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(p, q)TH ORDER ORIENTED GROWTH MEASUREMENT OF COMPOSITE p-ADIC

ENTIRE FUNCTIONS

Let K be a complete ultrametric algebraically closed field and let A (K) be the K-algebra of

entire functions on K. For any p-adic entire function f ∈ A (K) and r > 0, we denote by | f | (r)

the number sup {| f (x) | : |x| = r}, where |·| (r) is a multiplicative norm on A (K). For any two

entire functions f ∈ A (K) and g ∈ A (K) the ratio
| f |(r)
|g|(r)

as r → ∞ is called the comparative

growth of f with respect to g in terms of their multiplicative norms. Likewise to complex analysis,

in this paper we define the concept of (p, q)th order (respectively (p, q)th lower order) of growth

as ρ(p,q) ( f ) = lim sup
r→+∞

log[p] | f |(r)

log[q] r
(respectively λ(p,q) ( f ) = lim inf

r→+∞

log[p] | f |(r)

log[q] r
), where p and q are any

two positive integers. We study some growth properties of composite p-adic entire functions on the

basis of their (p, q)th order and (p, q)th lower order.

Key words and phrases: p-adic entire function, growth, (p, q)th order, (p, q)th lower order, com-
position.
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INTRODUCTION AND DEFINITIONS

Let K be an algebraically closed field of characteristic 0, complete with respect to a p-adic

absolute value |·| (example Cp). For any α ∈ K and R ∈ (0,+∞), the closed disk {x ∈ K :

|x − α| ≤ R} and the open disk {x ∈ K : |x − α| < R} are denoted by d (α, R) and d (α, R−)

respectively. Also C(α, r) denotes the circle {x ∈ K : |x − α| = r}. Moreover A (K) represent

the K-algebra of analytic functions on K, i.e. the set of power series with an infinite radius of

convergence. For the most comprehensive study of analytic functions inside a disk or in the

whole field K, we refer the reader to the books [9, 10, 15, 18]. During the last several years the

ideas of p-adic analysis have been studied from different aspects and many important results

were gained (see [1–6], [8, 11–14, 19]).

Let f ∈ A (K) and r > 0, then we denote by | f | (r) the number sup {| f (x) | : |x| = r}

where |·| (r) is a multiplicative norm on A (K). For any two entire functions f ∈ A (K) and

g ∈ A (K) the ratio
| f |(r)
|g|(r)

as r → ∞ is called the growth of f with respect to g in terms of their

multiplicative norms.

For any x ∈ [0, ∞) and k ∈ N, we define recursively log[k] x = log
(

log[k−1] x
)

and

exp[k] x = exp
(

exp[k−1] x
)

, where N stands for the set of all positive integers. We also de-

note log[0] x = x and exp[0] x = x. Throughout the paper, log denotes the Neperian logarithm.
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Taking this into account the order (resp. lower order) of an entire function f ∈ A (K) is given

by (see [4])

ρ ( f )

λ ( f )
= lim

r→+∞

sup

inf

log[2] | f | (r)

log r
.

The above definition of order (resp. lower order) does not seem to be feasible if an entire

function f ∈ A (K) is of order zero. To overcome this situation and in order to study the

growth of an entire function f ∈ A (K) precisely, one may introduce the concept of logarithmic

order (resp. logarithmic lower order) by increasing log+ once in the denominator following

the classical definition of logarithmic order (see, for example, [7]). Therefore the logarithmic

order ρlog ( f ) and logarithmic lower order λlog ( f ) of an entire function f ∈ A (K) are define

as
ρlog ( f )

λlog ( f )
= lim

r→+∞

sup

inf

log[2] | f | (r)

log[2] r
.

Further the concept of (p, q)th order (p and q are any two positive integers with p ≥ q) is

not new and was first introduced by Juneja et al. [16,17]. In the line of Juneja et al. [16,17], now

we shall introduce the definitions of (p, q)th order and (p, q)th lower order respectively of an

entire function f ∈ A (K) where p, q ∈ N. In order to keep accordance with the definition of

logarithmic order we will give a minor modification to the original definition of (p, q)-order

introduced by Juneja et al. [16, 17].

Definition 1. Let f ∈ A (K) and p, q ∈ N. Then the (p, q)th order and (p, q)th lower order of

f are respectively defined as:

ρ(p,q) ( f )

λ(p,q) ( f )
= lim

r→+∞

sup

inf

log[p] | f | (r)

log[q] r
.

These definitions extend the generalized order ρ[l] ( f ) and generalized lower order λ[l] ( f )

of f ∈ A (K) for each integer l ≥ 2 since these correspond to the particular case ρ[l] ( f ) =

ρ(l,1) ( f ) and λ[l] ( f ) = λ(l,1) ( f ) . Clearly ρ(2,1) ( f ) = ρ ( f ) and λ(2,1) ( f ) = λ ( f ) . The above

definition avoid the restriction p > q and give the idea of generalized logarithmic order.

However in this connection we just introduce the following definition which is analogous

to the definition of Juneja et al. [16, 17].

Definition 2. An entire function f ∈ A (K) is said to have index-pair (p, q), where p and

q ∈ N, if b < ρ(p,q) ( f ) < ∞ and ρ(p−1,q−1) ( f ) is not a nonzero finite number, where b = 1 if

p = q and b = 0 otherwise. Moreover if 0 < ρ(p,q) ( f ) < ∞, then










ρ(p−n,q) ( f ) = ∞ for n < p,

ρ(p,q−n) ( f ) = 0 for n < q,

ρ(p+n,q+n) ( f ) = 1 for n = 1, 2, . . . .

