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SIGNLESS LAPLACIAN DETERMINATIONS OF SOME GRAPHS WITH
INDEPENDENT EDGES

Let G be a simple undirected graph. Then the signless Laplacian matrix of G is defined as
D¢ + Ag in which D¢ and A denote the degree matrix and the adjacency matrix of G, respectively.
The graph G is said to be determined by its signless Laplacian spectrum (DQS, for short), if any
graph having the same signless Laplacian spectrum as G is isomorphic to G. We show that G LIrK;
is determined by its signless Laplacian spectra under certain conditions, where r and K, denote a
natural number and the complete graph on two vertices, respectively. Applying these results, some
DQS graphs with independent edges are obtained.
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INTRODUCTION

All graphs considered here are simple and undirected. All notions on graphs that are not
defined here can be found in [13,16]. Let G be a simple graph with the vertex set V = V(G) =
{v1,...,v,} and the edge set E = E(G). Denote by d; the degree of the vertex v;. The adjacency
matrix Ag of G is a square matrix of order n, whose (i, j)-entry is 1 if v; and v; are adjacent
in G and 0 otherwise. The degree matrix D of G is a diagonal matrix of order n defined as
D¢g = diag(dy,...,dy). The matrices Lg = Dg — Ag and Qg = D¢ + Ag are called the
Laplacian matrix and the signless Laplacian matrix of G, respectively. The multiset of eigenvalues
of Qg (resp. Lg, Ag) is called the Q-spectrum (resp. L-spectrum, A-spectrum) of G. For any
bipartite graph, its Q-spectrum coincides with its L-spectrum. Two graphs are Q-cospectral
(resp. L-cospectral, A-cospectral) if they have the same Q-spectrum (resp. L-spectrum, A-
spectrum). A graph G is said to be DQS (resp. DLS, DAS) if there is no other non-isomorphic
graph Q-cospectral (resp. L-cospectral, A-cospectral) with G. Let us denote the Q-spectrum
of G by Spec(G) = {[m]™, [2]"2, ..., [qn]™"}, where m; denotes the multiplicity of q; and
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The join of two graphs G and H is a graph formed from disjoint copies of G and H by
connecting each vertex of G to each vertex of H. We denote the join of two graphs G and H by
GVH. The complement of a graph G is denoted by G. For two disjoint graphs G and H, let
G U H denotes the disjoint union of G and H, and rG denotes the disjoint union of r copies of
G ie,rtG=GU...UG.

——

r—times
Let G be a connected graph with 7 vertices and m edges. Then G is called unicyclic (resp.

bicyclic) if m = n (resp. m = n 4 1). If G is a unicyclic graph containing an odd (resp. even)
cycle, then G is called odd unicyclic (resp. even unicyclic).

Let C,, Py, K, be the cycle, the path and the complete graph of order n, respectively. K ;
the complete bipartite graph with s vertices in one part and ¢ in the other.

Let us remind that the coalescence [21] of two graphs G; with distinguished vertex v; and G
with distinguished vertex v,, is formed by identifying vertices v; and v; that is, the vertices v;
and v; are replaced by a single vertex v adjacent to the same vertices in G; as v; and the same
vertices in G, as v. If it is not necessary v; or v; may not be specified.

The friendship graph F, is a graph with 2n + 1 vertices and 31 edges obtained by the coales-
cence of n copies of C3 with a common vertex as the distinguished vertex; in fact, F; is nothing
but K;VnKs.

The lollipop graph, denoted by H,, p, is the coalescence of a cycle C, with arbitrary distin-
guished vertex and a path P, with a pendent vertex as the distinguished vertex; for example
Hij ¢ is depicted in Figure 1 (b). We denote by T'(a, b, c) the T-shape tree obtained by identifying
the end vertices of three paths P,2, P, 5 and P.y». In fact, T(a, b, c) is a tree with one and only
one vertex v of degree 3 such that T'(a,b,c) — {v} = P11 U Py q U P.yq; for example T(0,1,1)
is depicted in Figure 1 (a).

