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NAGESWARA RAO K.!, GERMINA K.A.2, SHAINT P.!

ON THE DIMENSION OF VERTEX LABELING OF k-UNIFORM DCSL OF
k-UNIFORM CATERPILLAR

A distance compatible set labeling (dcsl) of a connected graph G is an injective set assignment
f : V(G) — 2%, X being a nonempty ground set, such that the corresponding induced function
f© 1 E(G) — 2%\ {2} given by f®(uv) = f(u) ® f(v) satisfies | f(uv) |= k{u’v)dc(u,z;) for
every pair of distinct vertices u, v € V(G), where d¢(u, v) denotes the path distance between 1 and
v and k{u,v)
of proportionality with respect to f are equal to k, and if G admits such a dcsl then G is called a
k-uniform dcsl graph. The k-uniform dcsl index of a graph G, denoted by 6;(G) is the minimum of
the cardinalities of X, as X varies over all k-uniform dcsl-sets of G. A linear extension L of a partial
order P = (P, <) is a linear order on the elements of P, such that x < y in P implies x < yin L,
for all x,y € P. The dimension of a poset P, denoted by dim(P), is the minimum number of linear
extensions on P whose intersection is ‘=<’. In this paper we prove that dim(F) < §;(P;/¥), where
F is the range of a k-uniform dcsl of the k-uniform caterpillar, denoted by P k (n>1k>1) on
‘n(k +1)" vertices.

Key words and phrases: k-uniform dcsl index, dimension of a poset, lattice.

is a constant, not necessarily an integer. A dcsl f of G is k-uniform if all the constant
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INTRODUCTION

Acharya [1] introduced the notion of vertex set-valuation as a set-analogue of number valu-
ation. For a graph G = (V,E) and a nonempty set X, Acharya defined a set-valuation of G as
an injective set-valued function f : V(G) — 2%, and defined a set-indexer f© : E(G) — 2%\ {o}
as a set-valuation such that the function given by % (uv) = f(u) @ f(v) for every uv € E(G) is
also injective, where 2% is the set of all subsets of X and ‘@’ is the binary operation of taking
the symmetric difference of subsets of X.

Acharya and Germina [2], introduced the particular kind of set-valuation for which a met-
ric, especially the cardinality of the symmetric difference, associated with each pair of ver-
tices is k (where k be a constant) times that of the distance between them in the graph [2]. In
other words, determine those graphs G = (V,E) that admit an injective set-valued function
f: V(G) — 2%, where 2% is the power set of a nonempty set X, such that, for each pair of
distinct vertices u and v in G, the cardinality of the symmetric difference f(u) @ f(v) is k times
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that of the usual path distance dg(u, v) between u and v in G, where k is a non-negative con-
stant. They in [2] called such a set-valuation f of G a k-uniform distance-compatible set-labeling (k-
uniform dcsl) of G, and the graph G which admits k-uniform dcsl, a k-uniform distance-compatible
set-labeled graph (k-uniform dcsl graph) and the non empty set X corresponding to f, a k-uniform
desl-set. The k-uniform dcsl index [4] of a graph G, denoted by 6 (G) is the minimum of the
cardinalities of X, as X varies over all k-uniform dcsl-sets of G.

Consider a partially ordered set or a poset P as a structure (P, <) where P is a nonempty set
and ‘=’ is a partial order relation on P. We denote (x,y) € P by x < y, and identify the ground
set of a poset with the whole poset. Two elements of P standing in the relation of P are called
comparable, otherwise they are incomparable. We denote the incomparable elements x and y of
P by x || y. A poset is a chain if it contains no incomparable pair of elements, and in this case,
the partial order is a linear order. A poset is an antichain if all of its pairs are incomparable. The
length of a chain is one less than the number of elements in the chain. An element p € P of a
finite poset is on level k, if there exists a sequence of elements py, p1, ..., px = p in P such that
po = p1 = ldots = py = p and any other such sequences in P has length less than or equal to
k. The size of a largest chain in a poset P is called the height of the poset, denoted by height (P)
or h(P), and that of a largest antichain is called its width, denoted by width(P) or w(P). A Hasse
diagram of a poset (P, <) is a drawing in which the points of P are placed so that if y covers x
(we say, z covers y if and only if y < z and y < x < z implies either x = y or x = z), then y
is placed at a higher level than x and joined to x by a line segment. A poset P is connected, if
its Hasse diagram is connected as a graph. A Cover graph or Hasse graph of a poset (P, <) is the
graph with vertex set P such that x,y € P are adjacent if and only if one of them covers the
other.

Let P = (P,=<p) and Q = (Q, =) be two partially ordered sets. A mapping f from the
poset P to the poset Q is called order preserving if for every two elements x and y of P, x <p y
implies f(x) =g f(y). A poset Q is a subposet of P if Q C P, and = is the restriction of <p to
QxQ.ie, forabe Q,a =2gbifand onlyifa <p b. Two posets P and Q are called isomorphic
if there is a one to one order preserving mapping ® from the poset P onto the poset Q such
that for every two elements x and y of P, x <p y in P if and only if ®(x) <o ®(y) in Q. The
poset Q is said to be embedded or contained in P, denoted by Q T P, if Q is isomorphic to a
subposet of P. Let R and S are two partial orders (with respect to <) on the same set X, we call
S an extension of Rif R C S,ie, x < yin Rimpliesx < yin S for all x,y € X. In particular
if S is a chain, then we call it as a linear extension of R. For convenience, let L : [x1, X7, ..., Xy]
denote linear order on {x1, X2, ..., x,} in which x; < xp < -+ < x,.

Definition 1 ([8]). A set R = {Ly,L,,..., L} of linear extensions of P is a realizer of P if for
every incomparable pair x,y € P, there are L;,L; € R withx = yinL; and x = y in L; for
1 < i # j < k. The dimension of P (denoted by dim(P)) is the minimum cardinality of a
realizer.

