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We prove that a monomorphic functor F : Comp — Comp with finite supports is epi-
morphic, continuous, and its maximal @-modification F° preserves intersections. This implies
that a monomorphic functor F' : Comp — Comp of finite degree deg F' < n preserves (finite-
dimensional) compact ANRs if the spaces F'@, F°& and Fn are finite-dimensional ANRs. This
improves a known result of Basmanov.

1 INTRODUCTION

In this paper we study monomorphic functors with finite supports defined on topological
categories and then apply the obtained results to generalize the classical result of Basmanov
on the preservation of (finite-dimensional) compact ANRs by functors of finite degree in the
category Comp of compact Hausdorff spaces and their continuous maps.

Let T denote the category whose objects are topological spaces and whose morphisms are
(not necessarily continuous) functions between topological spaces. By a Top-like category
we understand a subcategory C of the category T such that each finite discrete topological
space is an object of C and each map f : D — X from a finite discrete space to an object of
the category C is a morphism of C. This implies that each monomorphism of the category
C is an injective function.

We say that a functor F': C — T defined on a Top-like category C

e is monomorphic if F preserves monomorphisms;

e has finite supports (resp. finite degree < n) if for each object X of C and each a € F X
there is a map f: A — X from a finite discrete space A (of cardinality |A| < n) such
that a € Ff(FA);

e preserves the empty set if F& = @.
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Let us observe that for each (monomorphic) functor F' : C — T that does not preserve
the empty set we can change the value of F' at @ and define a new (monomorphic) functor
F,:C—T,

FX if X # g,
F.X =
1%) it X =02,

which preserves the empty set. This functor F, is called the minimal @-modification of F.

By an @-modification of a (monomorphic) functor F' : C — T we understand a (mo-
nomorphic) functor F : C — T such that FX = FX for each non-empty object X of the
category C. So, the values of the functors F' and F can differ only on the empty set. The
functor F, is the minimal @-modification of F' in the sense that F, is a subfunctor of any
@-modification F of F.

It turns out that the family of all @-modifications of a given monomorphic functor F has
a maximal element F°. Below we identify a finite ordinal n with the finite discrete space
{0,...,n—1}. Fori € 2let f; : 1 — {i} C 2 be the constant map.

Theorem 1. Fach monomorphic functor F' : C — T has the maximal @-modification
F° . C — T assigning to & the space

F°®:{a€F1:Ffo(a):Ffl(a)}CFl.

Proof. In the formulation we have defined the action of the functor F° on the empty set.
For each non-empty space X in C we put F°X = FX.

Now we define the action of F° on morphisms. Let f : X — Y be a morphism of the
category C. If X is not empty, then so is Y and we put F°f = Ff. If X = @ =Y, then
F°f is the identity map of the space F°@. If X = @ and Y # &, then we put

F°f = Fg|F°@ : F°@ — F°Y = FY

where g : 1 — Y is any map.

Let us check that the morphism F*° f is well-defined, i.e., it does not depend on the choice
of the map ¢ : 1 — Y. Indeed, given another map ¢’ : 1 — Y, consider the map h:2 — Y
defined by h(0) = ¢(0) and h(1) = ¢’(0). It follows that g = ho fy and ¢’ = ho f; and then
for any a € F°Q

Fg(a) = F(ho fo)(a) = Fho Ffy(a) = Fho Ffi(a) = F(ho fi)(a) = Fg'(a).

This argument also implies that F°(go f) = F°go F°f for any morphisms
xtoy 2.7

of the category C. This means that F° : C — T is a well-defined monomorphic functor. It
is clear that F° is an @-modification of F'.

