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We prove that every infinite ring R is either differentially trivial or has a non-zero derivation

d with an infinite kernel Ker d.

Introduction

As usually a derivation d of an associative ring R is an additive mapping d : R → R

which satisfies the Leibnitz rule, i.e.

d(ab) = d(a)b+ ad(b)

for any a, b ∈ R. T. Laffey [3] has proved that an associative ring with finite commutative
subrings is finite. From this it follows that a ring in which every non-zero inner derivation has
a finite kernel is commutative or finite. We investigate here an associative rings designated
in the title and prove the following

Theorem. If a ring R is not differentially trivial and its every non-zero derivation has a
finite kernel, then R is finite.

Recall that a ring R having no non-zero derivations is called differentially trivial [1]. All
rings are assumed to be associative. Henceforth, for any ring R (with an identity element)
and its ideal I we denote by N(R) the set of all nilpotent elements, J(R) the Jacobson radical,
U(R) the unit group, Ker d = {a ∈ R | d(a) = 0} the kernel of d, ann I = {a ∈ R | aI = {0}}
the left annihilator of I in R, charR the characteristic of R, 0R the zero map.

Any unexplaned terminology is standard as in [4] and [5].
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1 Preliminaries

For the next we need some preliminary results. As defined in [2], a v-ring V is a com-
mutative unramified complete (in the J(V )-adic topology) regular local rank one domain of
characteristic zero with the residue field V/J(V ) of prime characteristic p.

Lemma 1.1. Let R be a commutative local ring of prime power characteristic pk for some
k ≥ 1. If J(R) is a nil ideal of finite index in R, then

R = J(R) + V,

where V is a finite ring which is a homomorphic image of some v-ring and

J(R) ∩ V = pV.

Proof. Inasmuch as R/J(R) is a finite field, there exists an element θ ∈ R such that the unit
group

U(R/J(R)) = 〈θ〉

is cyclic generated by element θ = θ + J(R) of order pn − 1. Then θp
n − θ ∈ J(R), and so θ

is a root of some non-zero polynomial f ∈ Zpk [X]. Consequently

R = J(R) + Zpk [θ].

Since Zpk [θ] is a finite local ring, by results of Cohen [2] (see Theorems 9 and 11)

Zpk [θ] = J(Zpk [θ]) + V,

where V is a finite ring which is a homomorphic image of some v-ring, J(Zpk [θ]) ∩ V = pV

and this completes the proof.

Corollary 1.1. Let R be a commutative local ring of prime characteristic p. If J(R) is a
nil ideal of finite index in R, then

R = J(R)⊕ C

is a group direct sum, where C is a finite field.

Lemma 1.2. Let R be a commutative ring, in which every non-zero derivation has a finite
kernel. If R has a non-zero derivation, then charR is finite.

Proof. In fact, if d is a non-zero derivation of R, then 1 ∈ Ker d. Since Ker d is a finite ring,
we obtain that n · 1 = 0 for some positive integer n.

Remark 1.1. If d is a non-zero derivation of R with a finite kernel Ker d, then in view of a
group isomorphism

Im d ∼= R/Ker d

we deduce that the image d(R) = Im d = {d(a) | a ∈ R} is infinite.
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2 Proof of Theorem

Assume that a ring R has some non-zero derivation d. If R is not commutative, then by
Theorem of Laffey [3] it is finite. Therefore in the next without loss of generality we can
assume that R is infinite and commutative. As a consequence, N(R) is an ideal of R and
N(R) ⊆ J(R). By Lemma 1.2 charR is finite. Without loss of generality let us charR = pn

for some prime p and integer n ≥ 1. A set

A = {apn | a ∈ R} ⊆ Ker d

is finite, and so for any prime ideal P of R the quotient ring R/P is a finite field. This means
that

pR ⊆ J(R) = N(R)

is a nil ideal. Inasmuch as for almost all elements a, b ∈ R we have

0 = ap − b
p
= (a− b)p

in the quotient ring R = R/J(R), we deduce that R is finite. Therefore in the next we also
assume that R is a local ring.

Let us 0 6= v ∈ J(R) and v2 = 0. Suppose that vd 6= 0R. Since |Ker vd| < ∞, we deduce
that

vd(vd(R)) 6= {0} (1)

and vd(v)d(R) is an infinite set. By the same argument as above we obtain that

vd(v)md(R) 6= {0} (2)

for any positive integer m.
1) If p 6= 2, then from 0 = d(v2) = 2vd(v) it follows that vd(v) = 0, and this gives a

contradiction with (1).
2) Let p = 2. If d(v) ∈ U(R), then ud(v) = 1 for some invertible element u ∈ U(R). If

δ = ud, then δ is a derivation of R, δ(v) = 1,

0 = δ(v2) = 2v and 0 = δ(0) = δ(2v) = 2δ(v) = 2.

