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(L)
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(p,q)TH ORDER ORIENTED GROWTH MEASUREMENT OF COMPOSITE p-ADIC
ENTIRE FUNCTIONS

Let K be a complete ultrametric algebraically closed field and let A (K) be the K-algebra of
entire functions on K. For any p-adic entire function f € A (K) and r > 0, we denote by |f] (r)
the number sup {|f (x) | : |x| = r}, where |-| () is a multiplicative norm on A (K). For any two

entire functions f € A(K) and g € A(K) the ratio I\j; ‘IE:Z as r — oo is called the comparative
growth of f with respect to g in terms of their multiplicative norms. Likewise to complex analysis,
in this paper we define the concept of (p,q)th order (respectively ( p, gq)th lower order) of growth

as pP9) (f) = 11m suplog mr( ) (respectively A(P4) (f) = lim ir1flog \f\(r)) where p and g are any

r——+oo log
two positive mtegers We study some growth properties of composite p-adic entire functions on the
basis of their (p, q)th order and (p, g)th lower order.

Key words and phrases: p-adic entire function, growth, (p, g)th order, (p, g)th lower order, com-
position.
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INTRODUCTION AND DEFINITIONS

Let K be an algebraically closed field of characteristic 0, complete with respect to a p-adic
absolute value |-| (example C,). For any « € K and R € (0, +00), the closed disk {x € K :
|x —a| < R} and the open disk {x € K : |[x —a| < R} are denoted by d («,R) and d («, R™)
respectively. Also C(«,r) denotes the circle {x € K : |[x — a| = r}. Moreover A (K) represent
the K-algebra of analytic functions on KK, i.e. the set of power series with an infinite radius of
convergence. For the most comprehensive study of analytic functions inside a disk or in the
whole field K, we refer the reader to the books [9, 10, 15, 18]. During the last several years the
ideas of p-adic analysis have been studied from different aspects and many important results
were gained (see [1-6], [8, 11-14, 19]).

Let f € A(K) and r > 0, then we denote by |f| (r) the number sup {|f (x)|: x| =r}
where |-| (r) is a multiplicative norm on A (K). For any two entire functions f € A (K) and

g € A(K) the ratio E} Egg as ¥ — oo is called the growth of f with respect to g in terms of their
multiplicative norms.

For any x € [0,00) and k € IN, we define recursively log[k] x = log <log[k*” x) and
explx = exp <exp[k_” x) , where IN stands for the set of all positive integers. We also de-
note log[o] x = x and expl” x = x. Throughout the paper, log denotes the Neperian logarithm.
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Taking this into account the order (resp. lower order) of an entire function f € A (K) is given
by (see [4])
o(f) _ iy sup log? If] (1)
A(f) rteo inf logr
The above definition of order (resp. lower order) does not seem to be feasible if an entire
function f € A(K) is of order zero. To overcome this situation and in order to study the
growth of an entire function f € A (K) precisely, one may introduce the concept of logarithmic
order (resp. logarithmic lower order) by increasing log™ once in the denominator following
the classical definition of logarithmic order (see, for example, [7]). Therefore the logarithmic
order pjog (f) and logarithmic lower order Ajyg (f) of an entire function f € A (K) are define
as
Alog (f) - r—+oo Inf 1Og[2} r
Further the concept of (p,q)th order (p and g are any two positive integers with p > g) is
not new and was first introduced by Juneja et al. [16,17]. In the line of Juneja et al. [16,17], now
we shall introduce the definitions of (p, g)th order and (p, g)th lower order respectively of an
entire function f € A (KK) where p,q € IN. In order to keep accordance with the definition of
logarithmic order we will give a minor modification to the original definition of (p, g)-order
introduced by Juneja et al. [16,17].

Definition 1. Let f € A (K) and p,q € IN. Then the (p, q)th order and (p, q)th lower order of
f are respectively defined as:

oD (f) _ . sup log” || (1)

prog (f) _ iy sup log? If] (1)

APD (F)  roteo inf  1oglil
These definitions extend the generalized order pl!! (f) and generalized lower order Al (f)
of f € A(K) for each integer | > 2 since these correspond to the particular case pl! (f) =
) (f) and AU (f) = AUD (£). Clearly p®Y) (f) = p(f) and AV (f) = A(f). The above
definition avoid the restriction p > g and give the idea of generalized logarithmic order.
However in this connection we just introduce the following definition which is analogous
to the definition of Juneja et al. [16,17].

Definition 2. An entire function f € A(K) is said to have index-pair (p,q), where p and
g €N, ifb < pP9 (f) < o and p(P~14-1) (f) is not a nonzero finite number, where b = 1 if
p = g and b = 0 otherwise. Moreover if 0 < p(P1) (f) < oo, then

pP=m1) (f) =0 for n < p,
pPA=1) (f) =0  for n<g,
olPtnatm) (£y =1 for n=1,2,....
Similarly for 0 < AP4) (f) < oo, one can easily verify that
AMpP=18) (fy =co  for n<p,
APa=m () =0  for n<g,
Aptnatn) (Fy =1 for n=1,2,....
The main aim of this paper is to establish some results related to the growth properties of

composite p-adic entire functions on the basis of (p, q)th order and (p, q)th lower order, where
p,q € IN.
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1 LEMMA

In this section we present the following lemma which can be found in [4] or [5] and will be
needed in the sequel.

Lemma 1. Let f, g € A(K). Then for all sufficiently large values of r the following equality
holds

fogl(r) = I£1 (gl ()

2 MAIN RESULTS

Theorem 1. Let f, ¢ € A(K) be such that p("™"(g) < APA(f) < pPA(f) < oo, where
p,q,m,n € N. Then

logl?! [f o g| (expl"~Tr)
(i) lim =0 ifg>m

=+ loglP 1| f|(expli=tlr)

and
logl+ =11 |f o g| (expl~17)
(i1) lim
rote oglt U fl(expli-tr)

=0 ifg<m.