Similarly for 0 < λ(p,q) ( f ) < ∞, one can easily verify that










λ(p−n,q) ( f ) = ∞ for n < p,

λ(p,q−n) ( f ) = 0 for n < q,

λ(p+n,q+n) ( f ) = 1 for n = 1, 2, . . . .

The main aim of this paper is to establish some results related to the growth properties of

composite p-adic entire functions on the basis of (p, q)th order and (p, q)th lower order, where

p, q ∈ N.
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1 LEMMA

In this section we present the following lemma which can be found in [4] or [5] and will be

needed in the sequel.

Lemma 1. Let f , g ∈ A (K) . Then for all sufficiently large values of r the following equality

holds

| f ◦ g| (r) = | f | (|g| (r)) .

2 MAIN RESULTS

Theorem 1. Let f , g ∈ A (K) be such that ρ(m,n)(g) < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞, where

p, q, m, n ∈ N. Then

(i) lim
r→+∞

log[p] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 if q ≥ m

and

(ii) lim
r→+∞

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 if q < m.

Proof. We get from Lemma 1, for all sufficiently large positive numbers of r that

log[p] | f ◦ g|
(

exp[n−1] r
)

= log[p] | f |
(

|g|
(

exp[n−1] r
))

i.e.,

log[p] | f ◦ g|
(

exp[n−1] r
)

6

(

ρ(p,q)( f ) + ε
)

log[q] |g|
(

exp[n−1] r
)

. (1)

Now the following two cases may arise.

Case I. Let q > m. Then we have from (1) for all sufficiently large positive numbers of r that

log[p] | f ◦ g|
(

exp[n−1] r
)

6

(

ρ(p,q)( f ) + ε
)

log[m−1] |g|
(

exp[n−1] r
)

(2)

i.e.,

log[p] | f ◦ g|
(

exp[n−1] r
)

6

(

ρ(p,q)( f ) + ε
)

r(ρ(m,n)(g)+ε). (3)

Case II. Let q < m. Then for all sufficiently large positive numbers of r we get from (1) that

log[p] | f ◦ g|
(

exp[n−1] r
)

6

(

ρ(p,q)( f ) + ε
)

exp[m−q] log[m] |g|
(

exp[n−1] r
)

. (4)

Further for all sufficiently large positive numbers of r, it follows that

log[m] |g|
(

exp[n−1] r
)

6 log
(

rρ(m,n)(g)+ε
)

i.e.,

exp[m−q] log[m] |g|
(

exp[n−1] r
)

6 exp[m−q−1]
(

rρ(m,n)(g)+ε
)

. (5)

Now from (4) and (5) we have for all sufficiently large positive numbers of r that

log[p] | f ◦ g|
(

exp[n−1] r
)

≤
(

ρ(p,q)( f ) + ε
)

exp[m−q−1]
(

rρ(m,n)(g)+ε
)
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i.e.,

log[p+1] | f ◦ g|
(

exp[n−1] r
)

6 exp[m−q−2]
(

rρ(m,n)(g)+ε
)

+ O(1)

i.e.,

log[p+1] | f ◦ g|
(

exp[n−1] r
)

6 exp[m−q−2]
(

rρ(m,n)(g)+ε
)



1 +
O(1)

exp[m−q−2]
(

rρ(m,n)(g)+ε
)





i.e.,

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

6 rρg(m,n)+ε



1 +
O(1)

exp[m−q−2]
(

rρ(m,n)(g)+ε
)



 . (6)

Also from the definition of λ(p,q)( f ), we get for all sufficiently large positive numbers of r

that

log[p−1] | f |(exp[q−1] r) > r(λ
(p,q)( f )−ε). (7)

Now combining (3) of Case I and (7) we get for all sufficiently large positive numbers of r

that
log[p] | f ◦ g|

(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
≤

(

ρ f (p, q) + ε
)

r(ρ(m,n)(g)+ε)

r(λ
(p,q)( f )−ε)

. (8)

Since ρ(m,n)(g) < λ(p,q)( f ) we can choose ε (> 0) in such a way that

ρ(m,n)(g) + ε < λ(p,q)( f )− ε. (9)

Therefore in view of (9) it follows from (8) that

lim
r→+∞

log[p] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0.

Hence the first part of the theorem follows.

Further combining (6) of Case II and (7) we obtain for all sufficiently large positive numbers

of r that

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
≤

rρ(m,n)(g)+ε

(

1 + O(1)

exp[m−q−2]
(

rρ(m,n)(g)+ε
)

)

r(λ
(p,q)( f )−ε)

. (10)

Therefore in view of (9) we get from above that

lim
r→+∞

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 .

Thus the theorem follows.

Theorem 2. Let f , g ∈ A (K) be such that λ(m,n)(g) < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞, where

p, q, m, n ∈ N. Then

(i) lim
r→+∞

log[p] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 if q ≥ m

and

(ii) lim
r→+∞

log[p+m−q−1] | f ◦ g|
(

exp[n−1] r
)

log[p−1] | f |(exp[q−1] r)
= 0 if q < m.



252 BISWAS T.

The proof of Theorem 2 is omitted as it can be carried out in the line of Theorem 1.

Theorem 3. Let f , g ∈ A (K) be such that 0 < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞ and ρ(m,n)(g) < ∞,

where p, q, m, n ∈ N. Then

(i) lim
r→+∞

log[p+1] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

ρ(m,n)(g)

λ(p,q)( f )
if q ≥ m

and

(ii) lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

ρ(m,n)(g)

λ(p,q)( f )
if q < m.