This yields that n = 1. By Corollary 1.1 for every element r ∈ R there are unique elements
j ∈ J(R) and c ∈ C, where C is a finite field, such that

r = j + c. (3)

Obviously that ann J(R) 6= ann(J(R)2). Then there exist

w0 ∈ ann(J(R)2) \ ann J(R) and a ∈ J(R) \ J(R)2

such that aw0 6= 0. Since J(R) = 〈a〉 ⊕K is a group direct sum, each element j ∈ J(R) one
can write

j = a1 + k, (4)
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for unique elements a1 ∈ 〈a〉 and k ∈ K. Then the rule

µ(r + J(R)2) = a1 + J(R)2

with r, a1 as in (3) and (4), is a non-zero derivation of R/J(R)2. The mapping χ : R → R

given by
χ(r) = w0a1 (r ∈ R)

determines a non-zero derivation of R, where K ⊆ Kerχ is infinite. This contradiction yields
that d(v) ∈ J(R). But in view of (2) again we have a contradiction. Therefore vd = 0R for
every v ∈ J(R) such that v2 = 0. By the same argument we can obtain that J(R)d(R) = {0}
and consequently

d(R)2 = {0} and d(J(R)2) = {0}.
Hence the ideal J(R)2 is finite. Furthermore,

d(pR) = pd(R) = {0},

and so an ideal pR is finite. By Lemma 1.1 R = J(R) + V , where V is a finite ring which is
a homomorphic image of some v-ring and J(R) ∩ V = pV .

a) Suppose that there is some element

t0 ∈ J(R) \ ann(J(R)2 + pR) with t0a 6= 0

for some a ∈ J(R). Clearly the quotient ring R̂ = R/(J(R)2+pR) has a non-zero derivation.
Since the quotient ring

R̂ = 〈â〉 ⊕ Ŝ ⊕ V̂

is a group direct sum for some subgroup Ŝ of J(R̂), every element r̂ = r + J(R)2 + pR ∈ R̂

can be uniquely written in the form

r̂ = b̂+ ŝ+ ŵ

for some elements b̂ = b+ J(R)2 + pR ∈ 〈â〉, ŝ ∈ Ŝ, ŵ ∈ V̂ . The rule

δ(r + J(R)2 + pR) = b+ J(R)2 + pR

determines a non-zero derivation δ. Then the mapping γ : R → R given by γ(r) = t0b (r ∈ R)

is a non-zero derivation of R with infinite Ker γ, a contradiction.
b) Let us J(R) = ann(J(R)2 + pR). Then J(R)3 = {0}, pJ(R) = {0} and

R = R/J(R)2 = J(R)⊕ V

is a group direct sum, where V is a finite field. Obviously R 6= V and every element r ∈ R

can be uniquely written in the form r =  + z for some  ∈ J(R) and z ∈ V . There is
l0 ∈ ann(J(R)2) \ ann J(R) with l0b 6= 0 for some b ∈ J(R). Inasmuch as J(R) = 〈b〉 ⊕N is
a group direct sum, element  = b1 +m for some b1 = b1 + J(R)2 ∈ 〈b〉, m ∈ N and the rule

ρ(r + J(R)2) = b1 + J(R)2 (r ∈ R) (5)

is a non-zero derivation ρ of R. Then the mapping π : R → R given by π(r) = l0b1 (r ∈ R),
where r and b1 are as in (5), is a non-zero derivation of R with an infinite kernel Kerπ, a
contradiction. 2
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Corollary 2.1. Let R be an infinite ring. Then R is differentially trivial or has a non-zero
derivation d with an infinite kernel Ker d.
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Артемович О.Д. Кiльця, ненульовi диференцiювання яких мають скiнченнi ядра // Кар-
патськi математичнi публiкацiї. — 2011. — Т.3, №2. — C. 13–17.

Доведено, що кожне нескiнченне кiльце R диференцiйно тривiальне або має ненульове
диференцiювання d з нескiнченним ядром Ker d.

Артемович О.Д. Кольца, ненулевые дифференцирования которых имеют конечные ядра
// Карпатские математические публикации. — 2011. — Т.3, №2. — C. 13–17.

Доказано, что каждое бесконечное кольцо R либо является дифференциально три-
виальным, либо имеет ненулевое дифференцирование d с бесконечным ядром Ker d.