Proof. We get from Lemma 1, for all sufficiently large positive numbers of r that

logl?! |f o g| (expl"=!r) =10g! [£] (I3] (expl~Vr))
ie., log!? |f o g| <exp[nfl] r) < <p(p,q)(f) + 5) logl? |g] (exp[nq] r) _ 1)

Now the following two cases may arise.
Case I. Let ¢ > m. Then we have from (1) for all sufficiently large positive numbers of r that

log”! | o gl (exp"Ir) < (o) (f) +¢) log" " Jg] (expl"~!)7) @

i.e.,
logl") |f o g] (exp[nfll r) < <p(w) (f) + 5> A (g)+e) 3)
Case II. Let g < m. Then for all sufficiently large positive numbers of r we get from (1) that
logl?! £ o g| (expl U r) < (o) (f) +¢) exp™~og!" |g] (expl"~!Ir). @)

Further for all sufficiently large positive numbers of 7, it follows that

log™! g] (exP[”‘” r) < log <rp<m’”>(g)+s>

i.e.,
expl™ =T 1og |g| (exp[” U r) < explm—1-1] <rf’(m'")(3)+£> . (5)

Now from (4) and (5) we have for all sufficiently large positive numbers of r that

logl” |f o gl <exp[n—1] r) < <p(w7) (f) +g> explm—1-1] <rp(’"'">(g)+€>
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ie.,
logP*U | fog] <exp[”_1] r) < explm =172 <rp(m'n>(g)+€> +0(1)
ie.,
_ A m,n O(l)
& |f g|< p ) p < ) exp[m—q—z] <rp(mr")(g)+e)
i.e.,

[p+m—q—1] [n—1] 0q(m,n)+e O(1>
log |fog] (exp r) < (1 + T ( p(m/”)(g)+g) : (6)
P ¥

Also from the definition of A(P7)(f), we get for all sufficiently large positive numbers of r
that

log[pfu ‘f’ (exp [qfl] r) > r()‘(p/w(f)*‘c')_ (7)

Now combining (3) of Case I and (7) we get for all sufficiently large positive numbers of r

that

log[p] |fog] <exp[”*1] r) (Pf (p,q) + g) r(P(""’”(g)JFS)

< 8
logl? U |f|(expli-tr) ~ rAPA(f)—e) ®)

Since p(m'”) () < APa) (f) we can choose ¢ (> 0) in such a way that
o™ (g) +e < APA(f) —e. 9)

Therefore in view of (9) it follows from (8) that

log”!|f o g| (expl~1I1)
im
r—-+oo 1Og[p—1] |f| (expla—117)
Hence the first part of the theorem follows.

Further combining (6) of Case II and (7) we obtain for all sufficiently large positive numbers
of r that

o) (g) o)
log[p+m7q71] ‘f o) g’ <exp[n_” r) r 1 T eXp[m*qu] (rP<m’n><g>+€>
<

log[pfl] ’f‘ (exp [9—1] r) o p(APD(f)—e)

Therefore in view of (9) we get from above that
log[erm*qil] |f o g| <exp[n_” 1’)

lim
r—-+oo log[”_” f|(expla=17)

Thus the theorem follows. O

Theorem 2. Let f, g € A(K) be such that A"")(g) < APA(f) < pPA(f) < oo, where
p,q,m,n € IN. Then

(10)

=0.

- logl|fog| (explTr) |
(i) lm ] = =0 ifg>m
r=too logl? ™ |f|(expli~lr)

and
loglPtm=4=1 |f o g <exp[”_1] r)
(i) lim -
rteo loglP ™! | f|(expli-17)

=0 ifg<m.



252 Biswas T.

The proof of Theorem 2 is omitted as it can be carried out in the line of Theorem 1.

Theorem 3. Let f, ¢ € A(K) be such that 0 < AP (f) < pPD(f) < co and p"™")(g) < oo,
where p,q,m,n € IN. Then

log?t1 | £ o expl’—1 (m,n)
108 |f g’<p ><pm”(g)

NI < o>
(0) r—teo 1Og[;ﬁ |f|(expla=117) APA)(f) =1
and [ |
___log"" U fog| (expl"tr)
(i) Tim ( ) < P(R) ifg < m.

r=4o0 1Og[;ﬁ |f| (expla—117) ) (f)

Proof. In view of the definition A(P4)(f), we have for all sufficiently large positive numbers of
r that

log”! |f](expl™=1r) > <A(P/‘1)(f) _ g> log 7. (11)

Case L. If g > m, then from (3) and (11) we get for all sufficiently large positive numbers of
r that

logl"* ! [f o g| (expl~Ir)  (p(™(g) +¢)logr +1log (pP)(f) +e¢)
< .
log”! | fl(expli=tlr) (APA)(f) — &) logr
As ¢ (> 0) is arbitrary, it follows from above that

l—log[p+1] |f le) g| <exp[1’l*1] r) . p(m’n) (g)

im < .
r— oo 1Og[p] |f] (expla=117) APA)(f)

This proves the first part of the theorem.

Case II. If g < m then from (6) and (11) we obtain for all sufficiently large positive numbers
of r that

(m,n) O(l)
IOg[PﬂLm*‘ﬂ |f ogl (exp[n_” 1’) <P (8)+ 8) logr +log <1 + explm—1-2] (rP<m’”)(g)+£>>
< .
log!®! | f|(expla—Ur) (APA(f) —e) logr

As € (> 0) is arbitrary, it follows from above that

_loglt i fogl (explUr)  mm)
_ (expl" ) _po(g)
r—-+o0 1Og[P] |f] (expla—17) APA)(f)

Thus the second part of the theorem is established. O
Theorem 4. Let f, ¢ € A (K) be such that0 < APA)(f) < p(PD(f) < oo and A" (g) > 0,

where p,q,m,n € IN. Then for any positive integer I, we have

[Pl [n—1]
(1) limlog f ogllexp ) =oco ifg<mandq =1

F—y00 1Og[p+1] If] (exp[l] r)

iy tim 1087 1f ogl(expl" i)
Hoolog[p—q—lﬂ] If] (exp[l] r)

=00 ifg< m andq <lI;
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[p+m—g—1] [n—1]
(i) 1im %8 . foglexp™ 1) _ o ifg > mandq <1
r—co 1Og[P+ iy Fl (expllr)

and [pm—g1 1]
ptm—q— n—
(iv) lim log : f ogllexp ") =oo ifg>mandqg > 1.
r—reo logP U |£] (explll r)

Proof. Let us choose 0 < ¢ < min {A(P4)(f), AU"")(g)}. Now for all sufficiently large positive
numbers of ¥ we get from Lemma 1,

logl”! |f o g|(exp™ Ur) = (AP (£) =€) logl® |g| (exp["*ll r) : (12)

Further from the definition of (m, n)th lower order of ¢ we have for all sufficiently large
positive numbers of r that

log"![g] (expl"1r) > log """ (13)

Now the following two cases may arise.
Case I. Let ¢ < m. Then from (12) and (13) we obtain for all sufficiently large positive
numbers of r that

logm |f o g|(exp[n_” r) > (A(p'q)(f) —¢) exp[m_lﬂ log[m} 18] <exp[”_1] r) (14)

ie.,

logl?! |f o g|(expl™ U r) = (AP (f) —¢) explm—1 1Ogr(A(m’”>(g)*£)
Log”!|f o gl(expl" 1) > (APA)(f) — &) explr =01 1" ) =0), (15)