Proof. In view of the definition λ(p,q)( f ), we have for all sufficiently large positive numbers of

r that

log[p] | f |(exp[q−1] r) ≥
(

λ(p,q)( f )− ε
)

log r. (11)

Case I. If q > m, then from (3) and (11) we get for all sufficiently large positive numbers of

r that
log[p+1] | f ◦ g|

(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

(

ρ(m,n)(g) + ε
)

log r + log
(

ρ(p,q)( f ) + ε
)

(

λ(p,q)( f )− ε
)

log r
.

As ε (> 0) is arbitrary, it follows from above that

lim
r→+∞

log[p+1] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

ρ(m,n)(g)

λ(p,q)( f )
.

This proves the first part of the theorem.

Case II. If q < m then from (6) and (11) we obtain for all sufficiently large positive numbers

of r that

log[p+m−q] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

(

ρ(m,n)(g) + ε
)

log r + log

(

1 + O(1)

exp[m−q−2]
(

rρ(m,n)(g)+ε
)

)

(

λ(p,q)( f ) − ε
)

log r
.

As ε (> 0) is arbitrary, it follows from above that

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−1] r
)

log[p] | f |(exp[q−1] r)
6

ρ(m,n)(g)

λ(p,q)( f )
.

Thus the second part of the theorem is established.

Theorem 4. Let f , g ∈ A (K) be such that 0 < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞ and λ(m,n)(g) > 0,

where p, q, m, n ∈ N. Then for any positive integer l, we have

(i) lim
r→∞

log[p] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞ if q < m and q > l;

(ii) lim
r→∞

log[p] | f ◦ g|(exp[n−1] r)

log[p−q−l+1] | f |
(

exp[l] r
)
= ∞ if q < m and q < l;
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(iii) lim
r→∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞ if q > m and q < l;

and

(iv) lim
r→∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞ if q > m and q > l.

Proof. Let us choose 0 < ε < min
{

λ(p,q)( f ), λ(m,n)(g)
}

. Now for all sufficiently large positive

numbers of r we get from Lemma 1,

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f ) − ε) log[q] |g|
(

exp[n−1] r
)

. (12)

Further from the definition of (m, n)th lower order of g we have for all sufficiently large

positive numbers of r that

log[m] |g|
(

exp[n−1] r
)

> log r(λ
(m,n)(g)−ε) . (13)

Now the following two cases may arise.

Case I. Let q < m. Then from (12) and (13) we obtain for all sufficiently large positive

numbers of r that

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f )− ε) exp[m−q] log[m] |g|
(

exp[n−1] r
)

(14)

i.e.,

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f ) − ε) exp[m−q] log r(λ
(m,n)(g)−ε)

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f )− ε) exp[m−q−1] r(λ
(m,n)(g)−ε). (15)

Case II. Let q > m. Then from (12) and (13) it follows for all sufficiently large positive

numbers of r that

log[p] | f ◦ g|(exp[n−1] r) > (λ(p,q)( f )− ε) log[q−m] log r(λ
(m,n)(g)−ε)

i.e.,

log[p+m−q−1] | f ◦ g|(exp[n−1] r) > r(λ
(m,n)(g)−ε). (16)

Again from the definition of ρ(p,q)( f ) we get for all sufficiently large positive numbers of r

that

log[p] | f |
(

exp[l] r
)

≤
(

ρ(p,q)( f ) + ε
)

log[q] exp[l] r. (17)

Now the following two cases may arise.

Case III. Let q > l. Then we have from (17) for all sufficiently large positive numbers of r

that

log[p] | f |
(

exp[l] r
)

≤
(

ρ(p,q)( f ) + ε
)

log[q−l] r

i.e.,

log[p+1] | f |
(

exp[l] r
)

≤ log[q−l+1] r + log
(

ρ(p,q)( f ) + ε
)

. (18)

Case IV. Let q < l. Then we have from (17) for all sufficiently large positive numbers of r

that

log[p] | f |
(

exp[l] r
)

≤
(

ρ(p,q)( f ) + ε
)

exp[l−q] r



254 BISWAS T.

i.e.,

log[p+1] | f |
(

exp[l] r
)

≤ exp[l−q−1] r + log
(

ρ(p,q)( f ) + ε
)

i.e.,

log[p−q+l+1] | f |
(

exp[l] r
)

≤ log r + O(1). (19)

Now combining (15) of Case I and (18) of Case III it follows for all sufficiently large positive

numbers of r that

log[p] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

≥
(λ(p,q)( f ) − ε) exp[m−q−1] r(λ

(m,n)(g)−ε)

log[q−l+1] r + log
(

ρ(p,q)( f ) + ε
)

.

Since q < m, we get from the above that

lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞.

This proves the first part of the theorem.

Again in view of (15) of Case I and (19) of Case IV we have for all sufficiently large positive

numbers of r that

log[p] | f ◦ g|(exp[n−1] r)

log[p−q+l+1] | f |
(

exp[l] r
)
≥

(λ(p,q)( f )− ε) exp[m−q−1] r(λ
(m,n)(g)−ε)

log r + O(1)
. (20)

When q < m and q < l then we get from (20) that

lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[p−q+l+1] | f |
(

exp[l] r
)
= ∞.

This establishes the second part of the theorem.