It remains to check that F*° is the maximal @-modification of F'. We shall show that for
any @-modification F' of F we get Fi?(F@) C F°@ C F1 where i : @ — 1 is the unique
map. Applying the functor F' to the equality fyoi? = fi 0i? we get Ffyo Fi?(a) = Ff, 0
Fi?(a) for every a € F@, which means that Fi?(a) € F°@ and thus Fi?(F@) C F°@. [
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Now, given a functor F': C — T with finite supports and an object X of the category
C, we define the support map suppy : F°X — [X]|<¥ into the set [X]|<“ of finite subsets of
X. Each finite subset A C X will be endowed with the discrete topology. By i% : A — X
we denote the identity map from the finite discrete space A to X.

For an element a € F°X the set

suppy (a) = (WA € [X] :a € FPig(F°A)}

is called the support of a.
The principal result of this paper is the following theorem, which has been applied in [2].

Theorem 2. Let C be a Top-like category and F' : C — T be a monomorphic functor with
finite supports. For any element a € F°X the support A = suppy(a) is a well-defined finite
subset of X such that a € F°i%(F°A).

We postpone the proof of this theorem till Section 2. Now we discuss an application of
Theorem 2 to functors of finite degree in the Top-like category Comp of compact Hausdorff
spaces and their continuous maps. First we recall the necessary definitions, see [5] for more
details.

A functor F': Comp — T

e is epimorphic if F' preserves epimorphisms (which coincide with surjective maps in the
categories Comp and T);

e is continuous if F(Comp) C Comp and F' preserves the limits of inverse spectra in
the category Comp;

e preserves intersections if for any compact Hausdorff space X and closed subsets X, C
X, o € A, with intersection Z = ", 4 Xa, we get Fi%(Z) = (\,en Fix® (FXa).

a€A

Here for two compact Hausdorff spaces A C B by i4 : A — B we denote the identity
embedding.

Theorem 2 is a key ingredient in the proof of the following:

Theorem 3. Each monomorphic functor F' : Comp — T with finite supports is epimorphic
and its maximal @-modification F° : Comp — T preserves intersections.

For endofunctors F' : Comp — Comp in the category of compacta we can prove a bit
more:

Theorem 4. For each monomorphic functor F : Comp — Comp with finite supports
its maximal @-modification F° : Comp — Comp is a monomorphic, epimorphic, contin-
uous, intersection preserving functor with finite supports. Moreover, the functors F and
F° preserve the weight of infinite compacta if and only if for every n € w the space Fn is
metrizable.

In [3] V.Basmanov proved that each monomorphic continuous functor F : Comp —
Comp of finite degree deg F' < n preserves (finite-dimensional) compact ANRs provided F’
preserves intersections and the spaces F'@ and F'n are finite-dimensional ANRs. Theorem 4
allows us to improve this Basmanov’s result:
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Theorem 5. A monomorphic functor F : Comp — Comp of finite degree deg F' < n pre-
serves (finite-dimensional) compact ANRs provided F'@, F°&, and Fn are finite-dimensional
ANRs.

This theorem implies the following corollary that will be applied in [1]| for studying the
functors of free topological universal algebras.

Corollary 1. A monomorphic functor F' : Comp — Comp of finite degree deg F' < n
preserves (finite-dimensional) compact ANRs provided the space F'1 is finite and Fn is a
finite-dimensional ANR.

2 PROOF OF THEOREM 2

We assume that F': C — T is a monomorphic functor with finite supports defined on a
Top-like category C and F° : C — T is its maximal @-modification. We recall that for a
finite subset A of a topological space X by i% : A — X we denote the identity map from A
endowed with the discrete topology to X.

Theorem 2 will be derived from the following lemma.

Lemma 1. For any subsets A, B of a finite discrete space X we get
Foid"B(F°(AN B)) = Fig(FA) N FPi%(FB).

Proof. The inclusion F°i4"2(F°(ANB)) C Foi4(F°A) N F°if (F°B) follows from the func-
toriality of F'°. To prove the reverse inclusion, we consider 4 cases.

1. If A C B, then i% =% oif and then F°i4(F°A) = F°if o Fei(F°A) C Fei¥(F°B)
and Foi4(F°A) N F°iB(F°B) = Feig(F°A) = Fi{"B(F°(AN B)).