Case II. Let g > m. Then from (12) and (13) it follows for all sufficiently large positive
numbers of r that

log!?! £ o g|(exp™ 1 7) = (APD () — &) logl?~ ™ 1og r1""(&)=¢)

ie.,
logl? 71711 f o g (expl 1 ) > A" 9)-0), (16

Again from the definition of p(P%) ( f) we get for all sufficiently large positive numbers of
that

log?! |£] <expm r) < <p(M) (f) + 8) logl? expl!l 7. (17)

Now the following two cases may arise.
Case III. Let g > [. Then we have from (17) for all sufficiently large positive numbers of r
that

log! |f] (exp[l] r) < <p(w) (f) +€) logli~"1 7

i.e.,

loglP+1 | ] <exp[l] 1’) <logl~ "1y 4+ log <P(p'q)(f) + 5) : (18)

Case IV. Let g < I. Then we have from (17) for all sufficiently large positive numbers of r
that

log” [f] <exp[l] r) < <p(w) (f) + g> expl =7
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ie.,
logl? | f] <exp[l] r) < exp!™17Ur 4 log <P(p’q) (f) + 8)

i.e.,

log[P—Q"‘H‘l] |f] <expm r) <logr+ O(1). (19)

Now combining (15) of Case I and (18) of Case III it follows for all sufficiently large positive
numbers of r that

logl?! |f o g|(exp"~17) N (AP () — &) explm—a-1 T(M""”)(g)—s).
log" ™ If| (expllr)  —  1og"™ Uy +log (0P (f) +¢)

Since g < m, we get from the above that

. log |f ogl(exp )

This proves the first part of the theorem.
Again in view of (15) of Case I and (19) of Case IV we have for all sufficiently large positive
numbers of r that

log!?! £ o g|(expl"~1r) - (AP () — &) explm=a-11 y (A" (g) =)

20
10g[p*q+l+1] f] (expl7) logr+ O(1) 20)

When g < m and q < [ then we get from (20) that

log” |f o g|(expl*~11r) _
r—r+oo]oglP—a+HI] | ] (expll 7)

This establishes the second part of the theorem.
Now in view of (16) of Case II and (18) of Case III we get for all sufficiently large positive
numbers of r that
log[p+m—q—1} Ifo g|(exp[”*1] r) N P(A) (g) )
loglP 1| £] (explll r) loglt" 7 + log (p(PA)(f) +)

i.e.,
[p+m—q—1] [n—1]
i 108" ogllewl ) _
r—-toco logl" 1 [£| (explll )
from which the third part of the theorem follows.
Again from (16) of Case II and (19) of Case IV we have for all sufficiently large positive
numbers of r that

log" "1 | o g(expl M r) _ rM"8)-
loglP~1++1 | 7| (explr)  — logr+ O(1)

i.e.,

i o8P | Fogl(expl )
r—-+oo 1Og[p—q+l+1} 1f| (expllr) N

This proves the fourth part of the theorem. Thus the theorem follows. O
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Theorem 5. Let f, g, h, k € A (K) be such that 0 < p(*?)(h) < oo, APD(f) >0, A" (g) >0
and p(C'd) (k) < A(m'”)(g), wherea,b,c,d, p,q,m,n € N. Then

) tim 108 L osl(exp 1r)
r=teo ogll o k| (r)

=o0 ifb>candg <m,

[p] [n-1]
(i)  lim log ” |f o gl(exp r) =oco ifb<candq<m,

r—+oo log[HC_b_l] |h okl (r)

logP =171 £ o o] (exp" 1 r)

(iii)  lim =oco ifb>candg>m,
r—+oo log[a] |hok| ()
[p+m—gq—1] [n—1]
and (iv) lim log f ogllexp r) =oco ifb<candg > m.

oo logl™ == h o k| (r)
Proof. In view of Lemma 1 we obtain for all sufficiently large positive numbers of r that

logl") 110 k| (1) < (")) + ) 10g" [K| (). (21)

Now from the definition of (c,d)th order of k we get for arbitrary positive ¢ and for all
sufficiently large positive numbers of r that

log! |k| (r) < <p(c'd)(k) + 8) log!l r

i.e.,

log! K| (r) < (0! (k) +¢) log (22)

ie.,
logl U (k| (r) < r(P“0)Fe), (23)

Now the following cases may arise.
Case I. Let b > c. Then we have from (21) for all sufficiently large positive numbers of r
that
logl | o k| (r) < <p(“'b)(h) + e) log“ W |k| (r) . (24)

So from (23) and (24), it follows for all sufficiently large positive numbers of r that
logl |hok| (r) < <p(“’b) (h) + g) Pl (k) +e), (25)
CaseIl. Let b < c. Then we get from (21) for all sufficiently large positive numbers of r that
logl | o k| (r) < <p(“'b)(h) + 8) explogll k| (r). (26)
Now from (22) and (26) we obtain for all sufficiently large positive numbers of r that
log[”] lhok|(r) < (p(”'b)(h) + e) exp[cfb] log (PP (k) +e)

i.e.,
logl ™~ [l o k| (r) < r(P“®F) 4 O(1). 27)
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Since p(¢%) (k) < A1) (g) we can choose ¢ (> 0) in such a way that
pl (k) +e < Amm)(g) —e. (28)

Now combining (25) of Case I, (15) and in view of (28) it follows for all sufficiently large
positive numbers of r that

logl”) |f o g|(expl"~17) - (AP () — &) explm=1-1 (A" (g)—¢)
log okl (r) (0(@b) (1) + €) r(P ) +e)

ie.,
[p] [n—1]
L 108" If ogl(exp™™Tr) ,

r—r+oo log[“] |hok| ()

from which the first part of the theorem follows.
Again combining (27) of Case II, (15) and in view of (28) we obtain for all sufficiently large
positive numbers of r that

(AP (£) — g) explm—a-1] F(Am)(g)—e)
e D0+e) 1 o(1)

log”!|f o g|(exp" "I 1)
logl™ == ho k| (r)

v

ie.,

[r] [n—1]
o JogPl [Foglexpltr)

r—r+oo log[‘”c—b_l] |hok| ()

This establishes the second part of the theorem.
Further in view of (25) of Case I and (16) we get for all sufficiently large positive numbers
of r that o
[p+m—q-1] (n—1] (A (g)—e)
log [fogllexp™ 1) r —
logl |h o k| (r) (0@h) (k) + ¢) r(p V(01 4e)

(29)

So from (28) and (29) we obtain that

lim 108" |fogl(expl )

r—+oo logl® |h o k| (r)

from which the third part of the theorem follows.
Again combining (27) of Case Il and (16) it follows for all sufficiently large positive numbers
of r that
tog "1 U fogl(expl Nr) 90
log[a+c—b—1] |h ok| (1,) r(p(C,d)(k)—H;) 4 O(l)

