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ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS

For a simple graph G(V, E) with n vertices, m edges, vertex set V(G) = {v1,vp,...,v,} and
edge set E(G) = {ey, e, ...,en}, the adjacency matrix A = (a;;) of G is a (0,1)-square matrix
of order n whose (i, j)-entry is equal to 1 if v; is adjacent to v; and equal to 0, otherwise. Let
D(G) = diag(dy,dy, ..., d,) be the diagonal matrix associated to G, where d; = deg(v;), for alli €
{1,2,...,n}. The matrices L(G) = D(G) — A(G) and Q(G) = D(G) + A(G) are respectively called
the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively
called the Laplacian spectrum (L-spectrum) and the signless Laplacian spectrum (Q-spectrum) of
the graph G. If 0 = py, < 1 < -+ - < py are the Laplacian eigenvalues of G, Brouwer conjectured

k
that the sum of k largest Laplacian eigenvalues Si(G) satisfies Sx(G) = ¥ y; < m+ (k;l) and this
i=1
conjecture is still open. If 41,42, ..., g, are the signless Laplacian eigenvalues of G, for 1 < k < n,

let 5,7 (G) = YX | gi be the sum of k largest signless Laplacian eigenvalues of G. Analogous to

Brouwer’s conjecture, Ashraf et al. conjectured that S;(G) < m+ (szrl), foralll < k < n. This
conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds
for S (G) in terms of the clique number w, the vertex covering number T and the diameter of the
graph G. Finally, we show that the conjecture holds for large families of graphs.

Key words and phrases: signless Laplacian spectra, Brouwer’s conjecture, clique number, vertex
covering number, diameter.
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INTRODUCTION

Let G(V,E) be a simple graph with n vertices, m edges, having vertex set
V(G) = {v1,v2,...,vn} and edge set E(G) = {ey,ey,...,em}. The adjacency matrix A = (a;;)
of G is a (0,1)-square matrix of order n whose (i, j)-entry is equal to 1 if v; is adjacent to
v; and equal to 0, otherwise. Let D(G) = diag(dy,dy,...,d,) be the diagonal matrix associ-
ated to G, where d; = deg(v;), for all i € {1,2,...,n}. The matrices L(G) = D(G) — A(G)
and Q(G) = D(G) + A(G) are respectively called the Laplacian and the signless Laplacian
matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum (L-
spectrum) and the signless Laplacian spectrum (Q-spectrum) of the graph G. These matri-
ces are real symmetric and positive semi-definite. Welet 0 = pu, < pp—1 < -+ < pp and
0 <gn <gu_1 <--- < g to be the L-spectrum and Q-spectrum of G, respectively. It is well
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known that the multiplicity of the Laplacian eigenvalue y,, = 0 is equal to the number of con-
nected components of G and also y,,—; > 0if and only if G is connected. Moreover y; = g;, for
alli € {1,2,...,n},if and only if G is bipartite [4].

k
For k € {1,2,...,n}, let x(G) = ¥ p; be the sum of k largest Laplacian eigenvalues of G.

i=1
Also, let df(G) = [{v € V(G) : dy > i}|, fori € {1,2,...,n}. In 1994, Grone and Merris [12]
observed that for any graph G and forany k € {1,2,...,n},

k
Sk(G) < ) di(G).
i=1

This observation was proved by Hua Bai [2] and is nowadays called as Grone-Merris theorem.
As an analogue to Grone-Merris theorem, Andries Brouwer [3] conjectured that for a graph G
with n vertices and m edges and for any k € {1,2,...,n},

k k+1
Sk(G):Zyigm—}—( : )
i=1

This conjecture is still open and is presently an active component of research. For the progress
on this conjecture and related results, we refer to [8-11,14] and the references therein.

Fork € {1,2,...,n},1et S} (G) = 21-‘21 g; be the sum of k largest signless Laplacian eigen-
values of a graph G. Motivated by the definition of Sx(G) and Brouwer’s conjecture, Ashraf et
al. [1] proposed the following conjecture about S;" (G).

Conjecture 1. If G is a graph with n vertices and m edges, then

k
k+1
i=1

forallk € {1,2,...,n}.