Now in view of (16) of Case II and (18) of Case III we get for all sufficiently large positive

numbers of r that

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

≥
r(λ

(m,n)(g)−ε)

log[q−l+1] r + log
(

ρ(p,q)( f ) + ε
)

i.e.,

lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p+1] | f |
(

exp[l] r
)

= ∞,

from which the third part of the theorem follows.

Again from (16) of Case II and (19) of Case IV we have for all sufficiently large positive

numbers of r that
log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p−q+l+1] | f |
(

exp[l] r
)

≥
r(λ

(m,n)(g)−ε)

log r + O(1)

i.e.,

lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[p−q+l+1] | f |
(

exp[l] r
)

= ∞.

This proves the fourth part of the theorem. Thus the theorem follows.
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Theorem 5. Let f , g, h, k ∈ A (K) be such that 0 < ρ(a,b)(h) < ∞, λ(p,q)( f ) > 0, λ(m,n)(g) > 0

and ρ(c,d)(k) < λ(m,n)(g), where a, b, c, d, p, q, m, n ∈ N. Then

(i) lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
= ∞ if b > c and q < m,

(ii) lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
= ∞ if b < c and q < m,

(iii) lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
= ∞ if b > c and q > m,

and (iv) lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
= ∞ if b < c and q > m.

Proof. In view of Lemma 1 we obtain for all sufficiently large positive numbers of r that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

log[b] |k| (r) . (21)

Now from the definition of (c, d)th order of k we get for arbitrary positive ε and for all

sufficiently large positive numbers of r that

log[c] |k| (r) 6
(

ρ(c,d)(k) + ε
)

log[d] r

i.e.,

log[c] |k| (r) 6
(

ρ(c,d)(k) + ε
)

log r (22)

i.e.,

log[c−1] |k| (r) 6 r(ρ(c,d)(k)+ε). (23)

Now the following cases may arise.

Case I. Let b > c. Then we have from (21) for all sufficiently large positive numbers of r

that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

log[c−1] |k| (r) . (24)

So from (23) and (24), it follows for all sufficiently large positive numbers of r that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

r(ρ(c,d)(k)+ε). (25)

Case II. Let b < c. Then we get from (21) for all sufficiently large positive numbers of r that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

exp[c−b] log[c] |k| (r) . (26)

Now from (22) and (26) we obtain for all sufficiently large positive numbers of r that

log[a] |h ◦ k| (r) 6
(

ρ(a,b)(h) + ε
)

exp[c−b] log r(ρ(c,d)(k)+ε)

i.e.,

log[a+c−b−1] |h ◦ k| (r) 6 r(ρ(c,d)(k)+ε) + O(1). (27)
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Since ρ(c,d)(k) < λ(m,n)(g) we can choose ε (> 0) in such a way that

ρ(c,d)(k) + ε < λ(m,n)(g)− ε. (28)

Now combining (25) of Case I, (15) and in view of (28) it follows for all sufficiently large

positive numbers of r that

log[p] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
≥

(λ(p,q)( f ) − ε) exp[m−q−1] r(λ
(m,n)(g)−ε)

(

ρ(a,b)(h) + ε
)

r(ρ(c,d)(k)+ε)

i.e.,

lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
= ∞,

from which the first part of the theorem follows.

Again combining (27) of Case II, (15) and in view of (28) we obtain for all sufficiently large

positive numbers of r that

log[p] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
≥

(λ(p,q)( f ) − ε) exp[m−q−1] r(λ
(m,n)(g)−ε)

r(ρ(c,d)(k)+ε) + O(1)

i.e.,

lim
r→+∞

log[p] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
= ∞.

This establishes the second part of the theorem.

Further in view of (25) of Case I and (16) we get for all sufficiently large positive numbers

of r that

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
≥

r(λ
(m,n)(g)−ε)

(

ρ(a,b)(h) + ε
)

r(ρ(c,d)(k)+ε)
. (29)

So from (28) and (29) we obtain that

lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a] |h ◦ k| (r)
= ∞,

from which the third part of the theorem follows.

Again combining (27) of Case II and (16) it follows for all sufficiently large positive numbers

of r that

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
≥

r(λ
(m,n)(g)−ε)

r(ρ(c,d)(k)+ε) + O(1)
. (30)

Now in view of (28) we obtain from (30) that

lim
r→+∞

log[p+m−q−1] | f ◦ g|(exp[n−1] r)

log[a+c−b−1] |h ◦ k| (r)
= ∞.

This proves the fourth part of the theorem. Thus the theorem follows.
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Theorem 6. Let f , g ∈ A (K) be such that ρ(a,b)( f ◦ g) < ∞ and λ(m,n)(g) > 0, where

a, b, m, n ∈ N. Then

lim
r→+∞

[

log[a] | f ◦ g|(exp[b−1] r)
]2

log[m−1] |g|(exp[n] r) · log[m] |g|(exp[n−1] r)
= 0.

Proof. For any ε > 0 we have log[a] | f ◦ g|(exp[b−1] r) ≤
(

ρ(a,b)( f ◦ g) + ε
)

log[b] exp[b−1] r, i.e.,

log[a] | f ◦ g|(exp[b−1] r) ≤
(

ρ(a,b)( f ◦ g) + ε
)

log r. (31)

Again we obtain that log[m] |g|(exp[n−1] r) ≥
(

λ(m,n)(g)− ε
)

log[n] exp[n−1] r, i.e.,

log[m] |g|(exp[n−1] r) ≥
(

λ(m,n)(g)− ε
)

log r. (32)

Similarly we have log[m] |g|(exp[n] r) ≥
(

λ(m,n)(g)− ε
)

log[n] exp[n] r, i.e.,

log[m−1] |g|(exp[n] r) ≥ exp
[(

λ(m,n)(g)− ε
)

r
]

. (33)

From (31) and (32) we have for all sufficiently large positive numbers of r that

log[a] | f ◦ g|(exp[b−1] r)

log[m] |g|(exp[n−1] r)
≤

(

ρ(a,b)( f ◦ g) + ε
)

log r
(

λ(m,n)(g)− ε
)

log r
.