(30)

Now in view of (28) we obtain from (30) that

[p+m—q—1] [n—1]
lim 08 fogl(exp™™Tr)
r—+00 log[‘”rc*b*l] |h o k| (7’)

This proves the fourth part of the theorem. Thus the theorem follows. O
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Theorem 6. Let f, g € A(K) be such that p(*?)(f o g) < oo and A("")(g) > 0, where
a,b,m,n € N. Then
2
, 10g" [f o gl(expl*~17)]
o] @ =
r=relog™ T gl (expllr) - log™ |g] (expl 1)

Proof. For any & > 0 we have logl? | f o g|(expl~17) < <p(“’b) (fog)+ e) log!® explt=17, ie.,
logl £ o g|(expl®~Ur) < <P(a’b) (fog)+ 3) logr. (31)
Again we obtain that log!"! |g|(exp"~1r) > ()\(m'”)(g) — s) log!" expl'=—17, ie.,
logl"!|g|(exp117) > (A1) (g) ) logr. (32)
Similarly we have log!™! |g|(exp[ r) > ()\(m'”)(g) — s) logl" expl" 7, i.e.,

log" ! Ig|(expl" r) > exp [ (A" (g) &) r] . (33)

From (31) and (32) we have for all sufficiently large positive numbers of r that

log[“] |f o gl(explt=17) < (P(H'b)(f 0g)+ 5) log 7
log™ gl(explT7)  (AI() ) logr

As e (> 0) is arbitrary we obtain from the above that

— logl! [p-1] (ah)
fim 108" If ogl(exp® Tr) _ p : (J;og) _ (34)

Again from (31) and (33) we get for all sufficiently large positive numbers of r that

log[“] |f o gl(explt=17) < <P(H'b)(f 0g)+ 5) log 7
log[m_” gl(explr) T exp [(Almm)(g) —e)r]

Since e (> 0) is arbitrary it follows from the above that

[a] (b—1]
o 08" [fogllexp® Ur) (35)
r=teo Jogl™ 1l |g|(expl™l 7)
Thus the theorem follows from (34) and (35). O
Theorem 7. Let f, ¢ € A (K) be such that0 < APA(f) < pPA(f) < coand 0 < A" (g) <

oM (g) < oo, where p,q,m,n € N. Then

APO(f) A (g) o dogPFogl (1) _ oy #PP() A (g) |
pPA)(f) SrL—Ho log! | £] (r) S "8), APA)(f) ’
may oy AP 0™ (g) | _ e logl [fog| (1) _ pPD(f) - p" ) (g)

max{)‘( (®), o) (f) }Srgrfoo log!! |£| (r) = APA)(f)

(i)

4

wheng =m =n,
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o AP A () o logll|fog| (r) gy PPO) A ()]

o = elogh 7] (expl 117 gmm{p R

A (o) APV "Gy = logl|fogl(r)  _ pP(f) - p"(g)
{A (8), (P (f) } = rL+mlog[P] |f| (expla—nl7) = APA)(f) ’

wheng =m > or < n,

AP ><f> i 108" |f o8] (1) \mm{ (f}

) pPa(f) r—>+oolog PL1£] (explm—n] A (f)
L AP } < T log” !fog\( ) (),
pT(f) | = = Fologhl |f] (expln—rlr) — ACA(f)
when g > m,
. A(m'”)(g) ) 1Og[P+m*‘ﬂ |fog|(r) ‘ A(mn) (g) p(m,n) (g)
W e S AR o) AR pea)

< o d A() o) | = Tog T [fogl (1) _ p™ M (g)
AP (F)" pP)(f) r—-+oco log[p] 1] (r) — A ()’

whenm > q =n,

(m,n) [p+m—q] Amn) (m,n)
A) o fim 108 Fo8l () ¢ in (8) p""(8)
P(p’q) (f) r—+owlog (¥l |f] (exp[q n] r)

(v) AP (F) " pPD)(f)

Al (g) p(mm) (g) log"*t" = |fog| (r) _ p™"(g)
= max{mm( ) ora)(f) } = VET“log W 1f] (expli—"lr) — AWAI(f)"

whenm > q > n, and

(m,n) log[p—i_m_(ﬂ |f0g| exp[”"ﬂr (m,n) (m,n)
Mg (exp ) [a(g) g

(vi) lim AP (F)" pPD)(f)

oPD(f) ~ 1 Se log[p] If] (exp[q—n] )
(m,n) (m,n) . log[’%m*‘” |f og] exp[”*‘ﬂ r
- max{?» (8) p™"(g) } < fm ( )

AP (F)” pPa(f) logP || (expl—nl7)

2 o (g)
= Alpa) (f) !

whenm > q < n.

Proof. From the definitions of (p, g)th order and (p, q)th lower order of f, we have for all suffi-
ciently large positive numbers of r that

log?|f| < (o")(f) +¢)logr, (36)

logl!lf| > (APD(f) —¢) logllr (37)
and also for a sequence of positive numbers of r tending to infinity we get that

logl’l f| > (o9 (f) —¢)logllr, (38)

logl!l £ < (AP(f)+¢)logr. (39)
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Now in view of Lemma 1, we have for all sufficiently large positive numbers of r that

logl”!|f 0| (r) < (pP(f) +¢) 10g Ig] (r) (40)

and also we get for a sequence of positive numbers of r tending to infinity that

log[ﬂ Ifogl(r) < <A(P,Q)(f) + g) 1og[fi] g] (7). (41)

Similarly, in view of Lemma 1, it follows for all sufficiently large positive numbers of r that

logl”!|f og| (r) = (AP (f) — &) log!? |g] (1) ()

and also we obtain for a sequence of positive numbers of r tending to infinity that

log”! |f og| (r) = (0™ (f) —¢) log [g] (r). (43)

Now the following two cases may arise.
Case I. Let ¢ = m = n. Then we have from (40) for all sufficiently large positive numbers
of r that

logl? [f o g| (r) < <p(w7) (f) + g> <p(mr”)(g) +g> log"r, (44)
and for a sequence of positive numbers of r tending to infinity that
logl? [fog| (r) < <p(m)(f) + 8) (A(m/”)(g) + g) log!™ r. (45)

Also we obtain from (41) for a sequence of positive numbers of r tending to infinity that

log? [f o gl (r) < (APD(f) +¢) (") (g) +¢) log" (46)

Further it follows from (42) for all sufficiently large positive numbers of r that

logl? [fog| (r) > (A(M)(f) _ 8) (A(m/”)(g) — g) logl" 7, (47)

and for a sequence of positive numbers of r tending to infinity that

log" £ ogl(r) = (APD(f) —¢) (") (g) — &) log" (49)

Moreover, we obtain from (43) for a sequence of positive numbers of r tending to infinity
that

logl” |f o g| () > <p(p,q) (f) — 5> <A(m,n)(g) — 5) log™ . (49)

Therefore from (37) and (44), we have for all sufficiently large positive numbers of r that

log [f og| (r) _ (00 (f) +e) () () +¢) logl"l r
log"”! | £] (r) (AP (f) —€) logl r
(pPD () +¢) (0" (g) +¢) logl")r

(AP (f) — &) log
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ie.,

—— loglP|fogl(r) _ pPP(f)-plmn(g)
lim < .

