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ASYMPTOTIC BEHAVIOR OF AVERAGING OF ENTIRE FUNCTIONS OF IMPROVED
REGULAR GROWTH

Using the Fourier series method for entire functions, we investigate the asymptotic behavior of
averaging of entire functions of improved regular growth.
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It is well known that an entire function f of order p € (0, +o0) with the indicator / is of
completely regular growth in the Levin-Pfltiger sense [5, p. 183] if the relation

log|f(z)| = [z[Ph() +0o(|z]P), z—eo, ¢=argze[0,2n),

holds outside an exceptional set Cy C C of disks of zero linear density. In the theory of entire
functions of completely regular growth (see [5, pp. 182-217], [1], [2]) the following theorem is
valid.

Theorem A. ([5, p. 194]) If an entire function f of order p € (0, +co) with the indicator h is of
completely regular growth, then

r t

(oo [t [lolfen)]
igyi= [ T [ BRI du= Hhig) +otf), 7 too

1 1
holds uniformly in ¢ € [0,271].

Similar results for entire functions of p-regular growth were obtained by A. Grishin [3]
and for meromorphic functions of completely regular growth of finite A-type [10, p. 75] by
A. Kondratyuk [10, p. 112] and Ya. Vasyl’kiv [12] (see also Yu. Lapenko [11]).

In [13, 6], the notion of an entire function of improved regular growth was introduced, and
criteria for this regularity were established in terms of the distribution of zeros that are located
on a finite number of rays. In [4] this notion was generalized to subharmonic functions. A
criterion for the improved regular growth of entire functions of positive order with zeros on a
finite system of rays in terms of their Fourier coefficients was established in [7].

An entire function f is called a function of improved regular growth (see [13, 6, 7]) if for
some p € (0,4+) and p; € (0,p), and a 27-periodic p-trigonometrically convex function

YAK 517.5
2010 Mathematics Subject Classification: 30D15.

© Khats’ R.V.,, 2013



130 KHATS” R.V.

h(¢) # —oo there exists a set U C C contained in the union of disks with finite sum of radii
and such that _
log|f(z)| = |z|Ph(¢@) + O(|z|""), U #z=re'? — co.

If f is an entire function of improved regular growth, then it has [13] the order p and indi-
cator h.

In the present paper, using the Fourier series method [10] for the logarithm of the modulus
of an entire function we obtain an analog of Theorem A for the class of entire functions of
improved regular growth. Our principal result is the following theorem (see also [9]), which
improves the results of papers [8, 14].

Theorem 1. If an entire function f of order p € (0,+o0) is of improved regular growth, then

for some p; € (0,p)

r rp
Ii(p) = ;h(qo) +0(r?), r— +oo,

holds uniformly in ¢ € [0,27].

To prove Theorem 1, we need some preliminaries. Let f be an entire function with f(0) =1,
let (Ay),en be the sequence of its zeros, let Qi be the coefficient of zF in the exponential factor
in the Hadamard-Borel representation [5, p. 38] of an entire function f of order p € (0, +o0),

and let
27

1 . .
cilrlog f) i= 5 [ e log|f(re?)| dg, ke Z,
0

27
cx(r, If) := %/eik"”l}(q)) dp, keZ, r>0.
0

Put ([10, p. 104], [12])
ne(r,f) ==Y e-kargdn N (r, f) == /L(i'f) dt, keZ.
[Anl<r 0

Then (see [10, p. 107], [12])

r t

er(r, 1) = /@/Mw, kez, (1)
t u
0 0
and
Ni(r, f) = cp(r,log |f]) — KPcx(r, Iy), kez, r>0. (2)

Lemma 1. ([7]) Let f be an entire function of improved regular growth of order p € (0,+o0).
Then for some p3 € (0,p) and eachk € Z

ck(r,log|f|) = cxr® + O(r?3), 1 — oo,
Ni(r, f) = cx(1 — kz/pz)rp +0(r’), r— oo, 3)

where
1 27
— = —ikg
C: 27‘(0/6 h(e)de.
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By M;, M;, ... we denote some positive constants.

Lemma 2. If an entire function f of order p € (0, +0) is of improved regular growth, then

My M
ex(r, 1) < T+ 51, ke Z\ {0}, (4)

for some p3 € (0,p) and all r > 0.
Proof. Let p be noninteger and p = [p]. Then (see [10, pp. 10, 120, 124], [12])

cx(r,1og|f]) = c_(r,log|f]), k< -1, co(r,log|f]) = No(r, f), ®)

el tog ) = Jout + X ((;)"— (;)k) ML g4 N, ), 1<k<p @
0

and
+00

c(r,log |f]) = _g (rk / FING(E f) dt o+ o / NG ( f) dt) +Ne(r f), ()
0

r

fork > p + 1. Since |Nk(, f)| < Ny(r, f) for each k € Z, then using (3) and (6), we obtain

atrtog D] < Lo+ £ | ((;)k— (;)k) ROl ) g1 4o, )
0

’ k
%\Qk\r +§/ ((;)k— (;) ) (cot™1 +O(tP37 1)) dt + cor® 1 + O(rf2 1)
0

_ cop? o O(rP3) ’
07— 12 02—

as r — +oo. Similarly, using formulas (3) and (7), we get

1<k<p<ps (8)

2k* — p? 2k* — p}
ex(rlog |f1)] < e’ + 55— 200", k= p+1>p, ©
3

as r — +o0. Therefore, from (2), (3) and (8) it follows

cc(rJog [f)| +No(r ) _ 200K, Ak
@ e =" " g
Ms , My
st
Similarly, from (2), (3) and (9), we get

el 1)) <

r>0, 1<k<p<ops. (10)

3k? — 20? 3k? — 203
- " cor? + 73 703
|Ck(7" If)| kz(kz p )CO kz(kz _p )O( )
M Mg

Thus, relations (1), (5), (10) and (11) imply (4). The case p € IN is considered analogously.
Lemma 2 is proved. 0
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Proof of Theorem 1. Using (1) and (2), we have

Ck(i’, I}) _ ck(r,log |fl{)2_ Nk(rlf)’ ke Z\{O},

and t
dt [ co(u,lo
“5:/7/0 slfl) 4,
0

Moreover, according to Lemma 1, we get
co(r, 1) = ol + O(r%7)
(A =05 ’
f 02

P O(rf
ck(r, If) = ckP + %, ke z\ {0},

as r — oo for some p3 € (0, p). Therefore, taking into account Lemma 2, we obtain

(@) := ) e(r, 1})€ik(” = Y l})eik‘P +co(r, 17)
kez kez\{0}

0 . rP
— k% Ckelkqo + O(rp3) — Fh(q)) + O(rp3)’
S

as r — oo uniformly in ¢ € [0, 27]. O
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3a AOTIOMOTOI0 MeTOAY PIAIB Dyp’e AAS TiAMX PYHKIIIN AOCAIAKEHO aCUMIITOTUYHY ITOBEAIHKY
ycepeAHeHHS IiAMX (PYHKITiM MOKPaIIeHOTO PEryASIPHOTO 3pPOCTaHHS.

Kniouosi cnosa i ¢ppasu: 1iai pyHKIIT HIAKOM peryAsipHOTO 3pOCTaHHs, il (pyHKIII moxpaiiie-
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C moMoIIpio MeToAa psiA0B Dypbe AAS HeABIX (PYHKIVIL MCCAEAOBAHO aCMMIITOTUYECKOE TI0Be-
AeHVEe YCPEeAHEHNSI HEABIX (PYHKIINIA YAYUIIIEHHOIO PETYASIPHOTO POCTa.
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