2. By analogy we can consider the case B C A.

3. The sets A, B C X are non-empty but have empty intersection AN B = &. In this
case F°A = FA and F°B = FB. To prove that Fi§(FA)NFi¥(FB) C F°i%(F°2), fix any
element ¢ € Fig(FA) N Fi%(FB). We need to prove that ¢ € F°i%(F°@). Find elements
ca € FA and cg € FB such that Fi{(cs) = c = Fif(cp).

First we prove that for any point a € A we get ¢ € F z_{{}}(F {a}) C FX. Indeed, consider
themap r : X — Asuch that r(z) =zifxr € Aandr(z) = aifx € X\ A. Let’r{Ba} : B — {a}

denote the constant map and observe that i§ or o = zé?} o T{BL}-

Applying the functor F to the equality iy = iy oroiy, we get ¢ = Fis(ca) = FigoFro
Fif(ca) = Fi{ o Fr(c) = Fi% o Fro Fif(cp) € F(i4 or 0if)(cp) = F(i{) 0P )(cp) =
Fil}(FrB (cp)) € Fi} (F{a}) C FX.

By the same argument, we can prove that ¢ € Fzé?}(F{b}) C FX for any b € B.

Let r¥ : X — 1 be the unique map and f,, f, : 1 — X be two maps such that f,(0) = a €
A and f,(0) = b € B. Since ¢ € Fil\(F{a}) = Ff,(F1) and ¢ € Fil’ F({b}) = Ff,(F1)
there are two elements c,, ¢, € F1 such that Ff,(c,) = ¢ = Ffy(cy). Since rf o f, = id =
rX o fy, we conclude that

Cq = Frf( o Ffu(c,) = Frf((c) = Frf( o Ffy(cy) = cp.
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Now we see that the element ¢; = ¢, = ¢, belongs to F°@ and ¢ = Ff,(c1) = F fy(c1),
which means that ¢ = F°i% (¢;) € F°i5(F°@) according to the definition of the morphism
Fei5 . F°o — F°X = FX.

4. The intersection A N B is not empty. In this case F°A = FA, F°B = FB and
F°(ANnB)=F(ANB).

To prove that Fig(FA)NFi%(FB) C Fis"B(F(ANB)), fix any element ¢ € Fisg(FA)N
Fi%(FB) and find elements c4 € FA and cp € F'B such that Fi4(cs) = ¢ = Fi%(cp).

Choose any map 74,5 : X — AN B such that r(x) = z for all z € AN B and define
retractions ¥ : X — A and r¥ : X — B by

T fzeA T ifreB

(1) = { and 73 (7) = {

r4-p(z) otherwise r4-p(x) otherwise.

X X X _ X . ,.X
Observe that rq z =rgory =74 org.

We claim that cq = Fr(c). Since i§ = i§ or3 o iy, we get
Fz”;‘((cA) = Fi‘;} o Frf o Fif((cA) = Fz";‘( o Frif(c) = Fi’;‘((Frff(c))

and hence c4 = Fr{(c) by the injectivity of the map Fiy : FA — FX.
The same argument yields cg = Fr(c). Now consider the element cap = Fri z(c) €
F(AN B). Since r{p = ri,p 0 i% o5, we get

cap = Fri p(c) = Fri po Fit o Fri(c) = Fri,gz o Fiy(ca).
Applying the functor F to the equality i4"5 o 74 5 0ig = ry oi%, we get
Fig"B(cap) = Fid"B o Fri 5o Fitt(ca) = Fra o Fis(ca) = Fra(c) = cg
and then
Fid™B(cap) = F(i% 0 i3"B)(cap) = Fif o Fi"B(cap) = Fi%(cp) = ¢,
which means that ¢ = Fi{"B(cap) € Fig"B(F(AN B)). O

The following lemma implies Theorem 2.

Lemma 2. For any object X of the category C and an element a € F°X the support
A = suppy(a) is a well-defined finite subset of X such that a € F°i{(F°A).

