = Dlpmeusy -

- f 1(Go@) (-, t — T) |l pre(ny @l px(rey

+a2t€R||( §00||DI< R") /t} —Uz 1), (=A)290()) | 1Co@) (-t = T)llpx (re)
" WZGDOHDK(RH) ¢l p gy
t
J11(Go@) (-, t = T) |l pre(rey T~5dT

B +2b,R _
< BAZR) oy 2 < (2q0R + g %[0y — 0]l

f

”(P”DK (R")
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If (—A)12¢p(x) = 0, x € R, then (v1(-,t) — va(+,t), (—A)72¢p(-)) = 0 forall t € [0, T*],
and the factor 2 is absent in the obtained expression.
For t € [0, T*] we have

(2qu + q1>th*28 < ZqOR + 0 < 2(]0 + 0

<1.
~ 2(q0+q1)R ~ 2(q0 + 1)

So, P is the contraction operator on Mg (Q*), and by the Banach theorem we obtain the
solvability of the equation (12) in My . C D¢-(Q¥). O

Theorem 3. Under conditions F(f) € C(0, T] nfﬂ |FB)(t)| # 0 a solution (u,7) € D-(Q) x

, i
te(0
C(0, T] of the problem (1)—(3) is unique.

Proof. Take two solutions (u1,71), (u2,72) € D:(Q) x C(0, T] of the problem (1)—~(3) and sub-
stitute them in (1), (2). Putting u = uy — u, v = r1 — r, obtain the Cauchy problem for the
equation

ut(“) = a?(—N)"?u + rzuf’s) + rulgﬁ) (18)

with zero initial conditions. By the definition of solution
T
(w,L9) = [ [P (0,9, 0) + 1) (0 (1), 9 (-, 1)t forall y € D(Q).
0

According to [8], for each o € D(Q) there exists i = Goo € D(Qp) such that Ly = ¢ in Q.
Then for each ¢ € D(Q) we have

T T
[ (w0000 dt = [ (n@uf .6+ rOumP 1), Ga)(,0)dt. (19)
0

0

From the over-determination condition (3), by using (11), we find
@ (u(z, 1), (~8)"2o(z)) = —r(FP(1), te(0,T], (20)

and then, from (19), for all ¢ € D(Q) we obtain the equation

T
| (#P¢ 0,008 () Goo) 1) + (_AWZ(PO(')%(t))dt —0, (1)
0

where

N
N
—
T’\
e
—~~
~—
SN—
*
=
iy
~~
Q
-
S—
N
—~
Q)
[e)
e}
SN—
—~
0
-
S—
SN—
N
—
=
iy
Y
<
-
S—
N
Tn
=
~~
~—
SN—
*>
—~
Q
[e)
)
S—
—~
<
~—
SN—
SN—

is the known function from C(0, T],

o 8) = ra()(Goo) (- 1) + =2 90C)we(®)
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is the continuous function in ¢t € (0, T]. So, for each ¢ € D(R"), u € D(0,T], u(T) = 0 there
exists a unique solution ¢ € D(Q) of the second type Volterra integral equation

—AY"200(x)w )
(—A)72o(x)wq(t) = o(x)u(t), (x,t)e€Q,

o(x, ) = r2(£)(Goe) (x, ) +

FB)(t)
with integrable kernel. Then (21) implies that
T
/ (4?5, 9() ) u(t)dt = 0 forall ¢ € D(R"), p e D(O,T], u(T) =0,
0

By the Dubua-Rejmon lemma we obtain
(WP (1), 9(-)) =0 forall ¢ € DR"), te (0,T].

Therefore, ut(ﬁ) =0,ie f g(t)*u(x,t) =0,ie fa(t)* f_p(t)*u(x,t) =0,ie u=0inD:(Q),
and (20) implies that 7(t) = 0, t € (0, T]. O

3 CONCLUSIONS

The inverse Cauchy problem for a time-space-fractional telegraph equation with given dis-
tributions in the right-hand sides has been studied. We have determinated a generalized solu-
tion u of direct Cauchy problem and unknown, depending on time variable, continuous minor
coefficient r of the equation. The existence of a solution (u,7) € Di(Q*) x C(0, T*] is obtained
for some T* € (0,T]. The uniqueness of a solution (u,7) € D;(Q) x C(0, T] is obtained for
arbitrary T > 0.

Let D-(Q) = {v € D'(Q) : (v(-t),¢(-)) € C[0,T] forall ¢ € D(R")}. The Green vec-
tor-function of the Cauchy problem for the operator Df — A(x, D), where A(x, D) is an elliptic
differential expression of the second order with infinitely differentiable coefficients, has the
exponential descending at infinity. So, unlike the case of the proposed problem (1)—(3), under
assumptions Fy, F, F» € £'(R"), g € C[0,T], F,F®),F® ¢ C[0,T], E®)(t) #0,t € [0,T] and
the compatibility conditions

(F1, ¢0) = F(0), (Fz, ¢o) = F'(0),

there exist T* € (0, T] and the solution (u,7) € D(Q*) x C[0, T*] of the problem (1)—(3) with
the operator —A(x, D) instead of a(—A)7/2.
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Aocaiaxyemo obeprery 3aaauy Ko anst piBHSIHHS
ul™ — r(B)ulP) +a?(—A)"2u = Fy(x)g(t), (x,t) € R" x (0,T],

3 ApOOOBVMMI TIOXiAHVMMM Ta 3aAaHMMM y3aTaAbHEHVMU (PYHKIISIMM B TIpaBMX YacTVHAX PiBHSIH-
Hs i mogaTkoBMX yMoB. Hare 3aBpaHHS TIOAsITae y BU3HaUeHHI Iapy (pyHKUIM: y3araabHEHOTO
PO3B’s13Ky U (HellepepBHOTO 3a YaCcOM B y3araAbHEHOMY CEHCi) Ta HEBIiAOMOTO MOAOAIIOTO Koedi-
wierTa 7 (t). Y CTaTTi BCTAHOBAEHO OAHO3HAUHY PO3B’SI3HICTD 3aAadi.

Kntouosi cnoea i ppasu: ysararbHeHa (pyHKIisI, Ap0b0Ba IOXiAHa, 0ObepHeHa 3apada, BEKTOp PyH-
xuist I'pina.