As ε (> 0) is arbitrary we obtain from the above that

lim
r→+∞

log[a] | f ◦ g|(exp[b−1] r)

log[m] |g|(exp[n−1] r)
≤

ρ(a,b)( f ◦ g)

λ(m,n)(g)
. (34)

Again from (31) and (33) we get for all sufficiently large positive numbers of r that

log[a] | f ◦ g|(exp[b−1] r)

log[m−1] |g|(exp[n] r)
≤

(

ρ(a,b)( f ◦ g) + ε
)

log r

exp
[(

λ(m,n)(g)− ε
)

r
] .

Since ε (> 0) is arbitrary it follows from the above that

lim
r→+∞

log[a] | f ◦ g|(exp[b−1] r)

log[m−1] |g|(exp[n] r)
= 0. (35)

Thus the theorem follows from (34) and (35).

Theorem 7. Let f , g ∈ A (K) be such that 0 < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞ and 0 < λ(m,n)(g) ≤

ρ(m,n)(g) < ∞, where p, q, m, n ∈ N. Then

(i)
λ(p,q)( f ) · λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6 min

{

ρ(m,n)(g),
ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )

}

;

max

{

λ(m,n)(g),
λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≤

ρ(p,q)( f ) · ρ(m,n)(g)

λ(p,q)( f )
,

when q = m = n,
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(ii)
λ(p,q)( f ) · λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6min

{

ρ(m,n)(g),
ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )

}

;

max
{

λ(m,n)(g),
λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≤

ρ(p,q)( f ) · ρ(m,n)(g)

λ(p,q)( f )
,

when q = m > or < n,

(iii)
λ(p,q)( f )

ρ(p,q)( f )
≤ lim

r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6 min

{

1,
ρ(p,q)( f )

λ(p,q)( f )

}

;

max

{

1,
λ(p,q)( f )

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≤

ρ(p,q)( f )

λ(p,q)( f )
,

when q > m,

(iv)
λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6 min

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≤

ρ(m,n)(g)

λ(p,q)( f )
,

when m > q = n,

(v)
λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 min

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≤

ρ(m,n)(g)

λ(p,q)( f )
,

when m > q > n, and

(vi)
λ(m,n)(g)

ρ(p,q)( f )
≤ lim

r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f |
(

exp[q−n] r
)

6 min

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )

}

≤ lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f |
(

exp[q−n] r
)

≤
ρ(m,n)(g)

λ(p,q)( f )
,

when m > q < n.

Proof. From the definitions of (p, q)th order and (p, q)th lower order of f , we have for all suffi-

ciently large positive numbers of r that

log[p] | f | ≤
(

ρ(p,q)( f ) + ε
)

log[q] r , (36)

log[p] | f | ≥
(

λ(p,q)( f )− ε
)

log[q] r (37)

and also for a sequence of positive numbers of r tending to infinity we get that

log[p] | f | ≥
(

ρ(p,q)( f )− ε
)

log[q] r , (38)

log[p] | f | ≤
(

λ(p,q)( f ) + ε
)

log[q] r . (39)
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Now in view of Lemma 1, we have for all sufficiently large positive numbers of r that

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
)

log[q] |g| (r) (40)

and also we get for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) 6
(

λ(p,q)( f ) + ε
)

log[q] |g| (r) . (41)

Similarly, in view of Lemma 1, it follows for all sufficiently large positive numbers of r that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f ) − ε
)

log[q] |g| (r) (42)

and also we obtain for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) ≥
(

ρ(p,q)( f )− ε
)

log[q] |g| (r) . (43)

Now the following two cases may arise.

Case I. Let q = m = n. Then we have from (40) for all sufficiently large positive numbers

of r that

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r, (44)

and for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
) (

λ(m,n)(g) + ε
)

log[n] r. (45)

Also we obtain from (41) for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) 6
(

λ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r. (46)

Further it follows from (42) for all sufficiently large positive numbers of r that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f )− ε
) (

λ(m,n)(g)− ε
)

log[n] r, (47)

and for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f )− ε
) (

ρ(m,n)(g)− ε
)

log[n] r. (48)

Moreover, we obtain from (43) for a sequence of positive numbers of r tending to infinity

that

log[p] | f ◦ g| (r) ≥
(

ρ(p,q)( f )− ε
) (

λ(m,n)(g)− ε
)

log[n] r. (49)

Therefore from (37) and (44), we have for all sufficiently large positive numbers of r that

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[q] r

=

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[q] r
(

λ(p,q)( f )− ε
)

log[q] r
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i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(p,q)( f ) · ρ(m,n)(g)

λ(p,q)( f )
. (50)

Similarly from (38) and (44), for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

ρ(p,q)( f )− ε
)

log[q] r

=

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[q] r
(

ρ(p,q)( f )− ε
)

log[q] r
,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6 ρ(m,n)(g). (51)