There are equivalent definitions for dim(P). It is defined as the minimum k for which there
are linear extensions Ly, ..., L; such that P = L1 N Ly N - - - N Ly, where the intersection is taken
over the sets of relations of L;, for 1 < i < k. Another characterization of dimension, in terms
of coordinates, is obtained by using an embedding of P into R’ (called t-dimensional poset)
[11]. Let R denotes the poset of all t-tuples of real numbers, partially ordered by inequality in
each coordinate: (ay,a,...,a;) < (by, by, ..., by) if and only if a; < b;, fori = 1,2,...,t. Then
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the dimension of a poset P is the minimum number f such that P is embedded in RtY, denoted
as P C Rt For more results on dimension of poset one may see [7, 9, 12, 13].

A poset (L, %) is a lattice if every pair of elements x,y € L, has a least upper bound (lub),
denoted by x V y (called join), and a greatest lower bound (glb), denoted by x A y (called meet). In
general, a lattice is denoted by (L, <). Throughout this paper lattice (and poset) means lattice
(and poset) under set inclusion C. Unless otherwise mentioned, for all the terminology in
graph theory and lattice theory, the reader is asked to refer, respectively [5, 6].

This paper initiates a study on the dimension of vertex labeling of k-uniform dcsl of k-
uniform caterpillar, and prove that dim(F) < &;(P;*), where F is the range of a k-uniform
dcsl of the k-uniform caterpillar, denoted by P}* (n > 1,k > 1) on ‘n(k + 1)’ vertices that
forms a poset under set inclusion C.

Following are the definitions and results used in this paper.

Definition 2 ([10]). The height-2 poset H, on 2n elements ay,...,au,by,...,b, is the poset of
height two consisting of two antichains A = {ay,...,a,} and B = {by,...,b,} such thatb; < aj
in Hy exactly ifi = j,andj =i — 1.

Proposition 1 ([10]). Forn > 2,dim(H,) = 2.

Proposition 2 ([10]). Let F be the range of a vertex labeling of 1-uniform dcsl path P,(n > 2),
which is embedded in Hy, then dim(F) = 2.

Definition 3 ([10]). A width-2 poset W, is the poset ({a1,...,au,b1,...,bn}, %) of width two
consisting of two chains A = {ay,...,a,} and B = {by,...,b,} such thata; 1 < a; for2 <i <
n,bi <biy1forl <i<n-—1,a <bijforl<i<mn,andfor2<i<mandl<j<mn,a;l] b;.

Proposition 3 ([10]). Forn > 2, dim(W, ) = 2.

Proposition 4 ([10]). Let F be the range of a vertex labeling of 1-uniform dcsl path P,(n > 2),
which is embedded in Wy, then dim(F) = 2.

Lemma 1 ([3]). 64(Py) =n—1, forn > 2.

Lemma 2 ([10]). 6x(P,) = k(n — 1), forn > 2.

1 MAIN RESULTS

Since the existence of vertex labeling of 1-uniform dcsl graph is not unique, the problem
of determining posets which embeds the vertex labeling of 1-uniform dcsl of k-uniform cater-
pillar is same as determining the existence of different vertex labels f of 1-uniform dcsl of
k-uniform caterpillar whose corresponding range, say F = Range(f) forms a poset under
set inclusion C. Thus, there is a one to one correspondence between the vertex labeling f
of 1-uniform dcsl of k-uniform caterpillar and its corresponding poset F. Thus, it is always
possible to find a 1-uniform dcsl f of a graph G so that 7 = Range(f) forms a poset under
set inclusion C. Hence, F contains the vertex labeling f of 1-uniform dcsl graph G as an em-
bedding of itself. Hence, the problem of determining the 1-uniform dcsl vertex labeling f of
a graph G is equivalent in determining the poset / which embeds the 1-uniform dcsl vertex
labeling f of the same graph G.
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Definition 4. Let P = ({a1,...,a,}, <) be a poset. We define k-uniform extended poset or,
simply, k-extended poset of P, denoted by P* as

12 k 1 .2 k 1 2 k
({a1,aq,a1,...,a7,a0,05,05,05,...,0,,0,,05,...,0,}, =),

which is an extension of P, and for 1 < i < n, each k(> 1) elements a}, a?, .., ai-‘ of Pk
covers only a;. We call P as an underline poset of P¥.

Remark 1. It is interesting to note the following in a k-extended posets.

(i) If there exist any two distinct elements which belong to the same level in P¥, then they
are incomparable.

(ii) For each k(> 1) elements a}, 1112, e, ai-‘ of P¥ covers only a;, where1l < i < n. This
implies that there exist no element in P that covers any one of the k elements a}, a?, ..,
af . Hence, the k elements a}, 1112, ey, ai-‘ are maximal elements of PX. Thus, they are the nk

maximal elements, namely, aé inPf,1<i<nandl< j <k

Proposition 5. For any poset P (finite and connected) of size greater than 1, the k-extended
poset Pk (k > 1) of P, does not form a lattice.

Proof. If possible let, P¥ forms a lattice, then P¥ has unique glb and unique lub, say g and I
respectively. Since / is the lub of Pk, x < I, for every x € P*, which in turn implies one of the

element from the maximal elements a}q, a%, s, aﬁ of P¥ should be equal to , say, a}q. Hence for
2 <i < n,wehave a}, <[ which is a contradiction as remarked in Remark 1. O

Proposition 6. Let P be a linear order as of the form: a; 1 = a;, for 2 < i < n, then the
dimension of k-extended poset P¥(k > 1) of P is 2.