Using computations on a computer Ashraf et al. [1] verified the truth of this conjecture for
all graphs with at most 10 vertices. For k = 1, the conjecture follows from the well-known
inequality q1(G) < 2% +n+2and m > n— 1. Also, the cases k = nand k = n — 1 are
straightforward. The conjecture is true for trees. This follows from the fact that Brouwer’s
conjecture holds for trees and that both Laplacian and signless Laplacian eigenvalues are the
same for trees. Ashraf et al. [1] showed that the conjecture is true for all graphs when k = 2 and
is also true for regular graphs. Yang et al. [16] obtained various upper bounds for S (G) and
proved that the conjecture is also true for unicyclic graphs, bicyclic graphs and tricyclic graphs
(except for k = 3). For the progress on this conjecture and related results, we refer to [1,7,16]
and the references therein.

A cligue of a graph G is the maximum complete subgraph of the graph G. The order of the
maximum clique is called the clique number of the graph G and is denoted by w. A subset S
of the vertex set V(G) is said to be a covering set of G if every edge of G is incident to at least
one vertex in S. A covering set with minimum cardinality among all covering sets is called
minimum covering set of G and its cardinality, denoted by 7, is called vertex covering number of
G.
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The distance between any two vertices 1 and v is defined as the length of shortest path
between them and the diameter of a graph G is the maximum distance among all pair of vertices
of G. If H is a subgraph of the graph G, we denote the graph obtained by removing the edges
in H from G by G \ H (that is, only the edges of H are removed from G).

Further, as usual P;, K, and K, respectively, denote the path on n vertices, the complete
graph on n vertices and the complete bipartite graph on s + t vertices. For other undefined
notations and terminology from spectral graph theory, the readers are referred to [4,13].

The paper is organized as follows. In Section 2, we obtain some upper bounds for S} (G)
in terms of the clique number w, the vertex covering number T and the diameter of the graph
G. As applications to the results obtained in Section 2, we prove that Conjecture 1 is true for
some new classes of graphs in Section 3.

1 UPPER BOUNDS FOR S, (G)

In this section, we obtain the upper bounds for S, (G), in terms of the clique number w, the
vertex covering number T and the diameter of the graph G.

Yang et al. [16] obtained the following upper bound for S;" (G), in terms of the clique num-
ber w and the number of edges m:

SH(G) <k(w—2)+2m — w(w —2). (1)

Das et al. [5] obtained an upper for S¢(G) of a graph with n vertices, in terms of the vertex
covering number T and the number of edges m. Using similar analysis, the following upper
bound can be obtained for S} (G), in terms of the vertex covering number T and the number
of edges m:

SE(G) <m+kr, (2)

with equality if and only if G = Ky ,,_1.
The following observation is due to Fulton [6].

Lemma 1. Let A and B be two real symmetric matrices of order n. Then forany 1 <k <n,

k k k

Y Ai(A+B) <Y A(A) + Y Ai(B),

i=1 i=1 i=1
where A;(X) is the it eigenvalue of the matrix X.

Let I'; be the family of all connected graphs except for the graphs G, where the vertices in
the vertex covering set S = {v1,vy,...,v,-1} of the subgraph K, have the property that there
are pendent vertices incident to some v; € S or any two vertices of S forms a triangle with a
vertex v € V(G) \ C, where C is the vertex covering set of G.

The following theorem gives an upper bound for S (G) in terms of the clique number w,
the vertex covering number T and the number of edges m of the graph G. The number of
vertices in a graph G is denoted by n(G) and the number of vertices adjacent to a vertex v is
denoted by N(v).
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Theorem 2. Let G € I'y be a connected graph of order n > 2 with m edges having clique
number w and vertex covering number T. Then, for1 <k <mn,
wlw=3)

ST(G) <k(t—1)+m— I

3)
with equality if and only if G = K.