Similarly from (38) and (44), for a sequence of positive numbers of r tending to infinity it
follows that

(50)

log? |fogl(r) _ (600 +e) (pm(g) +¢) log"
log” [f| (r) (0P (f) —€) log 7
(pPP(f) +¢) (0 (g) +¢) logl"
- (0P (f) — ¢) logl r ’
m log[p] |fog| (7’) < p(m,n)(g)‘ (51)

i
=0 log ! |f] (1)
Also from (37) and (45), we obtain for a sequence of positive numbers of r tending to infinity
that

log?” |f ogl (r) _ p!P(f) - A" (g)
r—+eo logl [£] (r) AP (f) ’

Further from (37) and (46), for a sequence of positive numbers of r tending to infinity we
have that

(52)

log" |f ol (r) _ (AP(5) +¢) (p"(g) + ¢) Tog" 7
log”! [£] (r) ( P)(f) — )1og Al
_ < ) <P —I—e) logmr
( A(f) - )10g[”7 '
ool? £ o ol (r
m 1 gp |f g|( ) <p(m,n)(g)‘ (53)

e logl|f] (1)
Thus from (51), (52) and (53) it follows that

1og” [fogl(r) _ . | oy PPD(F) - A0 (g)
e logl|f] (1) \mm{p S T 4

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

log? [ ogl (1) (A7) —¢) (A"(g) —¢) tog"r
log" £l (r) (PP (f) +¢) logh 7

7
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ie.,

[p] (pa)( £y . A(mn)
i 087 [fogl (1) ACO(f) A0 (g) -
Similarly, from (39) and (47) we obtain that

- (1]
Tim log ’fog‘ (T) > A(m,n)(g) (56)
e togIf] (1)

Also from (36) and (48), for a sequence of positive numbers of  tending to infinity we obtain
that

log[p] |fogl|(r) S <)‘(p'q)(f) - 5) <P(m’n) () — 8) log["] r

log” |£](r) (0P (f) + ¢) logltl 7
ie.,
i 108" f o8l (r) o APD(F) -p ) (g) &)
=+ logl! | £ () pP4)(f)

and from (36) and (49), for a sequence of positive numbers of r tending to infinity we have that

log |fogl () (") —e) (A7) (g) — ) Togl" »
log” |f](r) (0P)(f) + ) logll 7

i.e.,
_ [p]
lim log ’f °© g‘ (T) > A(m,n)(g) (58)
e logh|f] (1)
Thus from (56), (57) and (58) it follows that

— logl [fog] () () oy AP - (g)
1 AV , . 59
T T (T >

Therefore the first part of the theorem follows from (50), (54), (55) and (59).
Case II. Let g = mand m > n or n < m. Now from (37) and (44), for all sufficiently large
positive numbers of r we have that

log[p] |fogl|(r) < <P(p'q)(f) + 8) (P(m'”)(g) + 8) logw r
logl?! | f] (expla="lr) (AP (f) —¢) log!" r

ie.,
. [Pl (Pa)(F) . plmm)
m _og” Ifogl(r)  p"Pf) - p™"(g) 60)
H+oo10g[;7] f| (expla—nl7) APA)(f)

Similarly, from (38) and (44) for a sequence of positive numbers of r tending to infinity it
follows that

log[p] fogl (7) 3 <p(ﬁﬂ)(f) 4 g) <p(m,n)(g> + g) 1Og[n} r
log!"! [£] (expl1—17) (0P (f) —€) log" r
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ie.,

(¥l
lim log ’f Og‘ (1’) < (m,n)(g) (61)
r—>+oolog[p] |f] (exp[q_”] r)
Also from (37) and (45), for a sequence of positive numbers of r tending to infinity we obtain
that

togl" £ ogl (1) (P70 +e) (A"(g) + ¢) log"r
log!?! [£] (expla=lr) (AP (f) —¢) log™ r

i.e.,

[Pl (Pa)(£) . A(mm)
lim l[og fosl(n) ¢ (J;) AT(E) 62)
r=+oolog!” |f] (expli=l) APD(f)

and from (37) and (46), for a sequence of positive numbers of r tending to infinity we have that

log fogl(r) _ (APD(f) +e) () (g) +¢) ogl" r
logl!|£] (expli—l7) (AP (f) —e) log" 7

i.e.,

[p]
lim 198 fogl(n) () (g). (63)
r=toologl! |f] (expli—nlr)

Thus from (61), (62) and (63) it follows that

m log[rﬂ] Ifogl(r) < min 4 p1) (g) pPA () . Almm) (g) . (64)
H—+oo10g[p] |f] (expla—r) ’ APA)(f)

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

o [fogl(n) . (MP0() —e) (A"(g) —e) togr

logl!|f] (expli—lr) (0PN (f) +¢) log" 1
ie., .
p (Pa)(£) . \(mmn)
i Bl F 08I () L AP A g) )
r—>+oologm |f| (exp[qfn] r) pPA)(f)

Similarly, from (39) and (47) for a sequence of positive numbers of r tending to infinity it
follows that

log! £ o g| (r) S <A(p,q) (f) - 5) <)\(m’”)(g) - 8) logl"
logl”![£] (expla=rlr) (AP (f) + ¢) log 7

i.e.,
. [p]
lim log ’f © g‘ (1’) > A(m,n) (g) (66)
~Tologh ] (expli—1T7)
Also from (36) and (48), for a sequence of positive numbers of r tending to infinity we obtain
that

log[p] fogl(7) . <;\(m)(f) — g) <p(m,n)(g) — g) 1Og[n} r
log!”!|f] (expl1=lr) (PP (f) +¢) log " r
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ie.,

- [p] (P (£) . plmm)
m 1[0;5 fogl(n) A (J(‘) L &) )
~eloghl 1] (explilr) = p0()
Similarly from (36) and (49), we get that

_ [l
lim log ’f °© g‘ (1’) > A(m,n) (g> (68)

Thus from (66), (67) and (68) it follows that
- [p] () (£) . plmn)
lim 10g ‘f °© g’ (1’) > max )\(m,n) (g), A (f) P (g) ) (69)
= logl?![f] (expli=7l ) p(P)(f)