Proof. Let R = {Ly,L,} be linear extensions of P¥, where

L;: [al,a%,...,a’l‘,az,a%,...,aé,...,an,a}ﬂ...,aﬁ] and

Lo [a1,...,an,a5, ... ,ak, a5 (. .a ... a4 . . 4l

Then R is a realizer of P¥, and hence dim(P¥) < 2. We prove that there is no proper subset
S of R which realizes P¥. For, if there is a proper subset S of R which realizes P¥, then, the only
one member in S give rise to the poset P*, and hence, all the elements of P are comparable,

which is a contradiction. Hence dim (P*) = 2. O

Since the graph P k'is the extension of P,, the k-extended poset can embed the vertex
labeling of a 1-uniform dcsl k-uniform caterpillar only when its corresponding underline poset
embed the vertex labeling of a 1-uniform dcsl path.

Now, we aim to determine the dimension of k-extended posets which embeds the vertex
labeling of a 1-uniform dcsl of a k-uniform caterpillar.

Proposition 7. Let P be a linear order asa; 1 = a;, for2 < i < n, then the k-extended poset Pk
embeds the vertex labeling of a 1-uniform dcsl of the k-uniform caterpillar.

Proof. Let G = P;/* be the k-uniform caterpillar with n(k + 1) vertices, where n > 2 and k > 1.
Let V(G) = {v;,v} | 1 <i < n,1 < j < k}, where v; are the internal vertices and v} are the
pendant vertices which are adjacent to v;.
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First we claim that there exist a vertex labeling f of a 1-uniform dcsl of the k-uniform cater-
pillar, whose range is suitable for the embedding of k-extended poset P*.  Let
X = {1,2,...,n(k+1) —1}. Define f : V(G) — 2% such that f(v1) = @ and f(v;) =
{1,2,...,j—1},2<j<n For,1<i<nand 1 <j<k,

F@) = f@)U{(n=1)+ (i —Dk+j} = {1,2,..,i =1, (n—1) + (i — Dk +j}.
Case 1: Whenu =v;and v = v, =1 and 2 < m < n. Then,

|f(0)) @ flom)| =l @& {1,2,.... m—1} |=|{1,2,...,m =1} |=m —1 =d(v;, vm).
Case 2: When u = vy and v = vy, [ # m,2 <1, m < n. Then,

If(v)) ® f(om)] =] {1,2,...,1 -1} ®{1,2,...,m—1} |
= {lL,1+1,....m—=1} |=m—1=d(v,vy), 2<Il<m<n.

CaseS:Whenu:vlandv:v],‘n,l:1,2§m§n and 1 <j <k. Then,

|f(vl)@f(v7m)| =lge{l,2...m-1,n-1)+(m-1)k+j} | |
= {1,2,....m—1,(n—1)+ (m — Dk +j} |= m = d(v;, 7).

Case4:Whenu:vlandv:v£n,l;ém,2§l, m <n and 1 <j <k Then,

Iflo) @ fWh)] = {1,2,...,.1 -1} @ {1,2,...,m—1,(n —1) + (m — Dk +j} |
=[{LI+1,....m—1,(n—1)+ (m—1)k+j} |

:m—l—i-l:d(vl,v]m), 2<l<m<mnand 1<j<k

Case5:Whenu:v;andv:v{n,lzl,zgmgn and 1 <i,j <k Then,

£(0) & f(oh)| =] {(n = 1) + (I = 1)k +i}
®{1,....m—1,(n—1)+(m—1)k+j}|

= {1,....m—1,(n—=1)+(m—Dk+j,(n—1)+ (1 -Dk+i} |=m+1=d(,v),).
Case6:Whenu:vfandv:v£n,l7ém,2§l, m<mn and 1<1i,j <k. Then,

F©) @ f@h)| = {1, 1 =1, (0 = 1) + (I = Dk +1}
e{1,....m—1,(n—1)+(m—1)k+j}|
=[{(n-1)+I-Dk+ilI1+1,.,m—=1,(n—1) + (m —1)k+j} |
:m—l+2:d(vf,vin), 2<l<m<mnand 1<i<j<k

Hence, for any distinct u,v € V(G), |f(u) ® f(v)| = d(u,v). Thus, f is a 1-uniform dcsl of
G.

Now, to prove, F C Pk, where F is the range of f which forms a poset under ‘C" and P a
linear order as a;_1 = a;,2 <i < n. Define ® : F — P* as follows.
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Case 1. On the internal vertices v; of V(G), define ®(f(v;)) = a;.

Case 2. On the pendant vertices v} of V(G), define ®(f(v})) = al.

In Case 1, the corresponding vertex labels of a pair of internal vertices are comparable
where as in Case 2, for any pair of pendant vertices the corresponding vertex labels are incom-
parable. Hence, f(v;) C f(v;) in F if and only if a; < a; in PFand f(o7) || f(v%) in F if and
only if a! || a$ in P¥. Also, f(v;) C f(v}) in F if and only if a; < ) in PX and f(v;) || f(v5_ ) in
Fifand onlyifa; || ai_; in P*. Therefore, F C P*. O

Using Proposition 6 and Proposition 7, we have the following result.

Proposition 8. Let F be the range of a 1-uniform dcsl of the k-uniform caterpillar such that
F C PX, where P is a linear order of finite length. Then dim(F) = 2.

Remark 2. From Proposition 2 and Proposition 4, we have seen that the height-2 poset, H;
and width-2 poset, W, on “2n ’ elements embeds the vertex labeling of a 1-uniform dcsl path.
Choosing these posets as underline posets defined on “ n ’ elements, the corresponding k-
extended posets embedding, restricted to height-2 poset and width-2 poset on n elements,
give two subposets, namely min height poset (denoted by Min,) and avg height poset(denoted
by Avgu), respectively. Further, the poset Min, end up with bra1, when n is odd; ay if n is
even. Hence, Min, T H,. For the poset Avg,, Avg, T W,. For, without loss of generality,
consider the poset as ({ay, ..., aru)=ps by,..., by}, =) of width two consisting of two chains
A={m,...,ay} and B = {by,...,b,_,,} such thata; 1 preceqa; for2 < i < h, b; = b;;, for
1<i<n—-h—1,a 2bjforl<i<n-—handfor2 <i<handl <j<n-—h,al bj.
In particular, if the underline poset is of linear order, then it posses maximum height and by
Proposition 6, the k-extended poset of it has dimension 2.