Proof. If G € T'y is a connected graph with clique number w, vertex cover number T and mini-
mum vertex covering set C = {v1, 0y, ...,07}, then K, is a subgraph of G. Further, the vertex
covering number of a complete graph on w vertices is w — 1. Without loss of generality, let
v1,02,...,Vu—1 be the vertices in C, which belong to V(K ). The signless Laplacian spectrum
of Ky is {2w — 2, w — 2[¢~1}. After removing the edges of K, from G, the signless Laplacian
matrix of G isdecomposed as
Q(G) = QKo U (n = w)Ky) + Q(G \ Ku),
where G\ K, is the graph obtained from G by removing the edges of K. Using Lemma 1 and
the fact 5, (Ko U (n — w)Kq) = S (Ky), we have
k

k k
50(G) = ;%‘(G) <2 4i(Ko) + 3 4i(G\ Ko)

i=1 i=1
= S5/ (Kw) + 5 (G\Ky) = w(k+1) =2k + 5 (G \ Ko).

To complete the proof, we need to estimate SIQL (G\ Kw). So let Gy, Gyi1, - - -, Gr be the span-
ning subgraphs of H = G \ K,, corresponding to the vertices vy, U441, - .., 0r of C, having
vertex set same as H and edge sets defined as follows.

E(Gw) = {vwvr 1 vr € N(vw) \ {v1,02,...,00-1}}

E(Guw+1) = {vw+10t : v € N(v4p11) \ {v1,02, ..., 00} }
and in general

E(G;) = {vjvs : vy € N(v;) \ {v1,02,...,0i1}}, i=w,w+1,...,7T.
Fori € {w,w+1,...,7}, let m; = |E(G;)|. Clearly E(H) = E(Gu) UE(Gup+1)U--- UE(Gy)
and G; = Ky, U (n(H) —m; — 1)Ky, foralli € {w,w +1,...,T}. Also, it is clear that
Q(H) = Q(Gw) + Q(Gw+1) + -+ + Q(Go). (4)
The signless Laplacian spectrum of G; = Ky ,,, U (n(H) — m; — 1)K is
{m; +1,111(G)=2] glr(H)=m]}

Therefore,
SH(G) =mi+k, forall i=w,w+1,...,7T. (5)
Now, applying Lemma 1 to Equation (4) and using Equation (5) and the fact that Z]-T: wMj =

m(H) =m — w(c‘;_l), we have

k T k T
SF(H) = ;qi(ﬂ) <3 Z;%(Gj) =) 5((G)
i= j=wi= j=w
= XT: <m]-+k) =m— w(wz—l) + (T —w + 1)k
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This shows that

w(w—1)

SH(G\Ky) =S (H) <m— 5

+ (tT—w+1)k.
Therefore, it follows that
SH(G) < w(k+1) —2k+ 5 (G\ Ka)
Sw(k+1)—2k+m—w
w(w —3)

= k(T =1) +m— SE2

+(t—w+1k

Equality occurs in (3) if and only if all the inequalities above become equalities. Since G is
connected equality occurs in S (G) < S (Kw) + S (G \ Ko), only if G = K,,. Conversely, if
G=2K,,thent=n—-1, w=mn, m= @ and so equality holds in (3), completing the

proof. O

Remark 1. Fora graph G € Ty, it is easy to see that the upper bound given by (3) is better than
w(w-1)

the upper bound given by (1) for all m > k(T — w + 1) + —==—*. In particular, for the graph
with T = w and k < n — w, the upper bound (3) is better than the upper bound (1).

Remark 2. Clearly for the graph G € I'y the upper bound given by (3) is always better than the
upper bound given by (2).

Let I'; be the family of all connected graphs except for the graphs G, where the vertices in
the vertex covering set S = {v1, vy, ..., V4] } of the subgraph P, has the property that there are
pendent vertices incident at some v; € S or any two vertices of S forms a triangle with a vertex
v € V(G) \ C, where C is the vertex covering set of G.

Rocha et al. [15] obtained an upper bound for Si(G) in terms of diameter of the graph G.
Using similar analysis, the following upper bound can be obtained for S} (G), in terms of the
diameter d — 1 of the graph G.