Also from (37) and (45), we obtain for a sequence of positive numbers of r tending to infinity

that

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(p,q)( f ) + ε
) (

λ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[q] r

=

(

ρ(p,q)( f ) + ε
) (

λ(m,n)(g) + ε
)

log[q] r
(

λ(p,q)( f )− ε
)

log[q] r
,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )
, (52)

Further from (37) and (46), for a sequence of positive numbers of r tending to infinity we

have that

log[p] | f ◦ g| (r)

log[p] | f | (r)
6

(

λ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[q] r

=

(

λ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[q] r
(

λ(p,q)( f )− ε
)

log[q] r
,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6 ρ(m,n)(g). (53)

Thus from (51), (52) and (53) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
6 min

{

ρ(m,n)(g),
ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )

}

. (54)

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(p,q)( f ) − ε
) (

λ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[q] r
,
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i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

λ(p,q)( f ) · λ(m,n)(g)

ρ(p,q)( f )
. (55)

Similarly, from (39) and (47) we obtain that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥ λ(m,n)(g). (56)

Also from (36) and (48), for a sequence of positive numbers of r tending to infinity we obtain

that

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(p,q)( f ) − ε
) (

ρ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )
, (57)

and from (36) and (49), for a sequence of positive numbers of r tending to infinity we have that

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥

(

ρ(p,q)( f ) − ε
) (

λ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥ λ(m,n)(g). (58)

Thus from (56), (57) and (58) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f | (r)
≥ max

{

λ(m,n)(g),
λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )

}

. (59)

Therefore the first part of the theorem follows from (50), (54), (55) and (59).

Case II. Let q = m and m > n or n < m. Now from (37) and (44), for all sufficiently large

positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(p,q)( f ) · ρ(m,n)(g)

λ(p,q)( f )
. (60)

Similarly, from (38) and (44) for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

ρ(p,q)( f )− ε
)

log[n] r
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i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 ρ(m,n)(g). (61)

Also from (37) and (45), for a sequence of positive numbers of r tending to infinity we obtain

that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(p,q)( f ) + ε
) (

λ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )
, (62)

and from (37) and (46), for a sequence of positive numbers of r tending to infinity we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

λ(p,q)( f ) + ε
) (

ρ(m,n)(g) + ε
)

log[n] r
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 ρ(m,n)(g). (63)

Thus from (61), (62) and (63) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 min

{

ρ(m,n)(g),
ρ(p,q)( f ) · λ(m,n)(g)

λ(p,q)( f )

}

. (64)

Further from (36) and (47), for all sufficiently large positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(p,q)( f ) − ε
) (

λ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(p,q)( f ) · λ(m,n)(g)

ρ(p,q)( f )
. (65)

Similarly, from (39) and (47) for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(p,q)( f ) − ε
) (

λ(m,n)(g)− ε
)

log[n] r
(

λ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥ λ(m,n)(g). (66)

Also from (36) and (48), for a sequence of positive numbers of r tending to infinity we obtain

that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(p,q)( f ) − ε
) (

ρ(m,n)(g)− ε
)

log[n] r
(

ρ(p,q)( f ) + ε
)

log[n] r
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i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )
. (67)

Similarly from (36) and (49), we get that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥ λ(m,n)(g). (68)

Thus from (66), (67) and (68) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥ max

{

λ(m,n)(g),
λ(p,q)( f ) · ρ(m,n)(g)

ρ(p,q)( f )

}

. (69)

Thus the second part of the theorem follows from (60), (64), (65) and (69).

Case III. Let q > m. Then from (40) for all sufficiently large positive numbers of r we have

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
)

log[q−m]
[(

ρ(m,n)(g) + ε
)

log[n] r
]

i.e.,

log[p] M (r, f ◦ g) 6
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1) (70)

and for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) 6
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1). (71)

Also for the same reasoning, from (41) for a sequence of positive numbers of r tending to

infinity we obtain that

log[p] | f ◦ g| (r) 6
(

λ(p,q)( f ) + ε
)

log[q−m+n] r + O(1). (72)

Further from (42), for all sufficiently large positive numbers of r it follows that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f ) − ε
)

log[q−m+n] r + O(1), (73)

and for a sequence of positive numbers of r tending to infinity that

log[p] | f ◦ g| (r) ≥
(

λ(p,q)( f ) − ε
)

log[q−m+n] r + O(1). (74)

Moreover from (43) for a sequence of positive numbers of r tending to infinity we obtain

that

log[p] | f ◦ g| (r) ≥
(

ρ(p,q)( f ) − ε
)

log[q−m+n] r + O(1). (75)

Now from (37) and (70), for all sufficiently large positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1)
(

λ(p,q)( f )− ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

ρ(p,q)( f )

λ(p,q)( f )
. (76)
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Similarly, from (38) and (70) for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1)
(

ρ(p,q)( f )− ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6 1. (77)

Also from (37) and (71) for a sequence of positive numbers of r tending to infinity we obtain

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

(

ρ(p,q)( f ) + ε
)

log[q−m+n] r + O(1)
(

λ(p,q)( f )− ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] M (r, f ◦ g)

log[p] M
(

exp[m−n] r, f
)
6

ρ(p,q)( f )

λ(p,q)( f )
, (78)

and from (37) and (72) for a sequence of positive numbers of r tending to infinity also we have

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6

(

λ(p,q)( f ) + ε
)

log[q−m+n] r + O(1)
(

λ(p,q)( f )− ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] M (r, f ◦ g)

log[p] M
(

exp[m−n] r, f
)
6 1. (79)