Proposition 9. For a k-extended poset Min,,, dim(Min%) = 2.

Proof. We define the linear extensions L; and L, of Minﬁ, in two cases.
Case 1: When n is even. Consider,

. 1 k 1 k 1 k 1 k 1 k
Ll'[bllbll"'lb ,bz,bz,...,b ,...,b%,b%,...,b%,al,ﬂl,...,al,ﬂz,az,...,ﬂz,...,

an,alﬂ,...,alz]and

27 72 2

. k 1 k 1 k 1 1.k
L,: [b%,a%,b%_l,ag_l,...,bl,al,a%,...,a%,a%_l,...,a%fl,...,al,...,al,b%, ,

1 1k 1 k 1

b%,b%_l,...,b%_l,...,b,...,bl].

Since, these extensions intersect to yield the partial order on Mink, dim(Mink) < 2.
Case 2: When n is odd. Consider,

. 1 k 1 k 1 k 1
Ll . [bl’%",b"ﬂ],. . 'fb"n—"b’—%]*llb[%—‘—l""’b[%—‘—lf""bllb ,...,bl,a"%"il,a[%]_l,. ey

k 1k 1 k 1
Wil,a[%"il,b[%",al,...,al,az,...,az,...,a"%"il,...,a[%]_l,
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Clearly, these extensions produces a realizer of MinX, hence dim(Min¥) < 2. Following as
in the proof of Proposition 6, the dimension cannot be less than 2. Therefore, dim(Mink) =
2. O

Proposition 10. The k-extended poset Mink embeds the vertex labeling of a 1-uniform dcsl of
the k-uniform caterpillar.

Proof. Let V(P,’;) = {vy, v%, cee, v’l‘, U7, vé, ees, v’é e, On, 0,11, cee, v’;,}, where v; are the internal ver-
tices and v} are the pendant vertices which are adjacent to ;.

Let X = {1,2,...,w,...,n,...,m = n(k+1) — 1}, where w = [X{Eul7,

We claim that there exists a poset F which can be obtained from a vertex labeling of 1-
uniform desl caterpillar, that suits for the embedding of Mink.

Define f : V(PX) — 2%, on internal vertices, by

flo1)=A{12,...,w—1}, f(v2) ={1,2,...,w—1,w}, f(vs) ={2,...,w—1,w},
flog)={2,...,w—1Lww+1}, f(vs) =1{3,..., w,w+1},..., f(vn) ={w,w+1,...,n—1},

when 7 is odd; otherwise, f(v,) = {w,w +1,...,n}. In general, for 1 <i <,
£ (ot b1, w2, ifiisodd
;) =
l {§,§+1,...,§+w—1}, otherwise,
and on pendant vertices, vertex labeling is same, as in Proposition 7.
Case 1: When u = v; and v = v;; 1, where i is odd. Then,

1+1 i+1 z+1 i+1
[f(0i) @ f(vira)] =I{ Y —2} @ { w1} |
z+1
=[{ -1} |=1= d(vz-,vm)-
Case 2: When u = v; 1 and v = v;, where i is even. Then,
z+2 z+2 i i
|f(vig1) © f(vi)| =] { o tw=2te{y,... s tw—1} |

- {E} |=1=d(vis1,0;).

Case 3: When u = v;and v = vy, I # m, 1 <1, m < n and both | and m are odd. Then,

l+1 141, m+1 m+1
[f (o) @ f(om)] =I{ L tw=2b o oy tw =2}
_’{H—l m+1+w—2}\:m—l:d(vl,vm), 1<l <m<n.

2

Case 4: When u = vy and v = vy, I # m,1 <[, m < n and both [ and m are even. Then,

V@ﬂ@ﬂwﬂzHl-qé+w—H@{§ w1 |
—|{ m+w—1}|_ I=d(vo,om), 1<l<m<n.

Case5:Whenu:viandv:v§,1 <i<mnand1 <j <k Then,

Fo) @ FOD)] =] {n+ (i — Dk+ (= 1)} |= 1 = d(v;, ).
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Case 6: When u = v; and v = ©/ 1 <j<kandiisodd. Then,

i+17

flo @ (el =1 {5 rw—2)
o Lt Ok (- 1)

=] {izl +w—1n+@(k+(G-1)}1]=2 :d(vi,v{fﬂ).

Case 7: u = vjy1and v = vg, 1 <j<kandiiseven. Then,

z+2z—|—2 i+2
i) @ Fo)l =1 {5 5~ + 1 -+ w =2}
@{§,§+1,...,§+w—1,n+(z—l)k—{—(;—l)}|

= {5n+ (= Dk+ (i~ 1} [=2 = (o1, ).

Case 8: Whenu = vjand v = U’,.ﬂ,l #m,1 <1, m<mn,1<j<kandboth!and m are odd.
Then,

I+11+1 [+1

fe) @ flom) =l {————+1.... 5~ +w-2}
1 1 1 .
{%,%H,... %Hu 2+ (m—1)k+(j—1)} |
l 1 1 . '
—|{ + m; fw—2n+(m=Dk+ (=1} |=m—1+1=d(v, ),

1§l<m§n and 1 <j <k

Case 9: When u = v;and v = v],ﬁ,l #m,1 <1, m<n,1<j<kandboth!and m are even.
Then,

l

F@) @ fh)] =l {35+ 15 + 01}
D5 5 1w =L+ (= 1k+ (= 1)} |
g Bt w =Lt (m = Dk+ (G- 1)} |=m— 141 = d(oy, o)),
1<l<m<nand 1<j<k

Case 10: When u = v} and v = v} ;,1 <1, s < kand iis odd. Then,

i+17
FEh e feh)l =l {5 o =2 (i Dk (- 1))
{# l;1+w_1 nt (k4 (s — 1)} |

i+1

=|{n+(G-1Dk+(r—1), +w—1Ln+ ((k+(s—1)} |=3=d(v], v} ).
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Casell:uzvlf+1 andv =1v;,1 <r, s <kandiiseven. Then,
i+2 i+2 ,
f@h) e fEDl ={—= . 5 Fw=2n+({k+(r-1)}

@{%,...,%+w—1,n+(i_1)k+(]'_1)}|

= (G Dk + (= 1) m = Dk + (s = 1)} = 3 = d(e]y,7).