(6)

T qin( k7t ik
SH(G) <2(m—d)+1—n+4k+ p+cos <k_7r> Cos(d)sfi(nbzg;sm( 4 ),
d

d
where p is the number of isolated vertices in the graph obtained by removing the edges of P,
from G.
The following theorem gives an upper bound for S;"(G), in terms of the diameter, the num-
ber of edges m and the vertex covering number 7 of the graph G.

Theorem 3. Let G € I'; be a connected graph of order n > 3 with m edges having diameter
d — 1 and vertex covering number T. Then for1 <k <mn,

.

51(6) < (v 2]+ 2)k-+m—d-+ cos (1) 4 MDD + sin(4)

with equality if and only if G = P,.
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Proof. Let G be a connected graph with diameter d — 1 and vertex cover number 7 and let
C = {v1,vy,...,0¢} be a minimum vertex covering set in G. Since the diameter of G is d — 1,
it follows that P, is a subgraph of G. Also, the vertex covering number of a path graph P, on
n vertices is |5 ]. Let vy,v,. .., Ty be the vertices in C, which belong to V(P;). The signless

Laplacian spectrum of P is {2 — 2cos(%j), 0:7€{1,2,...,d—1}}. If we remove the edges of
P; from G, the signless Laplacian matrix of G can be decomposed as

Q(G) = QR U (n —d =1)K1) + Q(G\ Py),
where G \ P, is the graph obtained from G by removing the edges of P;. Applying Lemma 1
and using the fact that ;" (P; U (n —d — 1)Kq) = 5,7 (P;), we have

Kk
Z < ) 4i(Pa) +Zq1G\Pd)—5+(Pd)+S+(G\Pd)

i=1 i=1

Z(Z 2 cos( (d_d]_1>)>+51j(G\Pd)

~.

,\..
,_\>—l

kn) cos(Z) sin(A%) + sin (A7)

)
= 2k + cos (— sin(7) —1+57(G\ P),

d

where we have used the well-known equality

=l in(nk) cos(n) + sin(n
Zcos(n]’) =5 (k) cos(n) + sin(nk) _ 1cos(nk)

1
2sin(n) 2 T2

In order to establish the result, we need to estimate S, (G \ Py).

Let GL |41/ GL 42770 Gr be the spanning subgraphs of H = G\ P; corresponding to
the vertices ’(JL |41/ L |47 0r Ut of C, having vertex set same as H and edge sets defined as
follows.

d d
E(G;) = {vjvt : vr € N(v;) \ {v1,02,...,0i-1}}, L J+1, LZJ +2,...,1.

Now, proceeding similarly as in Theorem 2, we obtain

d
ST(G\ Py) < k(t— LEJ) +m—d+1.
Therefore, from above we have
krt cos(Z) sin(4F) + sin(X7)
d sin(%)

S;(G)ng—l—cos( —1+SH(G\ Py)

s kr (kT
S(T—LgJ—I—Z)k%—m i+ cos krt cos(d)sm(dg—l—sm(d)’
2 d in(7)
and hence the result follows.
Equality occurs in (7) if and only if all the inequalities above occur as equalities. Since G is
connected, the equality in the inequality S (G) < S (P;) + S/ (G \ P;) can only occur if and
n

only if G = P,. Conversely, if G = P, then T = ij, m=n—1, d = n —1 and so it can be
seen that equality holds in (7), completing the proof. O
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Remark 3. For the connected graphs G € I, it is easy to see that the upper bound given by

(7) is better than the upper bound given by (6) for all k < ”1;"_7‘”1;”. In particular, if G € T

-15)-
is such that T < L%J +2andm > n+d —1— p, the upper bound (7) is always better than the
upper bound (6).

Let I's be the family of all connected graphs except for the graphs G, where the vertices
in the vertex set S = {v1,vy,...,0s,, U1, Uy, ... Us,} of the subgraph K, ,, s1 < sp, has the
property that there are pendent vertices incident at some v; or u; € S or any two vertices of S
forms a triangle with a vertex v € V(G) \ C, where C is the vertex covering set of G.