Thus from (77), (78) and (79) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
6 min

{

1,
ρ(p,q)( f )

λ(p,q)( f )

}

. (80)

Further from (36) and (73), for all sufficiently large positive numbers of r we have that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

(

λ(p,q)( f )− ε
)

log[q−m+n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

λ(p,q)( f )

ρ(p,q)( f )
. (81)

Similarly, from (39) and (73) for a sequence of positive numbers of r tending to infinity it

follows that

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

(

λ(p,q)( f )− ε
)

log[q−m+n] r + O(1)
(

λ(p,q)( f ) + ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥ 1. (82)
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Also from (36) and (74), for a sequence of positive numbers of r tending to infinity we obtain

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

(

λ(p,q)( f )− ε
)

log[q−m+n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

λ(p,q)( f )

ρ(p,q)( f )
, (83)

and from (36) and (75) for a sequence of positive numbers of r tending to infinity also we have

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥

(

ρ(p,q)( f )− ε
)

log[q−m+n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q−m+n] r

i.e.,

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥ 1. (84)

Thus from (82), (83) and (84) it follows that

lim
r→+∞

log[p] | f ◦ g| (r)

log[p] | f |
(

exp[m−n] r
)
≥ max

{

1,
λ(p,q)( f )

ρ(p,q)( f )

}

. (85)

Hence the third part of the theorem follows from (76), (80), (65) and (85).

Case IV. Let m > q = n. Then from (40) for all sufficiently large positive numbers of r we

have

log[p+m−q] | f ◦ g| (r) 6
(

ρ(m,n)(g) + ε
)

log[n] r + O(1), (86)

and for a sequence of positive numbers of r tending to infinity that

log[p+m−q] | f ◦ g| (r) 6
(

λ(m,n)(g) + ε
)

log[n] r + O(1). (87)

Also from (41) for a sequence of positive numbers of r tending to infinity we obtain that

log[p+m−q] | f ◦ g| (r) 6
(

ρ(m,n)(g) + ε
)

log[n] r + O(1). (88)

Further, from (42) for all sufficiently large positive numbers of r it follows that

log[p+m−q] | f ◦ g| (r) ≥
(

λ(m,n)(g)− ε
)

log[n] r + O(1), (89)

and for a sequence of positive numbers of r tending to infinity that

log[p+m−q] | f ◦ g| (r) ≥
(

ρ(m,n)(g)− ε
)

log[n] r + O(1). (90)

Moreover, from (43) for a sequence of positive numbers of r tending to infinity we obtain

that

log[p+m−q] | f ◦ g| (r) ≥
(

λ(m,n)(g)− ε
)

log[n] r + O(1). (91)
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Therefore from (37) and (86), for all sufficiently large positive numbers of r we have that

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r
=

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f )− ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(m,n)(g)

λ(p,q)( f )
. (92)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) − ε
)

log[q] r
=

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

ρ(p,q)( f )− ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(m,n)(g)

ρ(p,q)( f )
. (93)

Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

(

λ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r
=

(

λ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f )− ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

λ(m,n)(g)

λ(p,q)( f )
, (94)

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r
=

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f )− ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6

ρ(m,n)(g)

λ(p,q)( f )
. (95)

Thus from (93), (94) and (95) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
6 min

{

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

λ(p,q)( f )

}

. (96)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r
=

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (97)
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Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

λ(p,q)( f ) + ε
)

log[q] r
=

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

λ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

λg (m, n)

λ(p,q)( f )
. (98)

Also from(36) and (90) for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

(

ρ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r
=

(

ρ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

ρ(m,n)(g)

ρ(p,q)( f )
, (99)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r
=

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (100)

Thus from (98), (99) and (100) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f | (r)
≥ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

ρ(p,q)( f )

}

. (101)

Therefore the fourth part of the theorem follows from (92), (96), (98) and (101).

Case V. Let m > q > n. Currently from (37) and (86) , we have for all sufficiently large

positive numbers of r that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(m,n)(g)

λ(p,q)( f )
. (102)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

ρ(p,q)( f )− ε
)

log[n] r
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i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(m,n)(g)

ρ(p,q)( f )
. (103)

Also from (37) and (87), for a sequence of positive numbers of r tending to infinity we obtain

that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

λ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

λ(m,n)(g)

λ(p,q)( f )
, (104)

and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

(

ρ(m,n)(g) + ε
)

log[n] r + O(1)
(

λ(p,q)( f )− ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6

ρ(m,n)(g)

λ(p,q)( f )
. (105)

Thus from (103), (104) and (105) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
6 min

{

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

λ(p,q)( f )

}

. (106)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (107)

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

λ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(m,n)(g)

λ(p,q)( f )
. (108)

Also from (36) and (90), for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

ρ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[n] r
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i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

ρ(m,n)(g)

ρ(p,q)( f )
, (109)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

(

λ(m,n)(g)− ε
)

log[n] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[n] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (110)

Thus from (98), (99), and (100) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g| (r)

log[p] | f |
(

exp[q−n] r
)
≥ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

ρ(p,q)( f )

}

. (111)

Thus the fifth part of the theorem follows from (102), (106), (107) and (111).