Case 12: When u = vf and v = vin,l #m,1 <1, m<mn,1<1i j<kandboth!and m are
odd. Then,

F@D @ foh)l = { w2 n (- Dk (- 1))

1 1 .
{’”; m; fw—2n4(m—1k+(—1)} |

4{ﬁ+1 ,m;1+W—Zn+U—Dk+ﬁ—DﬂH{m—Dk+U—DH

:m—l+2:d(vf,v{;1), 1<l<m<nand 1<4,j<k

Case 13: When u = vf and v = v],‘n,l #m,1 <[, m<mn,1<1i j<kandboth!and m are
even. Then,

f(0) @ (o) )I—I{ l w—1n+(I-1k+(i-1)}

EB{— §+w—1,n+(m—1)k+(]'—1)}]

—]{{ +w—1n+(l—1)k+(z—1)n+(m—1)k—|—(j—1)}]

:m—l+2—d(vl,v7), 1<l<m<nand 1<1i,j<k

Thus, for any distinct u,v € V(PX), |f(u) © f(v)| = d(u,v) and hence f admits 1-uniform
dcsl. Also, to prove F C Minﬁ, where F is the range of f, which forms a poset, we define
® : F — Mink as follows in two different cases.

a;, ifiiseven,

Case 1. On the internal vertices v; of V(P¥). ®(f(v;)) = ¢ ?
b.iy, otherwise.
5]
a]l , if i is even,

Case 2. On the pendant vertices UZ of V(PK). ®(f (v{))
b] otherwise.

(31

In Case 1, the internal vertex labeling of V(Pk), exhibits the embedding of F into the un-
derline poset of Mink; and in Case 2, the pendent vertex labeling of V(P), exhibits the em-
bedding of F into the outermost labeling of an underline set of MinX. Thus, all together, we

get F L Min’;,. O

Analogously, from Proposition 9 and Proposition 10, we have.
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Proposition 11. Let F be the range of a 1-uniform dcsl of the k-uniform caterpillar such that
F C Mink. Thendim(F) = 2.

Proposition 12. For the k-extended poset Avgk, dim(Avgk) = 2.

Proof. Let us take the linear extensions of Avgk as

. 1 k 1 k 1 k 1 k 1 k
Ly :[ay,aq,...,a7,az,05,...,05,...,45,a,...,45,b1,by,...,07,b2,b5, ..., b5,..., b, y,
1 k
b, ..., by_,] and
) k 1 k 1 k 1
L2 ~[a1/b1rb2r~'~/bn—h/a2r“vah/bnfhr"vbnfh/bnfhflr'“/bnfhflr"'/b ,...,b ,

k 1 _k 1 k 1
Ay @y @) gy Ay, 07, .., 07).

Then dimension of Avgk is at most 2. Again, as in Proposition 6 the dimension cannot be
less than 2. Hence dim(Avgk) = 2. O

Proposition 13. The k-extended poset Avgk embeds the vertex labeling of a 1-uniform dcsl of
the k-uniform caterpillar.

Proof. Let vy, v%, c, v’l‘, %y v%, e, v’é, ..., Un, 0}, ..., and 0¥ be the vertices of V(PF).

LetX ={1,2,...,h,...,n,...,m = n(k+1) — 1}, where h = [Lf”)'} To prove the ex-

istence of a poset F from a vertex labeling of 1-uniform dcsl of the k-uniform caterpillar, that
suits for the embedding of Avgk, define f : V(PX) — 2%, on internal vertices, by

fj) ={L...n=h=(j-1}, 1<j<n—h f(oyp1) =9,
foppri)={n—h+1,....on—h+(i—-1)},2<i<h

and we consider the vertex labeling on pendant vertices which is same as mentioned in
Proposition 7.
Case 1: Whenu =vjand v = vy, #m,1 <I <n—handm =n —h + 1. Then,

[f(@) @ flom)| =[{1,....n=h=(I-1)} DT |
=|{l,....n—h—(1-1)}|=n—h—(1-1) =d(v,vm).

Case 2: Whenu =vjandv =vy, l #m,n—h+2 <l <nandm =n —h+ 1. Then,

[f) ® flom)| =[{n—h+1,....1-1}® 2|
=l{n—h+1,..,I-1=n—h+(1-—m)}|=1—m=d(v,vm).
Case 3: Whenu =vjandv =vy,,l #m,1 <I<n—handn—-h+2 <m < n. Then,

1f(0o)® flom)| = {1,....n—h—(1-D}d{n—h+1,...,m—1}|
=|{1,....n—h—(1-1),n—h+1,.... m—1} |=m—1=d(v;,vp).

Case4:Whenu:vlandv:vin,l;ém,l§lSn—h,m:n—h+1and1§j§k.Then,

f) @ flow)] = {l,....n—h—= (=1} & {n—1+(m—1)k+j} |
= {1,...n—h—(1=-1),n—14+m—Dk+j} |=m—1+1=d(0,0)).
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Case5:Whenu:vlandv:vin,l#m,n—h+2§lgn,m:n—h—l—landlgjgk.

Then,

F@) & f@h)| = {n—h+1,...,1-1}& {n -1+ (m—1k+j} |
= {n—h+1,.... 1 —L,n—14+(m—-Dk+j}|=1—m+1=d(v),v}).

Case6:Whenu:vlandv:v£n,l#m,l§l§n—h,n—h+2§m§nand1§j§k.