Let Ks, s, 51 < 52, be the maximal complete bipartite subgraph of a graph G. Using the fact
that the vertex covering number of K, 5, 51 < sy, is 51 and its signless Laplacian spectrum is
{s1+ s2, sgszfl], 5[2517”, 0}, and proceeding similarly as in Theorem 2, we obtain the following
upper bound for 5;"(G).

Theorem 4. Let G € I's be a connected graph of order n > 2 with m edges having vertex
covering number T. If Ks, s, 51 < sy, is the maximal complete bipartite subgraph of the graph
G, then

S;(G) Sk(T—FSz—Sl)—Fm—Sl(Sz—l), (8)

with equality if and only if G = K, 5, and s1 + s, = n.

If s; = s, for the graphs G € T, it is easy to see that the upper bound (8) is always better
than the upper bound (2).

2 CONJECTURE 1 IS TRUE FOR SOME MORE CLASSES OF GRAPHS

In this section, we show that Conjecture 1 holds for some more classes of graphs.

Theorem 5. If G € I'; is a connected graph of ordern > 12 with m edges having clique number
3+\/3n22—14n+9

w, then for w >
k(k+1)
2 7

SH(G) <m+
forallk € {1,2,..., 5]}

Proof. Let G be a connected graph of order n having clique number w and vertex covering
number 7. If T = n — 1, clearly G = K;, and so Conjecture 1 always holds (this is due to the fact
that Conjecture 1 holds for all regular graphs). So suppose that T < n — 2. With this choice of
T, from inequality (3), we have

-3 k(k+1
$5(G) gk(n—3)+m—% <m+ M ; ),
if k(2n — 6) < k* + k+ w(w — 3). Thatis, k* — (2n — 7)k + w(w — 3) > 0.
Consider the polynomial f(k) = k* — (2n — 7)k + w(w — 3), k € [1,n — 1]. The roots of this
polynomial are

(2n —7) + \/4n?2 — 28n + 49 — 4w (w — 3)
2

N =
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and
(2n —7) — /4n2 — 28n + 49 — 4w (w — 3)
p=! . |
Thus f(k) > 0, forall k € (—oo, ,3] U [, +-00). We will show B > 5. We have B > 5 implies
(2n —7) — \/4n2 — 28n + 49 — 4w (w — 3) n
2 2

which implies that (n — 7)? > 4n? — 28n + 49 — 4w(w — 3), and further implies that 4w? —
12w — (3n* — 14n) > 0, which gives @ > 3TV -l4n+9 ”3”22_M”+9.
Since a (3 3”22_14”+9) = 3”514 > n —1, for all n > 12, it follows that a(w) > n — 1, for all

w < 3EVin'-—l4n+9 ”’7’22’14”*9. Thus, if w > 3EV3n°—14n+9 ””“22’14””, we have proved that Conjecture 1 holds for all
ke{1,2,...,[5]} O

Let (), be a family of those connected graphs G & I'y for which the vertex covering number
T€{w—1,w,w+ 1}, that s,

O, ={Gell:T=w—-1lorworw+1}.
For the family of graphs (), we have the following observation.

Theorem 6. If G € (), then

Sk(G) <m+

holds for all k, if T = w — 1; holds for all k except fork = w —2,w — 1 if T = w; holds for all
k k < 20180t gnd k > 2= VBOtl i = o + 1.

k(k+1)
2

Proof. LetG € O),. Then T € {w — 1, w,w + 1}. If T = w — 1, from inequality (3), we have

5 (G) Sk(w—2)+m_w§m+k(k27+1),
if 2K(w — 2) < K2+ k+ w? — 3w, that is,
R (20 = )k + w? 3w > 0. ©)

For the polynomial f(k) = k* — (2w — 5)k + w? — 3w, the discriminant D = (2w — 5)? —
4(w2 —3w) = 25—8w < 0,if w > 4. This shows that (9) holds for all w > 4. By direct
calculations, it can be seen that (9) holds for w < 3. Thus, it follows that (9) is true for all k.