Figure 1: (a) The T-shape tree T(0,1,1) (b) The lollipop graph Hi1 6

A kite graph Kiy, 4 is a graph obtained from a clique Ky, and a path P, is the coalescence
of Ky with an arbitrary distinguished vertex and a path P,,_;,+1 with a pendent vertex as the
distinguished vertex. A tree is called starlike if it has exactly one vertex of degree greater than
two. We denote by U, ,,—, the graph obtained by attaching n — r pendent vertices to a vertex of
C. In fact, U, ,—, is the coalescence of K; ,_,_1 and P,,_;+1 where distinguished vertices are
the vertex of degree n — r and a pendent vertex, respectively. A graph is a cactus, or a treelike
graph, if any pair of its cycles has at most one common vertex [35]. If all cycles of the cactus
G have exactly one common vertex, then G is called a bundle [12]. Let S(n,c) be the bundle
with n vertices and ¢ cycles of length 3 depicted in Figure 2, where n > 2c +1 and ¢ > 0.
By the definition, it follows that S(n,¢) = K1V (cKy U (n —2c — 1)Kj). In fact S(n,c) is the
coalescence of F. and Kj ,,_».—1 where the distinguished vertices are the vertex of the degree
2c and the vertex of the degree n — 2c — 1, respectively.
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n—2c—1

Figure 2: The bundle S(n, ¢)

Let G be a graph with n vertices, H be a graph with m vertices. The corona of G and H,
denoted by G o H, is the graph with n 4 mn vertices obtained from G and n copies of H by
joining the i-th vertex of G to each vertex in the i-th copy of H (i € {1,...,n}); for example
C4 0 2Kj is depicted in Figure 3.

® ®
[ L 4 4 L
[ L 4 L 4 ®
[} [ ]

Figure 3: C4 0 2K

A complete split graph CS(n, a), is a graph on n vertices consisting of a clique on n — « vertices
and an independent set on the remaining & (1 < & < n — 1) vertices in which each vertex of the
clique is adjacent to each vertex of the independent set. The dumbbell graph, denoted by Dy, 4, is
a bicyclic graph obtained from two cycles C,, C; and a path Py, by identifying each pendant
vertex of P, , with a vertex of a cycle, respectively. The theta graph, denoted by ®, s, is the
graph formed by joining two given vertices via three disjoint paths P,, Ps and P, respectively,
see Figure 4.

Figure 4: The graphs D, , and Oy s s

The problem “which graphs are determined by their spectrum?” was posed by Giinthard
and Primas [24] more than 60 years ago in the context of Hiickel’s theory in chemistry. In
the most recent years mathematicians have devoted their attention to this problem and many
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papers focusing on this topic are now appearing. In [36] van Dam and Haemers conjectured
that almost all graphs are determined by their spectra. Nevertheless, the set of graphs that are
known to be determined by their spectra is too small. So, discovering infinite classes of graphs
that are determined by their spectra can be an interesting problem. Cvetkovi¢, Rowlinson and
Simié in [17-20] discussed the development of a spectral theory of graphs based on the signless
Laplacian matrix, and gave several reasons why it is superior to other graph matrices such as
the adjacency and the Laplacian matrix. It is interesting to construct new DQS (DLS) graphs
from known DQS (DLS) graphs. Up to now, only some graphs with special structures are
shown to be determined by their spectra (DS, for short) (see [1-11,15,17,19,22,23,25-34, 38—41]
and the references cited in them). About the background of the question "Which graphs are
determined by their spectrum?”, we refer to [36,37]. For a DQS graph G, GVK; is also DQS
under some conditions [30]. A graph is DLS if and only if its complement is DLS. Hence we
can obtain DLS graphs from known DLS graphs by adding independent edges. In [25] it was
shown that G U rKj is DQS under certain conditions. In this paper, we investigate signless
Laplacian spectral characterization of graphs with independent edges. For a DQS graph G, we
show that G LI rK; is DQS under certain conditions. Applying these results, some DQS graphs
with independent edges are obtained.

1 PRELIMINARIES

In this section, we give some lemmas which are used to prove our main results.

Lemma 1 ([17,19]). Let G be a graph. For the adjacency matrix of G, the following can be
deduced from the spectrum.

(1) The number of vertices.
(2) The number of edges.
(3) Whether G is regular.
For the Laplacian matrix, the following follows from the spectrum:
(4) The number of components.
For the signless Laplacian matrix, the following follow from the spectrum:

(5) The number of bipartite components, i.e., the multiplicity of the eigenvalue 0 of the sign-
less Laplacian matrix is equal to the number of bipartite components.

(6) The sum of the squares of degrees of vertices.

Lemma 2 ([17]). Let G be a graph with n vertices, m edges, t triangles and the vertex degrees

di,do, ..., dy. If T = i 7:(G)¥, then we have
i=1

n n n
To=n Ti=Y di=2m To=2m+)Y.d}, Tz=6t+3) di+) d.
i=1 i=1 i=1 i=1
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For a graph G, let P (G) and Po(G) denote the product of all nonzero eigenvalues of Lg
and Qg, respectively. Note that P (Ky) = Po(K3) = 2. We assume that P;(G) = Po(G) = 1if
G has no edges.