Then,

(o) @ flom)] =] {1,.. —(-D}e{n—-h+1,....m=1Ln—-1+(m—1)k+j} |
=/{1,.. —(I-1),n—h+1,...,m —1,n—1+(m—1)k—|—j}]
:m—l—l—lzd(vl,v]m).

CaseZWhenu:vfandv:vin,l#m,l§l§n—h,m=n—h+1and1gi,jgk.

Then,

f() & f@h)] =] {L,.. —(I-1),n=1+(I-Dk+i}@&{n—-1+(m—-1)k+j}|
=/{1,.. —(I-1),n—1+(I-Dk+in—1+(m—1)k+j} |
:m—HQ:deM.

CaseS:Whenu:vfandv:vin,l;ém,n—h—i-ZSl§n,mzn—h+1and1§i,j§k.
Then,

Fo) @ foh) = {n—h+1,..,1—L,n—1+(1—Dk+i}d{n—1+ (m—1)k+j}|
= {n—h+1,..,0-1n—14+(1-Dk+in—1+(m—1Dk+j} |=1—m+2=d0,0),).

CaseQ:Whenu:vfandv:v],‘n,l7ém,1glgn—h,n—h+2§m§nand1 <j<k
Then,

V@D@f@@]ﬂ{L””n—h—a—iyn—1+a—1ﬁ+ﬂ

@{n—h+1 m—1,n—14+(m—1)k+j} |

=[{1,.. - (I-1)n=14+(I-1k+in—h+1,.... m—=1,n—1+ (m—1)k+j} |
:m—l+2—d(vl,z/)

Thus, for any distinct vertices u,v € V(PF), |f(u) @ f(v)| = d(u,v), and hence f admits
1-uniform decsl.

Finally, to prove F C Avgk, where F is the range of f, which forms a poset, define ¥ : 7 —
Avgk as follows.

b'/ h 1<i< — h,
Case 1. On the internal vertices v; of V(PZ,‘), Y(f(v;)) = { i whenl <i<n

Ai_(n—p), otherwise.

b{:, whenl <i<n-—h,

j

Ti(n—ny
In Case 1, we can identify the internal vertex labeling of V(P¥), as the embedding of F

into the underline poset of Avgk. In Case 2, the pendent vertex labeling of V(Pk), list the

embedding of F into the outermost labeling of an underline set of Avgk. Thus, from Case 1

and Case 2, we get F C Avg’,g. O

Case 2. On the pendant vertices vf of V(PK). ®(f (v{)) = { _
otherwise.
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The following result follows from Proposition 12 and Proposition 13.

Proposition 14. Let F be the range of vertex labeling of a 1-uniform dcsl k-uniform caterpillar
such that F C Avgk. Then dim(F) = 2.

Theorem 1 ([7]). If T is a tree!, then dim(T) < 2 unless T contains one or more of the trees |,
and |, or their duals as subposets.

Theorem 2. Let F be the poset. Then there exists a 1-uniform dcsl f (the vertex labeling of a
k-uniform caterpillar) such that F = Range(f) = {f(v) | v € V(PX)}, wheren > 2 and k > 1,
and dim(F) = 2.

Proof. Let f be a vertex labeling of 1-uniform dcsl k-uniform caterpillar on ‘n(k + 1)’ vertices,
where n > 2 and k > 1, other than the labeling which is mentioned in Proposition 7, Proposi-
tion 10 and Proposition 13, respectively, and let F be the range of f. Hence, F = Range(f) =
{f(v) | v € V(P¥)}, is a poset.

We prove that dim(F) = 2.

Since the Hasse diagram of F is a tree, from Theorem 1, we have dim(F) < 2. But, dim(F)
is never less than 2. For, if it is of dimension 1, then the Hasse diagram of it resembles a path,
which is not possible. Hence, dim(F) = 2. O

Recall that [3] the minimum cardinality of the underlying set X such that G admits a 1-
uniform dcsl is called the 1-uniform dcsl index 6,4(G) of G. Following discussion is an attempt
to establish the relationship between the 1-uniform dscl index of a k-uniform caterpillar and
the dimension of the poset 7 = Range(f) = {f(v) | v € V(PX)}, wheren > 1and k > 1.

Lemma 3. The I-uniform dcsl index of PX (n > 1, k > 1) isn(k+1) — 1.

Proof. Let V(PF) = {vl,v%, .. .,vll‘,vz, v%, .. .,v’é, e, Un,0L,..., 0}, and let f be the dcsl label-
ing of Pk with the underlying set as X. First, we claim that | X |> n(k+ 1) — 1. By Lemma 1,
the 1-uniform dcsl index of P, is n — 1, and hence for the internal vertices of P,’j, the dcsl index
is n — 1. For the remaining ‘nk’ vertices (pendant vertices), we need to have atleast ‘nk” subsets
of X other than the subsets which has already been labeled for the internal vertices. Hence, the
cardinality of X is atleast nk 4+ n — 1. By Proposition 7, the vertex labeling of 1-uniform dcsl of
P with underlying set X is of cardinality n(k 4+ 1) — 1. Hence, 6;,(P%) = n(k +1) — 1. O

In Propositions 7, 10 and 13, the existence of different vertex labeling of 1-uniform dcsl of
k-uniform caterpillar and their embedding in respective posets have been established.
In the following theorem we determine the bounds of the poset F, where

F = Range(f) = {f(v) | v € V(PK)}.

Theorem 3. Let F be the poset which is the range of a 1-uniform dcsl of the k-uniform cater-
pillar, with respect to set inclusion ‘C”. Then, dim(F) < 6;(P¥).

Proof. Let f be a 1-uniform dcsl of PX(n > 1, k > 1), such that F = {f(v) | v € V(P¥)} forms
a poset with respect to set inclusion ‘C’. Depending on the number of vertices of V(PF), we
prove the theorem for the following four cases.