If T = w, from inequality (3), we have

$; (G) Sk(w—1)+m_@ Sm+k(k;—1)
£ 2k(w — 1) < K + k+ @ — 30, that is,
K = (2w =3)k+ @’ 3w 2 0. (10)

For the polynomial f(k) = k? — (2w — 3)k + w? — 3w, the roots are w — 3 and w. It follows that
f(k) <0, forallk € (w—3,w). Since k and w are integers and the only integers in (w — 3, w)
are w — 2, w — 1, it follows that f(k) > 0 for all k except k = w — 2, w — 1. Thus, it follows that
(10) holds for all k ¢ {w — 2, w —1}.

If T = w + 1, proceeding similarly as above, it can be seen that the conjecture holds for all

k k < 2w—1— \/Sw—o— and k > 2w—1+2\/8w+1_ 0
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Theorem 7. Let G € I'; be a connected graph of order n > 2 with m edges having vertex
covering number T. Let Ks, s, be the maximal complete bipartite subgraph of G. Then Con-

jecture 1 holds for all k, if T < B AC ) VSS;“” holds for all k < 2T—1—\/(2T—21)2_851(51—1) and

k> 2T71+\/(2T721)27851(5171)/I.fT > 1+\/8521(51—1)'

Proof. Using s; = s; in inequality (8), we have

k(k+1)

S;(G)SkT—i‘m—Sl(Sl—l)Sm—F > ’

! K* — (21 — 1)k +2s1(s; — 1) > 0. (11)
The roots of the polynomial f(k) = k* — (2t — 1)k + 2s1(s; — 1) are & = w and B =
w, where § = (27 — 1)? — 8s1(s; — 1). We have (2t — 1)?> — 8s1(s; — 1) < 0, which
implies that 472 — 47 — (85% —8s7 — 1) < 0, which gives T < Hivsszl(sl_l). This shows that
the discriminant of the polynomial f(k) is non-positive for all T < Hivgszl(SﬁD. That is, (11)

holds forall T < AV VSSQ(H. On the other hand if the discriminant of the polynomial f (k) is
non-negative, then (11) holds for all k > « and for all k < 8, completing the proof. O

Let G be a connected bipartite graph of order n having the vertex covering number 7. For
bipartite graphs, it is well known that T < 7. With this in mind, we have the following obser-
vation for bipartite graphs.

Theorem 8. Let G € I'3 be a connected bipartite graph of order n > 4 with m edges having the
vertex covering number . If K, 5, with sy > %, is the maximal complete bipartite subgraph of
the graph G, then

k(k+1)

Sk(G) <m+ )

forallk <% —1andk > %.

Proof. Using s; = s; in (8) and the fact that T < 7, for bipartite graphs we have

S (G) <kt+m—si(sg—1) < k(g)+m—51(51 D <m+ k(k;l)
if
kn S k(k+1) +251(Sl — 1) (12)

The right hand side of (10) is an increasing function of s;. Therefore, to prove the assertion, it
suffices to consider s; = 7. With this value of s, from (12), we have

n(n —4)

K —(n—1)k+ > 0.
: 2 n(n —4)
The roots of the polynomial f(k) =k~ — (n — 1)k + —g are
I T B e (VT
- 2 s - ) .

This shows that f(k) > 0, for all k > «; and f(k) > 0, for all k < B. By using elementary
algebra it can be seen that & < 0.85351 and 8 > 0.1464n — 1. Hence the result follows. O
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For graphs with girth ¢ > 5, Rocha et al. [15] showed that Brouwer’s conjecture holds for
all k < L%J . Using similar analysis, we have the following observation.

Theorem 9. For connected graphs with girth ¢ > 5, Conjecture 1 holds forallk, 1 <k < [£].

Using Theorem 3, the fact that

cos <krc> + cos() Sin(%z);— sin(*7)

7T
i : <2k+1
sin(%
and proceeding similarly as in above theorems, we arrive at the following observation.

d

Theorem 10. Let G € I'; be a connected graph of order n > 3 with m edges having diameter
d — 1 and vertex covering number t. Then for 1 < k < n, Conjecture 1 holds for all k, if

d
¢ < LD po1ds for all k,

21— 2(4) +7 /21— 2(4] +7-8(d - 1)

<
k< 2

and

- 21— 2|4| +7+ /21~ 2[4] +7-8(d - 1)

iy 2 7
ifr > 2[4]-7++/8(d—1)

5 .