Thus the second part of the theorem follows from (60), (64), (65) and (69).
Case III. Let g > m. Then from (40) for all sufficiently large positive numbers of r we have

log? £ o8l (r) < (pP(f) +¢) 1og " " [ (") (g) +¢) log!" r|

ie.,

logl"! M (r,f o g) < <p(p’q)(f) + e) logl="*"y + 0O(1) (70)
and for a sequence of positive numbers of r tending to infinity that
logl?! £ 0 gl (r) < (pP)(f) +¢) 1og" " " r + O(1). 71)

Also for the same reasoning, from (41) for a sequence of positive numbers of r tending to
infinity we obtain that

log?!|f o g] (r) < (AP (f) +¢) logh ™7 +-O(1). 72
Further from (42), for all sufficiently large positive numbers of r it follows that
logl [fog|(r) > ( AP (f) — 8) logl=m+1 1 1 0(1), (73)
and for a sequence of positive numbers of r tending to infinity that
logl?! |fog| (r) > (A(W)(f) - s) logl="™*+ r + 0(1). (74)

Moreover from (43) for a sequence of positive numbers of r tending to infinity we obtain
that

logl?! £ og| (r) = (P9 (f) —¢) log ™" r - O(1). (75)

Now from (37) and (70), for all sufficiently large positive numbers of r we have that

l0g” [fogl () _ (p"() +e) logh "I+ 01
log?! |£] (explm=lr) (AlPA)(f) — ) logl1="m+1l

ie.,

i log”fosl(n  _ p"(f) 76
r=+ologltl £ (explm=nlr) ~ APA(f)
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Similarly, from (38) and (70) for a sequence of positive numbers of r tending to infinity it
follows that : ]
v PP (f) +¢)log" " r 4+ 0(1)
logh Ifogl () _ )log

logl! |f] (explm=lr) ~  (pP4)(f) — &) loght—" "]

ie.,
. [p]
m I[O}g .f o8l (r) <1 77
rﬁ+oolog p |f| (exp[m—n} 1’)

Also from (37) and (71) for a sequence of positive numbers of r tending to infinity we obtain

log" [fogl(r) _ (P(f) +€)og" "+ O
log[p] £ (exp[m*”] r) ()\(W) (f) —e) log[q*"””] r

ie.,

im log[p] M (T’,f ° g) < p(p/q) (f) (78)
r—+eologl?l M (explm=nly, f) ~ APA(f)’

and from (37) and (72) for a sequence of positive numbers of r tending to infinity also we have

log”! |f o g| (r) _ (A(W)(f) + s) logli ="+ r 4+ 0(1)
logl! |f] (explm=17) h (APA) (f) — ) logla ="+l

i.e.,

[r]
lim log”" M (r,fog)
r—+eologl?! M (expl—7lr, f)

Thus from (77), (78) and (79) it follows that

logh |[fogl(r) o[y p"0(A) | (80)
r—+eologl?! £ (explm—nlr) " Alpa)(f)

<1 (79)

Further from (36) and (73), for all sufficiently large positive numbers of  we have that

logl? £ o g () y <A(Pfq) (f) — g) loglt="+7 r + O(1)
1Og[n] If] (exp[mfn] r) = (p(p,q) (f) +e) 1Og[qu+n] r

ie.,
[p] (pa)
i Lo8" Ifogl () AP -
Hmlogm |£| (explm=17) o) (f)
Similarly, from (39) and (73) for a sequence of positive numbers of r tending to infinity it
follows that

logl”!|fog| (r) N <)»(V"7) (f) — e) logli ="+ 1 0O(1)
logP! || (explm=mlr) — (AP (f) + &) loglt =+l ¢

ie.,

= _logW|fogl() 62)
rﬁ+oolog[l’] ’f‘ (exp[m—n] 1’) -
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Also from (36) and (74), for a sequence of positive numbers of r tending to infinity we obtain

log|fogl(r) (A(p”’) (f) - 8) logl™=" "y 4 O(1)
log?! |£] (explm=rlr) — (0P (f) +e) logl1=m+1l ¢

ie.,
i log?|fogl(n) _ API()
7—>+0010g[p} ’f‘ (exp[m*n] r) - p(p'q) (f)

and from (36) and (75) for a sequence of positive numbers of r tending to infinity also we have

, (83)

logl! |f o g| (r) S <P(p'q)(f) - 5) loglt=™ "y +0(1)
log?! [£] (explm=mlr) — (p(PA)(f) +e) logli=m+n1
ie.,

- [P]
i og fegl) o (84)

Thus from (82), (83) and (84) it follows that

r—>+oolog[p] f| (explm=rlr) ~ " P (f)

Hence the third part of the theorem follows from (76), (80), (65) and (85).
Case IV. Let m > q = n. Then from (40) for all sufficiently large positive numbers of r we
have

logl "~ f o g| (r) < (p!"") () +¢) log" r +O(1), (86)
and for a sequence of positive numbers of r tending to infinity that
logl" "1l |f o g| () < (A")(g) +¢) logl" r + O(1). (87)
Also from (41) for a sequence of positive numbers of r tending to infinity we obtain that
logl” "= |f o g (r) < (") (g) +¢) logl" r + O(1). (88)
Further, from (42) for all sufficiently large positive numbers of r it follows that
logl"* "1l |f o g| (1) > (A" (g) —¢) logl" r + O(1), (89)
and for a sequence of positive numbers of r tending to infinity that
logl”* "~ |f o g| (r) > (") () — &) log" r + O(1). (90)

Moreover, from (43) for a sequence of positive numbers of r tending to infinity we obtain
that

log" "1l |f o g| (r) > (A" () — &) logll r + O(1). (1)
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Therefore from (37) and (86), for all sufficiently large positive numbers of r we have that

log " fog](r) _ (0" (8) +) log" r+0(1)  (p"")(g) +¢) logr+ 0(1)

g [fl(r)  (APA(f) —e) loglTr (AP (f) — ) log!?r
i.e.,

— loglPtm—dl (mn)
i log fogl(r) ( p™(8) (92)
r—4o0 log[p] |f| (r) Alpa) (f)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it
follows that

1Og[;7+m—q} If ogl (r) _ (p(’”'") () + e) 1Og[n} r+ O(1) B (p(’”f") () + e) logm r+0(1)
log? [fl(r) (pWA(f) —e)logl!r (0P (f) — €) logl? r

ie.,

[p+m—q] (m,n)
lim 198 fogl(r) o p™(3) 93)
Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

loglP*tm=1l | f o g| (r) _ (A(m,n) (g) + 8) log" r +0(1) (A(m'”) () + e) logl! r +0(1)

g |f(r)  ~ (APN(f) ) logllr (APD(f) — ) log!" r

i.e.,

[p+m—q] (mn)
lim 198 fosl(r) o A™M(s) (94)
roteo logl! |f] (r) APA)(f)