! we call a poset is a tree if its Hasse diagram is a tree in the graph theoretic sense.
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Case 1: When n = 1 and k = 1. In this case, the poset F is isomorphic to a poset which
is a chain of length 1, and hence dim(F) = 1. But by Lemma 3, 5d(P11) = 1. Thus, we have
dim(F) = 54(PK).

Case 2: When n = 2 and k = 1. By Lemma 3, we have 6;(P}) = 3. Also F is isomorphic
to any of the four posets namely, a poset which is a chain of length 3, poset Avgy, poset Avgy
or poset P!, where P is a chain of length 1. If F is isomorphic to chain of length 3, then
dim(F) = 1, and hence dim(F) < 54(P¥). If F = Avgy, then by Proposition 14, dim(F) = 2,
and hence dim(F) < 6;(P¥). Since, for a poset P, dim(P) = dim(P) (see [7]), so if F = Avg,
then dim(F) = dim(F) = dim(Avgy) = 2. Thus, dim(F) < 64(Pk). If F = P!, where P is a
chain of length 1, then by Proposition 8, dim(F) = 2, and hence, dim(F) < 5,(Pk).

Case 3: When n > 3 and k > 1. In this case, we prefer k-extended posets that embeds F, as
it is not easy to predict all the variations of the poset F. Thus, based on the underline posets
of the k-extended posets, since by Lemma 3, 6;(PX) = n(k +1) — 1, it is enough to consider the
following subcases under Case 3.

Case 3.1: 1f the underline poset is a linear order of finite length, say L : 4,1 < a;, for
2 < i < n, then by Proposition 8, dim(F) = 2. Hence 6;(PX) > dim(F).

Case 3.2: If the underline poset is isomorphic to Min,, then by Proposition 11, dim(F) = 2.
Hence dim(F) < 64(Pk).

Case 3.3: If the underline poset is isomorphic to Avg,, then by Proposition 14, dim(F) = 2.
Hence dim(F) < 54(PX).

Case 4: When the poset F is not isomorphic to either P¥, Mink or Avgk. We have from
Theorem 2, dim(F) = 2 and, by Lemma 3, §;(P¥) = n(k +1) — 1, hence dim(F) < &,(P).
Thus in all the cases we get dim(F) < 6;(P¥). O

Theorem 4. The k-uniform caterpillar PX admits a k-uniform dcsl.

Proof. Consider G = PX with n(k 4 1) vertices, say vl,v%, .. .,vll‘, Vo, v%, .. .,vé, O

and oX. Let X = {1,2,...,h,...,n,...,n(k+1) —1,..., k(n(k+1) = 1)}.
Define f : V(G) — 2X by f(v1) = @, f(v;) = {1,2,...,(i — 1)k} for 2 < i < n, and for
1<i<k,

f@) = flo)U{(n=Dk+ (G —-1k+1,...,(n =Dk + (i — 1)k +k},
f(@h) = fw)U{(n—Dk+K 4+ (Gi—-1k+1,...,(n =Dk +k*+ (i — 1)k + k} and
f(@,) = f(oa)U

{(n=Dk+ -+ (G —-Dk+1,...,(n—Dk+ (n —1)K* + (i — 1)k + k}.
In general, forl1<i<mand1l <j<k,
@) =flo)u{n—Dk+ G-+ (G—Dk+1,...,(n—Dk+ (i — DK+ (j — Dk + k}.

1

Case 1: Whenu = v;and v = v, =1 and 2 < m < n. Then,

[f() @ f(om)| =| @&{L,2,...,(m—1)k} |
=4{1,2,...,(m =1k} |= (m — 1)k = kd(v;, o).

Case 2: When u = v;and v = vy, I #m,2 <1, m < n. Then,

|f(v)) @ flom)| =] {1,2,...,(I =Dk} ®{1,2,...,(m —1)k} |
= {(l-1)k+1,...,(m=1Dk} |= (m— Dk =kd(v;,vm), 2<I<m<n.



ON THE DIMENSION OF VERTEX LABELING OF k-UNIFORM DCSL OF k-UNIFORM CATERPILLAR 147

CaseS:Whenu:vlandv:v{n,l:1,2§m§n and 1 <j <k. Then,

(@) ® f(@h)]
= o®{1,2,...,(m—1Dk,(n+j—2k+(m—-1Dk*>+1,...,(n+j—2)k+ (m —1)k* +k} |
= {1,2,...,(m =Dk, (n+j—2)k+ (m -1k +1,...,(n+j—2)k+ (m —1)k* +k} |

=m—-1+1)k= kd(vl,v{‘n).
Case 4: When u = v; andv:v{‘n,l #m,2 <1, m<n and 1 <j <k Then,

£ (o) ® f (o)

= {1,2,...,0-Dk}@{1,2,...,(m =Dk, (n+j—2)k+ (m -1k +1,...,
(n+j—2)k+ (m—1)k*+k} |
=[{(I-Dk+1,...,(m=1Dk,(n+j—2)k+(m—-1k*+1,...,
(n+j—2)k+ (m—1)k* +k} |

=(m—1+1)k=kd(v,v),), 2<l<m<nand 1<j<k
Case5:Whenu:vfandv:v{n,l:1,2§m§n and 1 <i,j <k. Then,

F(0)) @ F(o})]
=[{n—Dk+(G—-Dk+1,...,(n—1k+ (i —-1k+k}®{1,...,(m—1)k,
m—Dk+m—-D)+(G-Dk+1,...,(n —Dk+ (m —1)k* + (j — Dk +k} |

=[{1,...,(m =Dk, (n—Dk+(m -1k +(j—-Dk+1,...,
m—Dk+m—-1D)+(G—-Dk+k(n—Dk+(G—-Dk+1,...,(n —k+ (i — 1)k +k} |
= (m—l—{—Z)k:kd(vf,vZn).