Lemma 3 ([16]). For any connected bipartite graph G of order n, we have Po(G) = P1(G) =
nt(G), where T(G) is the number of spanning trees of G. Especially, if T is a tree of order n,
then PQ(T) = PL(T) = n.

Lemma 4 ([32]). Let G be a graph with n vertices and m edges.
(i) det(Qg) = 4 ifand only if G is an odd unicyclic graph.

(ii) If G is a non-bipartite connected graph and m > n, then det(Qg) > 16, with equality if
and only if G is a non-bipartite bicyclic graph with C4 as its induced subgraph.

Lemma 5 ([16]). Let e be any edge of a graph G of order n. Then
71(G) 2 q1(G—¢) 2 92(G) =2 q2(G—¢) = ... = 9u(G) = qu(G —e) 2 0.
Lemma 6 ([21]). Let H be a proper subgraph of a connected graph G. Then q1(G) > q1(H).

Lemma 7 (21]). Let G be a graph with n vertices and m edges. Then q1(G) > 22, with equality
if and only it G is regular.

Lemma 8 ([17]). For a graph G, 0 < g1(G) < 4 if and only if all components of G are paths.

Lemma 9 ([36]). A regular graph is DQS if and only if it is DAS. A regular graph G is DAS
(DQS) if and only if G is DAS (DQS).

Lemma 10 ([19]). Let G be a k-regular graph of order n. Then G is DAS when k ¢
{0,1,2,n—3,n—2,n—1}.

Lemma 11 ([15]). Let G be a k-regular graph of order n. Then GVK;j isDQS fork € {1,n — 2},
fork =2andn > 11. Fork = n — 3, GVK; is DQS if and only if G has no triangles.

Lemma 12 ([30]). Let G be a k-regular graph of order n. Then GVK; is DQS fork € {1,n — 2}.
Fork = n — 3, GVK; is DQS if and only if G has no triangles.

Lemma 13 ([25]). The following hold for graphs with isolated vertices:

(i) LetT be a DLS tree of order n. Then T U rKj is DLS. If n is not divisible by 4, then T LI Ky
is DQS.

(ii) The graphs P, and P, U rK; are DQS.
(iii) Let G be a graph obtained from K,, by deleting a matching. Then G and G LIrK; are DQS.

(iv) A (n — 4)-regular graph of order n is DAS (DQS) if and only if its complement is a 3-
regular DAS (DQS) graph.

(v) Let G be a (n — 3)-regular graph of order n. Then G U rK; is DQS.

Now let us list some known families of DQS graphs.
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Lemma 14. The following graphs are DQS.
(i) The graphs Py, Cy, Ky, Kyyym, Ky, Py, U Py, U...U Py, and Cy, UCy, U...LUCy,, [36].
(ii) Any wheel graph K1V Cy, [26].
(iii) Every lollipop graph Hy, ;, [41].
(iv) Every kite graph Ki,, ,_1 forn > 4 and n # 5, [23].
(v) The friendship graph F,, [38].
(vi) (CnotKy), forn ¢ {32,64} and t € {1,2}, [14,32].
(vii) The line graph of a T-shape tree T(a, b, c) except T(t,t,2t + 1) (t > 1), [39].
(viii) The starlike tree with maximum degree 4, [34].
(ix) Uy p—r forr > 3, [27].
(x) CS(n,a) whenl1l <a <n-—1andwa # 3, [22].
(xi) Forn > 2c+1andc > 0, m and S(n, c) except for the case of c = 0 and n = 4, [29].
(xii) Kj,_1 forn # 4, [29].

(xiii) GV Ky, where G is an (n — 2)-regular graph on n vertices, and K, VK; except forn = 3,
[28].

(xiv) All dumbbell graphs different from D5, and all theta graphs, [40].

It is easy to see that Kj 3 and K3 U Ky are Q-cospectral, i.e., Spec(Ky,3) = Spec(Ks) =
{[4]*,[1)%,[0]'}. Therefore, S(n,c) is not DQS when ¢ = 0 and n = 4, since S(1,0) is nothing
but Kin-1.

2 MAIN RESULTS

We first investigate spectral characterizations of the union of a tree and several complete
graphs Kj.