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log 7o g](r) _ (P (8) +)log" r+0(1)  (p"")(g) +¢) loglr+ O(1)

gh|fl(r)  ~  (APD(f) —e)logr (AP (f) — ) logl" r

i.e.,

im 108" "M fogl(r) _ p"(g) ©5)
roteo logl?! [f] () APA)(f)
Thus from (93), (94) and (95) it follows that

g fog(r) _ [ (g) A(g) pm(g)
B TG A ) S ) Aw () AE () [ (%)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

logl" 1 |f o | (r) _ (A0 (g) ¢ ) logl r+0(1) (A1) (g) — &) loglr 4 O(1)

log? f[(r)  —  (pPI(f) +¢)logr (PP (f) +¢) log r

i.e.,

[p+m—q] (m,n)
lim 108 fogl(r) o ATM(g) @7)
r—+o0  logl?! £ (r) (P (f)
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Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it
follows that

log" ™"~ |fog| (1) <)\(’”'”)(g) —e) logl" r +0(1) ) (Mm/n)(g) —e) logl r + O(1)
log”! | f] (r) B (AP (f) +¢) logl®l r (AlPA)(f) +e) logl®l r

ie.,

- [p+m—q]
e logl | og] (1)  Ag (m,m)
r— oo 10g[17] If| (r) APA)(f)

Also from(36) and (90) for a sequence of positive numbers of r tending to infinity we obtain

(98)

log"* "~ |f o g (r) <P(’”'”)(g) —e) log!" r + O(1) <p(m'”)(g) —e) loglt r +0(1)

log?” [fI(r)  —  (oPD(f) +¢) log!r (0P (f) +€) log r
ie., [ }
. p+m—q (mn)
— log fogl(r) 5 p(8) (99)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

logl" 1 |f o | (r) _ (Am(g) —¢) log" r+0(1)  (A)(g) — &) logltr + O(1)

logl"! |1 (r) (0P(f) +e)logllr (o) + ) log r
i.e., [ |
. p+m—q (mmn)
T 108 fogl(r) S AT(8) (100)
r=teo Jogll |£] () pPAD(f)
Thus from (98), (99) and (100) it follows that
__ loglPtm—dl (m,n) (m,n) (m,n)
— log Fo81(1) o pax d A8 pM(g) A(S) | (101)
r=+eo ogl!l|£] () AP (F)" o) (£)" p(PA)(f)

Therefore the fourth part of the theorem follows from (92), (96), (98) and (101).
Case V. Let m > q > n. Currently from (37) and (86), we have for all sufficiently large
positive numbers of r that

1Og[P+m—q] Ifogl(r) < <P(m’n)(8) + 8) log[”] r+0(1)
logl”! | f| (explr—l 7) (AP () —¢) logl" r

ie.,
. [p+m—q] (m,n)
m 108 fogl(r) . p™(Q) (102)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it
follows that

log?*" 4|7 o g|(r) _ (0 (8) +¢) 10g" 7+ 0(1)
log"! [£] (expli—17) (0P (f) —€) log" r
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ie.,

[p+m—q] (mn)
lim 198 fogl(r) ™" (8) (103)
r_>+0010g[m If] (expla—7l7) oPAD(f)
Also from (37) and (87), for a sequence of positive numbers of r tending to infinity we obtain
that

log" "~ |[fog| (r) _ (A" (g) +¢) log")r + O(1)
log”! || (expla—lr) h (AP (f) — &) log"

ie.,

[p+m—q] (m,n)
i 1087 ol () _ A g)
r—>+oolog[p] |f] (exp[q—”] 1’) A(pa) (f)

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

(104)

log " fog| (1) _ (p"(3) +¢) log™" r+0(1)
logl”! | £| (explr—l 7) (AP () —¢) logl" r

ie.,
[p+m—q) (m,m)
i log[ fosl(r) P( 8) (105)
r—+eologl?! | f]| (expli=mlr) ~ A PA)(f)

Thus from (103), (104) and (105) it follows that

im 108" fogl(n) o [e(R) A(g) p(g) | (106)
r—+oologl?! | f] (expli—nl ) P (F) " AP (F)" APa)(f)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

1087 | og] (1)  (A""(&) ~¢) log" r +O(1)
logl! |f] (expla=nlr) — (0 (f) +¢) log!" 7

i.e.,

[p+m—q] (m,n)
lim log[ fogl(r) o A( &)
r=rteologl | f] (explt—rlr) — pA(f)

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it
follows that

(107)

log" " |fog| (r) (A" (g) — ¢) log" r + 0(1)
loglP | (expli=nlr) — (AP (f) +€) log"

ie.,

= g |fog| (r) _ A™(g)
H+oo10g[m If] (expla—nlr) — ApA) (f)

Also from (36) and (90), for a sequence of positive numbers of  tending to infinity we obtain

(108)

g [fogl () (¢")(5) —¢) log?r+ O(1)
logl! |f| (expla=nlr) — (0 (f) +¢) log!"
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i.e.,
= log"" W |fog| (1) L p"(g) (109)
r%+0010g[p} ’f‘ (exp[q_n] 1") P(p’q) (f)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

log"* " |fog| (r) _ (A1) (g) — &) 10g!" 7+ O(1)
log!?! [£] (expli—l7) ~ (0P (f) +¢) logl r
ie.,
- [p+m—q] (m,n)
108 fogl(r) o A™(g)
r—>+oolog[17] £ (exp[q—n] r) pPA ()
Thus from (98), (99), and (100) it follows that

_ [p+m—q] (mn) (m,n) (mn)
T 108 Fo81() o ax d A08) p™(8) AT(R) (1)
r—>+oolog[m £ (exp[qfn] ) AP (F)" o) (F)" p(PA)(f)

Thus the fifth part of the theorem follows from (102), (106), (107) and (111).
Case VI. Let m > g < n. At this instant case from (37) and (86) for all sufficiently large
positive numbers of ¥ we have that

(110)

log[p'i'm_‘ﬂ |f o g| <exp["7’ﬂ r) . <p(m/n) (g) —+ 8) log[q] v+ O(l)
log!?! | f] (r) = (AP (f) —e) logl r

i.e.,

L log[’ﬁm*q] |f ogl <exp[”_‘7] r) (m,n)( )

lim < P 3 .
r—-+oo log! | £] (r) APA)(f)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it

follows that

(112)

log[ijm*’ﬂ ‘f o g’ <exp[”_‘ﬂ r) _ (p(m/n) (g) + 8) log[q] v+ O(l)
log[p] If] (r) = (p(M) (f) —e) log[q] T

ie.,
logl" "=l |f o g| (expl"=4)+ (m,n)
lim < ) <P 8)
5100 1Og[ﬁ} 1] (r) p(w) (f)

Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

(113)

loglPm=4l |f o g (exp[n—q] r) <A(mrn) () + g) logl” r +0(1)
<
log!”! |£] (r) (AP (f) — &) logl r

ie.,
log”*" 1 |f o g| (expl"=1r (m,n)
lim < ) < A (8)

< g 114
s too 1Og[p] 1] (7) Apa)(F)” (114)
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and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log[ijm*’ﬂ ‘f o g’ <exp[n_‘ﬂ r) (p(m/n) (g) + 8) log[q] r+ O(l)
<

log”" |f] (r) T (APA(f) —e) loglr
i.e.,
log"* "1 fog| (exp"=r)  mn)
lim ( ) <P 8) (115)
ro oo log!”! | f] (r) APA)(f)
Thus from (113), (114) and (115) it follows that
log? "~ |f o g| (expl*=1 7 () () A(mm) () plmm)
. ; ( )gmm{p( g A7) o )(g)}_ e
rs oo log!! [£] (1) P PA(f) " AP (f) " AP (f)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

loglP+m=1 | o g <exp[nfq] r) <A(m/n) (g) — e) logllr +0(1)
>

logl”! £ (r) T (A (f) +¢) logll 7
ie.,
log" ™"~ |f o g| (expl"=r)  y(mm
. ( ). ) -
r—reo log”) | £] () pP(f)

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it
follows that

loglr 1=l | o ¢ <exp[n—q} r)
log! [£] (r)

(Mmm (g) — s) logl r + O(1)

>

i.e.,
_ loglPtmmal| £ o gf (expln—ily (m,n)
- (1) Ao

r—+oo 1Ogm 1] (r) — APD(f)

Also from (36) and (90), for a sequence of positive numbers of r tending to infinity we obtain

(118)

loglPm=4l £ o g (exp[n—q] r) N <p(mfn) (g) — g) logl!l r + O(1)
log[P] If] (r) - (p(w) (f) +¢) log[‘ﬂ r

i.e.,
logl? ™™= | f o g| (expl®= ¢ (m,n)
m ( ) S pm(g)

r——+oo log[l’] ’f‘ (1’) - p(P/Q)(f) !

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

(119)

loglP =4 | o g (exp[nﬂﬂ r) <;\(m/n) (g) — g) logl r +0(1)
>
log” || (r) (pP(f) +¢) log T r
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ie.,
_ logl" il fog] (exptlr) joum)
Tim ( ) > AM(S) (120)
r—-+oo logl?! [£] (r) pPAD(f)
Thus from (98), (99) and (100) it follows that
_logl" ™| fog] (expl ) AU (g) o) () AL (g)
lim o > max ) T N . (121)
e log”! If] () ATA(F) " pPA(f) " pPAI(f
Hence the sixth part of the theorem follows from (112), (116), (118) and (121). 0
Theorem 8. Let f, ¢ € A(K) be such that 0 < APA(f) < p(P0)(f) < coand 0 < A" (g) <

oM (g) < oo, where p,q,m,n € N. Then

(i) AP (F) - Amm) (o) < lim 1og[p] |fogl(r) y min{p(p’q)(f), AP () ,p(m,n)(g)};

pmM(g) T Ste logl g (r) Alm)(g)
(Pa)(£) . \(mn) . (7] () ( F) . A(m,n)
max 4 A (), 20U AP | g log P fogl () pPS) - (g)
p(m,n)(g) F—+oo log[m] 5| (r) A(m,n)(g)

wheng = m,

4

(pa) log"![f o g| (expli—)r (pa) () (p.4)
@ A, []( ) i o) P A
P M(g) T roteo log™ |g| (7) plmm)(g)” Almm) (g)” Almm)(g)

(p) (p4) (p) ~ loglP|fogl (expli—mly
mm{p () Ae9(p) A U)}<1m1 ( )
pmm(g)" pmm ()" Al (g)

ke log gl (1)
when g > m, and

" (f)
Almm) (g)”

IN

(m,n) [p+m—q] _ [p+m—q] (m,n)
m,n g

o (g) = e log™ |g] (r) Tt logh g (r)
whenm > q.

We omit the proof of Theorem 8 as it can easily be deduced in the line of Theorem 7.
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Bicac T. Oyirnka opicHmoeanoeo pocmy cKaadeHux p-a0unHux yisux QyHxyiil, wo aiexcums 6io (p, q)-eo
nopadxy // Kapmarceki marem. my6a. — 2018. — T.10, Ne2. — C. 248-272.

Hexait K — moBHe yAbTpaMeTpuuHe aArebpaiuso samxHyTe moae, A (K) — K-aarebpa miamx
dyuxuin Ha K. Arst aoBiabHOI p-aanusoi minoi dpyskuii f € A(K) ir > 0 mosmaunmo |f] (r)
ancao sup {|f (x) | : |x| =}, ae || () € myapTunaikaTusHO© HOpMOIO Ha A (K). AAsT AOBIABHMX

Lf1(r)
: : o : 81(r) :
PIBHSIABPHMM POCTOM f BIAHOCHO ¢ B CEHCl1 1XHIX MYABTUIIAIKATMBHIMX HOPM. AHanOTiUYHO A0 TOroO,

SIK Ile pOOASITh B KOMIIAEKCHOMY aHaAi3i, B 1Iilf CTaTTi MM BUM3HAYAaEMO IOHSTTS (P, q)-TO HOpSIAKy

log!”! |](r) If | ()
log

ABox miamx ¢pyukuint f € A(K) ta ¢ € A (K) criBBiaHOLIIEHHS IIpM r — ©O Ha3MBAIOTh IIO-

(BiATIOBIAHO (P, §)-TO HVXXHBOTO TIOPSAKY) pocTy HacTymEmMM uieoM p(P4) (f) = hm sup

i ATION (P4) (F) = log"|£|(r) ‘f |(r)
(BiamoiazO A (f) = 11m Jg\of og

AesIKi BAACTMBOCTI pOCTy CKAQACHIMX P-aAMYHVX LIAVMX (PYHKIIN Ha OCHOBI IXHBOTO (p, )-TO IOPSIA-
Ky i (p, §)-TO HVDKHBOTO HIOPSIAKY.

) Ae p i g ABa AOBlAle HaTypaAle uricra. Mu AOCAIA)KYGMO

Koouosi cosa i ppasu: p-apydHa niaa dpyHKuist, pict, (p, 4)-1 DOpSIAOK, (p, q)-ii HVDKHI TOpsI-
AOK, KOMIIO3MIIisI.