Case6:Whenu:vfandv:v£n,l7ém,2§l, m<mn and 1 <1i,j <k Then,

(@) @ f(vh)

= {1,...,0-Dk,n-Dk+(1-DE*+({(-Dk+1,...,
m—Dk+(I-D+(—-Dk+ky{1,...,(m =1k, (n — Dk + (m —1)K>+
(G—Dk+1,...,(n—Dk+ (m—1)k*+ (j — Dk +k} |

=[{(n—Dk+(I =D+ (i -1Dk+1,...,(n—Dk+ (1 —1)k*+ (i — 1k +k,
(I—=Dk+1,...,(m— 1Dk, (n —Dk+(m -1+ (- 1k+1,...,
(n—1Dk+(m—1)k*+ (G —1Dk+k} |

=(m—1+2k=ki(v),v},), 2<l<m<nand 1<i<j<k

Hence, for any distinct u,v € V(G), |f(u) ® f(v)| = kd(u,v). Which shows that f admits
k-uniform dcsl. ]

Lemma 4. Forn > 1,k > 1,6 (P%) = k(n(k+1) — 1).
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Proof. Let V(PX) = {vy,0},..., 05 00,0),...,08, ..., 0,0}, ...,0K}, and let f be the dcsl label-
ing of PX with the underlying set as X. By Lemma 2, the 1-uniform dcsl index of P, is k(n — 1),
which implies that for internal vertices of PX, the required dcsl index is k(1 — 1), where as for
remaining ‘nk’ vertices (pendant vertices), we need at least ‘k*n’ subsets of X other than the
subsets which has already been labeled. Hence the cardinality of X is atleast k1 + k(n — 1).
Since by Theorem 4, P is a k-uniform dcsl with underlying set X of cardinality k(n(k +1) — 1),
thus we have, 6 (PX) = k(n(k +1) —1). O

Theorem 5 ([4]). If G is k-uniform dcsl, and m is a positive integer, then G is mk-uniform dcsl.

It has been already established in [4] that path admits arbitrary k-uniform dcsl labeling and
k-uniform dcsl index, & (Py) is k times that of 1-uniform dcsl index. In this paper, this result
is extended to a k-uniform caterpillar, and we prove that the k-uniform dcsl index, 5 (P¥) is k
times that of the 1-uniform dcsl index of k-uniform caterpillar. It is interesting to note that the
range of any arbitrary k-uniform dcsl of a k-uniform caterpillar, PX need not form a connected
poset. However, there always exists a k-uniform dcsl of P¥, whose range is a connected poset.
Hence, the Hasse diagram (or poset) which embeds the vertex labeling of 1-uniform dcsl P¥,
can also embed the vertex labeling of k-uniform dcsl PX. Hence, for such postes the dimension
corresponding to 1-uniform dcsl PX and the dimension corresponding to k-uniform dcsl P are
same. Thus, we have the following theorem.

Theorem 6. If F is the range of a k-uniform dcsl of the k-uniform caterpillar P,’j (n>1k>1),
that forms a poset with respect to set inclusion ‘C’, then, dim(F) < &;(PF).

Proof. Proof is immediate from Theorem 5, Lemma 4 and Theorem 3. O
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Harecsapa Pao K., I'epmina K.A., Maiui IT. [Tpo posmipricme mapryeanns sepuiut k-o0HopioHoeo desl
k-00nopidnoz0 epagpa // Kapmarceki maTem. my6a. — 2016. — T.8, Nel. — C. 134-149.

CymicHe 3 BiacTaHHIO MHOXIHHe MapKyBaHHsI (dcsl) 3B’s13H0TO rpadpa G € iH'eKTMBHMM Bia06pa-
xenHsM [ : V(G) — 2X re Xe HEIOPO>KHOIO 6a30BOI0 MHOXXMHOIO TaKoIo, III0 BiATIOBiAHA iHAY-
xosana dynkuis f¢ : E(G) — 2%\ {@}, saaana pisnictio f€(uv) = f(u) ® f(v), 3ar0BOAbHSE
| £ (uv) |= k{u/v)dc(u,z;) AAST AOBIABHOI TTapy pisHmx BepumH u,v € V(G), ae dg(u, v) mosHauae

BiACTaHb MIX U 10 Ta k{u,v)
KyBaHHS f Tpadpa G € k-oAHOpiAHMM, SKIIO Bci KoedpillieHTM MPOMOPIIHOCTI BiAHOCHO f piBHi k,
i sxmo G AOMycKae Take MapKyBaHHS, To G HasMBalOTh k-oaAHOpiaHMM desl rpadpoM. k-00HopioHuil
dcsl indexc rpadpa G, 1o mosHavaeTocst O (G), € MiHIMaABHIM cepea TOTy>XHocTel X, Ae X mpobirae
Bci k-oaHOpiaHi dcsl-mHOXMHM rpada G. Ainiiine posusupents L dactkoBoro mopsiaky P = (P, <)
€ AlHIVHMM MOPSIAKOM Ha eaeMeHTax i3 P Takmm, mo 3 x = ¥ B P caiaye, mo x = y B L aAAs Bcix
x,y € P. Posmipricts MHOXMHEM P, siKa mosHayaeThcst dim(P), e MiHIMAABHMM UMCAOM AiHITHIX
posumpens Ha P, mepetus sikmx € ‘=<’. V wiit crarTi My a0BoAMMO, 1o dim (F) < 8 (P, k), ae Fe
o6pasom k-oaropiatoro dcsl k-oaHopiazoro rpadpa, mossaueroro PFF (n > 1,k > 1) ma ‘n(k + 1)
BepIIMHaX.

€ WICAOM, He 060B’s13K0B0 IiauM. CyMicHe 3 BiACTAHHIO MHOXIHHE Map-

Kntouosi cnoea i ppasu: k-oaHopiammit desl iHAeKC, po3MipHICTD MHOXWHM 3 YaCTKOBUM TTOPSIA-
KOM, peIIIiTKa.