3 CONCLUDING REMARKS

The aim of this paper is twofold. Firstly, in Section 2, we obtained some upper bounds for
the graph invariant S (G), in terms of clique number w, the vertex covering number 7 and the
diameter of the graph G. These bounds can be used to obtain the upper bounds for the signless
Laplacian energy of the graph G and so can be helpful to obtain the extremal graphs among
various families of the graphs. Secondly, in Section 3, we have used the results of Section 2 to
verify the truth of the Conjecture 1 for some more families of graphs. Although, in Sections 2
and 3, we have restricted ourselves to graphs G € {I';, I, '3}, the importance of these results
can be realized from the fact that not many families of graphs are known for which Conjecture
1 holds.
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Anst aesikoro mpocroro rpadpa G(V,E) 3 n BepimHamu i m pebpamy, MHOXIHOIO BepIIIVH
V(G) = {v1,0v2,...,vn} i MHOXMHOIO pebep E(G) = {e1, €2, . .., e}, MaTpumst cymixuocTi A = (a;))
rpacdpa G — e (0, 1)-kBaApaTHa MaTpuLIsI IOPSIAKY 1, AASI SIKOI eaeMeHTH 3 iHaekcoM (i, ) AopiB-
HIOIOTP 1, SIKIO v; CymixHa 3 v; i 0 y mpotuaexuomy sumaaxy. Hexait D(G) = diag(dy, da, . .., dn)
— AlaroHanbHa MaTpuisl, acoliitoBata 3 G, ae d; = deg(v;), aast Bcix i € {1,2,...,n}. Marpumi
L(G) = D(G) — A(G)iQ(G) = D(G) + A(G) Ha3uBaroThCsI AaTAaciaHiBehKi i 6e33HAKOBI Aamaacia-
HiBCbKI MaTpMIli, BiAITIOBiAHO, a Ix crieKTpy (BAacHi 3HaUeHHS), BIATIOBiAHO — AallAaciaHiBCBKMM cIle-
KTpoM (L-criekTpoM) Ta 6e33HaAKOBMM AaIlAaciaHiBCBKIUM cHeKTpoM (Q-criekTpoM) rpadpa G. Sximo
0= pn < pp_1 < -+ <y € AannaciagiBebKi BaacHi 3HaveHHsT G, Bpoysep npymycTus, mo cyma k
k-é—l)

k
HaM6IABIIMX AalIAaciaHiBcbKmX 3HaueHb Si(G) 3aproBoabHsIE Sp(G) = Y u; < m+ ( i e npu-
i=1

IyIIeHHs € BCe e BiakpuTuM. SIKIIo 41, g2, . . ., §n — O€33HAKOBi AamAaciaHiBCbKi BAACHI 3HaUEHHS
rpada G arsi 1 < k < n, i Hexait S, (G) = Y¥ | g; — cyma k Haitbiabimx 6e33HAKOBMX AamAacia-
HIBCBKVX BAACHMX 3Ha4ueHb G. AHaAOTiUHO A0 mpumyIneHHs: bpoysepa, Acxpad Ta iH. TpuITy CTAN,
110 S,:’ (G) < m+ (kél) aast Bcix 1 < k < n. ILle mpumymieHHsT 6yAO MATBEPASKEHO AASI AESIKMX
KAaciB rpadis. My oTpuMany BepXHe 06MeXeHHS AT S}j (G) B TepMiHax KAIKOBUX UMCEA W, UMCEA
TIOKPUTTSI BepIIMH T i AlameTpa rpadra G. 3pelIToro, MU IOKa3aAH, 10 IPUITYIIEeHHS! BUKOHY€EThCS
AAST IIIMPOKOI ciM'T rpadpis.

Kontouosi croea i ppasu: 6e33HaKOBi AamaaciaHIBChKi CIIEKTpY, IpUITyIIeHHs: bpoyBsepa, KAikosi
4lCAQ, UMCAA IOKPUTTSI BePIIVH, AlaMeTp.