Theorem 1. Let T be a DLS tree of order n. Then T UrK; is DLS for any positive integer r.
Moreover, if n isodd andr = 1, then T L K5, is DQS.

Proof. Forn,r € {1,2} see Lemma 13 (i) and Lemma 14 (i). So, one may suppose that n,r > 3.
Let G be any graph L-cospectral with T LI 7K. By Lemma 1, G has n + 2r vertices, n —1 4 r
edges and r 4+ 1 components. So each component of G is a tree. Suppose that G = Gy U G U
... U Gy, where G; is a tree with n; vertices and ng > ny > ... > n, > 2. Forn;,n, € {1} see
Lemma 13 (i) and Lemma 14 (i). Hence we consider n,n;,r > 2. Since G is L-cospectral with
T L rKy, by Lemma 3, we get

nohy...Ny = PL(G0> e PL(GY) = PL(G() U...ud Gy) = PL(G> = PL(T>PL(K2)r =n2".
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We claim that n, = 2. Suppose not and so n, > 3. This means thatng > n; > ... > n, > 3.

2
Hence n2" = ngny...n, > 3+l or n(g)r > 3. Now, if # — oo, then 0 > 3, a contradiction. So,

we must have n, = 2. By a similar argument one can show thatn; = ... = n,_; = 2 and so
no = n. Hence G = Go U rKj3. Since G and T U rK; are L-cospectral, Gy and T are L-cospectral.
Since T is DLS, we have Gy = T, and thus G = T LU rK,. Hence T U rK5 is DLS.

Let H be any graph Q-cospectral with T LI K. By Lemma 1, H has n + 2r vertices, n — 1+ r
edges and r + 1 bipartite components. So one of the following holds:

(i) H has exactly r + 1 components, and each component of H is a tree.
(ii) H has r + 1 components which are trees, the other components of H are odd unicyclic.

In what follows we show that (ii) does not occur if n is odd and r = 1. If (ii) holds, then by
Lemma 4, Po(H) is divisible by 4 since H has a cycle of odd order as a component. Since T is
a tree of order 1, by Lemma 3, Po(H) = Po(T)Pg(Kz)" = n2" is divisible by 4, a contradiction.
Therefore (i) must hold. In this case, H and T LI 7K; are both bipartite, and so they are also
L-cospectral. By the previous part, T LI ¥K; is DLS. So we have H = T LI rKj.

Hence T LU rK5 is DQS when n is odd and r = 1. O

Remark 1. Some DLS trees are given in [25] and references therein. We can obtain some DLS
(DQS) trees with independent edges from Theorem 1.

Lemma 14 and Theorem 1 imply the following corollary.
Corollary 1. For an odd positive integer n, we have the following
(i) Let T be a starlike tree of order n and with maximum degree 4. Then T LI K, is DQS.
(ii) P, UKy is DQS.
(iii) Forn # 4, Ky ,,—1 U Ky is DQS.

(iv) Let L be the line graph of a T-shape tree T(a,b,c) except T(t,t,2t +1) (t > 1). Then
LUKy isDQS ifa+b+c—3isodd.

Theorem 2. Let G be a DQS odd unicyclic graph of order n > 7. Then G U rKj; is DQS for any
positive integerr.

Proof. Let H be any graph Q-cospectral with G LI rK,. By Lemma 1(5), 0 is not an eigenvalue of
G since it is an odd unicyclic. So by Lemma 4, we have 4 = det(Q¢) = Pg(G). Moreover,

Po(H) = Po(G U7Ky) = Po(G)Po(Ka)" = det(Qg)2" =4 -2 = 2'+2,

By Lemma 1, H has n + 2r vertices, n + r edges and r bipartite components. So one of the
following holds:

(i) H has exactly r components each of which is a tree.

(ii) H has r components which are trees, the other components of H are odd unicyclic.
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We claim that (i) does not hold, otherwise, we may assume that H = H; LI... U H,, where H;
is a tree with n; vertices and ny > ... > n, > 1. It follows from Lemma 3 that

ny...n, = Pq(Hy)...Pqo(H,) = Po(H) =4-2" =22
Sony...n, =2""2 ny < 8. Since G contains a cycle, say C, by Lemma 7 we have

711(H) = q1(G) > q1(C) = 4. (1)

Let A(H) be the maximum degree of H. If A(H) < 2, then all components of H are paths,
hence by Lemma 8, q;(H) < 4, contradicting Eq. (1). So A(H) > 3. From n; < 8 and
n...n, =4-2" = 2(r+2), we may assume that Hy = K;7, H, = ... = H, = K. Since
H = Kj 7 U (r — 1)Ky has n + 2r vertices, we get n = 6, a contradiction ton > 7.