Case VI. Let m > q < n. At this instant case from (37) and (86) for all sufficiently large

positive numbers of r we have that

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

ρ(m,n)(g)

λ(p,q)( f )
. (112)

Similarly, from (38) and (86) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) − ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

ρ(m,n)(g)

ρ(p,q)( f )
. (113)

Also from (37) and (87) for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

(

λ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

λ(m,n)(g)

λ(p,q)( f )
, (114)
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and from (37) and (88) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

(

ρ(m,n)(g) + ε
)

log[q] r + O(1)
(

λ(p,q)( f ) − ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6

ρ(m,n)(g)

λ(p,q)( f )
. (115)

Thus from (113), (114) and (115) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
6 min

{

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

λ(p,q)( f )

}

. (116)

Further from (36) and (89), for all sufficiently large positive numbers of r we have that

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (117)

Similarly, from (39) and (89) for a sequence of positive numbers of r tending to infinity it

follows that

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

λ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

λ(m,n)(g)

λ(p,q)( f )
. (118)

Also from (36) and (90), for a sequence of positive numbers of r tending to infinity we obtain

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

(

ρ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r

i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

ρ(m,n)(g)

ρ(p,q)( f )
, (119)

and from (36) and (91) for a sequence of positive numbers of r tending to infinity also we have

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

(

λ(m,n)(g)− ε
)

log[q] r + O(1)
(

ρ(p,q)( f ) + ε
)

log[q] r
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i.e.,

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥

λ(m,n)(g)

ρ(p,q)( f )
. (120)

Thus from (98), (99) and (100) it follows that

lim
r→+∞

log[p+m−q] | f ◦ g|
(

exp[n−q] r
)

log[p] | f | (r)
≥ max

{

λ(m,n)(g)

λ(p,q)( f )
,

ρ(m,n)(g)

ρ(p,q)( f )
,

λ(m,n)(g)

ρ(p,q)( f )

}

. (121)

Hence the sixth part of the theorem follows from (112), (116), (118) and (121).

Theorem 8. Let f , g ∈ A (K) be such that 0 < λ(p,q)( f ) ≤ ρ(p,q)( f ) < ∞ and 0 < λ(m,n)(g) ≤

ρ(m,n)(g) < ∞, where p, q, m, n ∈ N. Then

(i)
λ(p,q)( f ) · λ(m,n)(g)

ρ(m,n)(g)
≤ lim

r→+∞

log[p] | f ◦ g| (r)

log[m] |g| (r)
≤ min

{

ρ(p,q)( f ),
λ(p,q)( f ) · ρ(m,n)(g)

λ(m,n)(g)

}

;

max

{

λ(p,q)( f ),
ρ(p,q)( f ) · λ(m,n)(g)

ρ(m,n)(g)

}

≤ lim
r→+∞

log[p] | f ◦ g| (r)

log[m] |g| (r)
≤

ρ(p,q)( f ) · ρ(m,n)(g)

λ(m,n)(g)
,

when q = m,

(ii)
λ(p,q)( f )

ρ(m,n)(g)
≤ lim

r→+∞

log[p] | f ◦ g|
(

exp[q−m] r
)

log[m] |g| (r)
6 min

{

ρ(p,q)( f )

ρ(m,n)(g)
,

ρ(p,q)( f )

λ(m,n)(g)
,

λ(p,q)( f )

λ(m,n)(g)

}

;

max

{

ρ(p,q)( f )

ρ(m,n)(g)
,

λ(p,q)( f )

ρ(m,n)(g)
,

λ(p,q)( f )

λ(m,n)(g)

}

≤ lim
r→+∞

log[p] | f ◦ g|
(

exp[q−m] r
)

log[m] |g| (r)
≤

ρ(p,q)( f )

λ(m,n)(g)
,

when q > m, and

(iii)
λ(m,n)(g)

ρ(m,n)(g)
≤ lim

r→+∞

log[p+m−q] | f ◦ g| (r)

log[m] |g| (r)
≤ 1 ≤ lim

r→+∞

log[p+m−q] | f ◦ g| (r)

log[m] |g| (r)
≤

ρ(m,n)(g)

λ(m,n)(g)
,

when m > q.

We omit the proof of Theorem 8 as it can easily be deduced in the line of Theorem 7.
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Бiсвас Т. Оцiнка орiєнтованого росту складених p-адичних цiлих функцiй, що залежить вiд (p, q)-го

порядку // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 248–272.

Нехай K — повне ультраметричне алгебраїчно замкнуте поле, A (K) — K-алгебра цiлих

функцiй на K. Для довiльної p-адичної цiлої функцiї f ∈ A (K) i r > 0 позначимо | f | (r)

число sup {| f (x) | : |x| = r}, де |·| (r) є мультиплiкативною нормою на A (K). Для довiльних

двох цiлих функцiй f ∈ A (K) та g ∈ A (K) спiввiдношення
| f |(r)
|g|(r)

при r → ∞ називають по-

рiвняльним ростом f вiдносно g в сенсi їхнiх мультиплiкативних норм. Аналогiчно до того,

як це роблять в комплексному аналiзi, в цiй статтi ми визначаємо поняття (p, q)-го порядку

(вiдповiдно (p, q)-го нижнього порядку) росту наступним чином ρ(p,q) ( f ) = lim sup
r→+∞

log[p] | f |(r)

log[q] r

(вiдпоiдно λ(p,q) ( f ) = lim inf
r→+∞

log[p] | f |(r)

log[q] r
), де p i q два довiльнi натуральнi числа. Ми дослiджуємо

деякi властивостi росту складених p-адичних цiлих функцiй на основi їхнього (p, q)-го поряд-

ку i (p, q)-го нижнього порядку.

Ключовi слова i фрази: p-адична цiла функцiя, рiст, (p, q)-й порядок, (p, q)-й нижнiй поря-

док, композицiя.