If (ii) holds, then we may assume that H = U; U...U U, U H; U... U H,, where U; is odd
unicyclic, H; is a tree with n; vertices. By Lemmas 3 and 4, 4 - 2" = Po(H) = 4°ny...n,. So
c=1Hy =... = Hy, = Ky. Since H = Uy UrK; and G L rK; are Q-cospectral, U; and G are
Q-cospectral. Since G is DQS, we have U; = G, H = G UrKj. O

Remark 2. Note that C4 LI 2P; and Cg U 2K, are Q-cospectral, i.e., SpeCQ(C4 LI 2P;) =
Spec(Ce LI2Kp) = {[4]%, [3)%, [2]%,[1]%,[0]3}. It follows that the condition “odd unicyclic of
ordern > 7” is essential in Theorem 2.

Remark 3. Some DQS unicyclic graphs are given in [25] and references therein. We can obtain
some DQS graphs with independent edges from Theorem 2.

Theorem 3. Let G be a DQS graph of order n > 5. If G is non-bipartite bicyclic graph with Cy4
as its induced subgraph, then G L K, is DQS for any positive integer r.

Proof. Let H be any graph Q-cospectral with G U 7K;. By Lemma 4, we have
PQ(H) = PQ(G UJ T’Kz) = PQ(G)PQ(Kz)r = PQ(G)Zr.

By Lemma 1(5), 0 is not an eigenvalue of G since it is non-bipartite. So by Lemma 4, we have
16 = det(Gg) = Po(G) and thus Po(H) =16 - 2".

By Lemma 1, H has n + 2r vertices, n + 1 + r edges and r bipartite components. So H
has at least r — 1 components which are trees. Suppose that Hj, Hy, ..., H, are r bipartite
components of H, where Hy, ..., H, are trees. If Hj contains an even cycle, then by Lemmas
4 and 5, we have Po(H) > Pg(H;) > 16, and Po(H) = 16- (2~!) = 2'3 if and only if
H = CyU(r—1)Ko. By Po(H) =16 - (2!) =23, we have H = C4 U (r — 1)K. Since H has
n + 2r vertices, we get n = 2, a contradiction (G contains C4). Hence Hj, Hy, ..., H; are trees.
Since H has n + 2r vertices, n + 1 + r edges and r bipartite components, H has a non-bipartite
component Hy which is a bicyclic graph. Lemmas 4 and 5 imply that Po(H) > Po(Hp) > 16,
and Po(H) = 16 - 2" if and only if H = Hy LI K5 and Hj contains Cy as its induced subgraph.
By Po(H) = 16-2", we have H = Hy LI7Kj. Since H and G LI7K; are Q-cospectral, Hy and G are
Q-cospectral. Taking into account that G is DQS, we conclude that Hy = G and H = G U rKj.
Hence G LU rK; is DQS. O

Remark 4. Some DQS bicyclic graphs are given in [25] and references therein. We can obtain
DQS graphs with independent edges from Theorem 3.
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Lemma 15. Let G be a connected graph. Then there is no subgraph of G with the Q-spectrum
identical to Spec(G) U { [2]1}. Moreover, if G is of order at least 3, then q1(G) > 3.

Proof. Suppose by the contrary that there is a subgraph of G, say G/, such that SpeCQ(G’ ) =
Spec(G)U {[2]1} But, in this case |[E(G')| = |E(G)| +1and |V(G')| = |V(G)| + 1. Therefore
there exists a vertex v of G’ with the degree one such that G’ — v = G. This means that
G is a proper subgraph of the connected graph G’ and so by Lemma 6, q;(G') > 41(G), a
contradiction. If G is a connected graph of order at least 3, it has K3 or Kj » as its subgraph.
Moreover, Spec(K3) = {[4], (1]} and Specy(K12) = {[3],[1],[0]}. Therefore by Lemma 5,
7n1(G) = 3. O

Theorem 4. Let G be a connected non-bipartite graph with n > 3 vertices which is DQS. Then
for any positive integer r, G LI 7K is DQS.

Proof. Let H be a graph Q-cospectral with G LI K. Then by Lemmas 1 and 2, H has n +
2r vertices, n + 1+ r edges and exactly r bipartite components. We perform mathematical
induction on r. Suppose that H is a graph Q-cospectral with G U K;. Then

Specq (H) = Spec(G) USpecy(Kz) = Specy (G) U {[2]1, [O]l} .

Since G is a connected non-bipartite graph, by Lemma 1, it has not 0 as its signless Laplacian
eigenvalue. Therefore, H has exactly one bipartite component. Therefore, by Lemma 15 we get
H = GUK;. Now, let the assertion holds for r; that is, if Spec,(G1) = Specy(G) U Specy (rK),
then G; = G U rK,. We show that it follows from Spec,(K) = Spec(G) U Specy((r +1)Kz)
that K = G U (r 4+ 1)K,. Obviously, K has 2 vertices, one edge and one bipartite component
more than G;. So, we must have K = Gj U K;. Now, the inductive hypothesis holds the
proof. O

Lemma 11 and Theorem 4 imply the following corollary.

Corollary 2. For a k-regular graph G of order n, (GV Ky ) UrK; is DQS if either of the following
conditions holds:

(i) ke{l,n—-2},
(ii) k=2andn > 11,
(iii) k = n — 3 and G has no triangles.
Lemma 12 and Theorem 4 imply the following corollary.

Corollary 3. Let G be a k-regular graph of order n. Then (GVK;) UrK; is DQS for k €
{1,n —2}. Fork = n — 3, (GVK,) UK, is DQS if G has no triangles.

Lemma 13 and Theorem 4 imply the following corollary.

Corollary 4. Let G be a non-bipartite graph obtained from K,, by deleting a matching. Then
G UrK, is DQS.

Remark 5. Some 3-regular DAS graphs are given in [25] and references therein. We can obtain
DQS graphs with independent edges from Corollary 4.
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Lemmas 9 and 10 and Theorem 4 imply the following corollary.

Corollary 5. Let G be a k-regular connected non-bipartite graph of order n. Then G U rKj; is
DQS if either of the following holds

(i) ke{2,n—1,n—2,n—3}.
(ii) k =n —4 and G is DAS.
Lemma 14 and Theorem 4 imply the following corollary.
Corollary 6. Let G be any of the following graphs. Then G L rK; is DQS.
(i) The graphs C,, (nis odd), K, (n > 4).
(ii) The graphs P, (n > 5).
(iii) The wheel graph K1V C,,.
(iv) Every lollipop graph Hy, when p is odd and n > 8.
(v) The kite graph Ki,, ,_1 forn > 4 and n # 5.
(vi) The friendship graph F,.
(vii) (C,otKy), whenn isodd andn ¢ {32,64} and t € {1,2}.
(viii) Uy ,—, ifr(> 3) isodd andn > 7.
(ix) CS(n,a) when1 < a <n—1andwa # 3.
(x) S(n,c) and its complement wheren > 2c+1and ¢ > 1.
(xi) HVK,, where H is an (n — 2)-regular graph on n vertices, and K, VK, except forn = 3.
(xii) The dumbbell graphs D, , (p or q is odd) different from D3,, and all non-bipartite

theta graphs ©, ;.
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Hexait G mpoctit HeHanpstMaeHmit Tpadp. Toai 6e3sHaxkoBa AamaaciaHoBa MaTpyls G BU3Hada-
erbest sik D + Ag, Ae D¢ i A MO3HAUarOTh MaTPUITIO CTEIEHiB i MaTpuIo CyMiXHOCTI rpady G
BiamosiaHO. I'pad G HasMBaIOTH BM3HAUYEHNM CBOIM 6e33HAKOBMM AallAaciaHOBMM CIEKTPOM (CKO-
pouenHst DQS), sIkI110 6yAb-sKmit rpad, 0 Mae TaKmit caMyii 6e33HaKOBMIA AAITAACiaHOBUIA CIIEKTP
K G, € isomopdpruM 20 G. Y poboti nokasano, mo G U rKp BU3HaUeHWMIT cBOIM He33HAKOBUM Aa-
IIAACiaHOBMM CIIEKTPOM 3a IeBHMX YMOB, Ae 7 i K I03HauaroTh HaTypaAbHe UMCAO i IOBHMI rpad
Ha ABOX BepIIMHAX BiAIIOBiAHO. 3acTOCOBYIOUM ILi pe3yAbTaTH MM oTpuMain aesiki DQS rpadm 3
He3aAe>XHMMM BepIIMHaMU.

Koouosi ciosa i ppasu: creKTparbHA XapaKTepu3allisi, 6e33HaKOBMIL AaILAACiaHOBIIA CIIEKTP, KO-
crieKTpaAbHi rpadpy, 06’eaAHaHHS rpadis.