Proof. We recall that suppy(a) = NB where B = {B € [X]*% : a € F*i¥(F°B)}. First we
show that the family B is not empty. Since the functor F° has finite supports, there is a
map f: C' — X from a finite discrete space C' such that a € F°f(F°C). Let B = f(C) and
fS : C — B be the map such that f§(c) = f(c) for all ¢ € C. Since f =% o f§, we get
Fof = Foi% o F°f§ and

a € F°f(F°C) = F°(i§ o f5)(F°C) = FUig (Ff5(F°C)) C F*ix (F°B).
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Now we see that B € B and the family B is not empty. So, the intersection supp(a) =
NB is a well-defined finite subset of X. Since supp(a) = NB is finite, there exist subsets
B1,Bs,,...,B, € B of X such that supp(a) = (;_; B;. For every k < n let A; = ﬂi.c:l B;.
Thus A; = By and A,, = supp(a).

We claim that a € FOif(’“(FoAk) for every 1 < k < n. This will be done by induction
on k. For k = 1 this inclusion follows from A; = B; and the choice of B;. Assume
that a € Foz'f(’“*l(FoAk_l) for some k£ < n. Taking into account that A, = A,_1 N By
and a € F°i%*(F°By) and applying Lemma 1, we conclude that a € Foif(’“”(FoAk,l) N
FoiBk(F°By) = Foilh (F°Ay).

For k = n we get A, = supp(a) and hence a € F°i5" (F°A,). O

3 PROOF OF THEOREM 3

Let F' : Comp — T be a monomorphic functor with finite supports and F° : Comp — T
be its maximal @-modification. By Theorem 1, the functor F° is monomorphic. Also it is
clear that F° has finite supports. The two properties of F' and F*° stated in Theorem 3 are
proved in the following two lemmas.

Lemma 3. FEach monomorphic functor F' : Comp — T with finite supports preserves
surjective maps and hence is epimorphic.

Proof. Let f : X — Y be a surjective map between compact spaces and b € FY be any
element. Since F has finite supports, there is a finite subset B C Y such that b € Fi (FB)
where i¥ : B — Y is the identity map from B to Y. Let s : B — X be any map such that
fos=1B. Such a map s exists because the map f is surjective. Fix an element bg € FB
such that b = Fif(bp) and let a = Fs(bg). Applying the functor F to the equality fos = %,
we get b = Fif(bg) = Ff o Fs(bg) = Ff(a), witnessing that the map Ff : FX — FY is
surjective. Therefore F' is an epimorphic functor. O

Lemma 4. The functor F° : Comp — T preserves intersections.

Proof. Let X be a compact Hausdorff space and X,, a € A, be closed subspaces of X with
intersection Z = (), c4 Xao- For two compact Hausdorff spaces A C B by i%: A — B we
denote the identity embedding.

We need to prove that F°i4(F°Z) = (,c4 F°i%* (F°X,). The inclusion

Feif(F°Z) () Foix(F°Xa)
acA

trivially follows from the functoriality of F°.

In order to prove the reverse inclusion, fix any element b € () o4 F °ix*(F°X,). For every
o € A find an element b, € F°X,, such that b = F°i3*(b,). Since the functor F*° has finite
supports, there is a finite set Y, C X, such that b, € F°i (F°Y,). Since iy = iy* oi,
we get

b= F°iy(ba) € Foiye (Foixe (F°Y,)) = Foixe (F°Y,).



10 BANAKH T., MARTYNENKO M., ZARICHNYI M.

The definition of the set A = supp(b) guarantees that A = supp(b) C Y, € X, C X.
Then A C (e Xo = Z and i§ = i% oiy. By Theorem 2, b € F°i4(F°A) and consequently,
there is an element a € F°A such that b = F°i%(a). Let ¢ = F°i%(a) € F°Z. Then

b= Fit(a) = F°(i% 0 i) (a) = FP%(Foi(a)) = Fi%(c) € FPi4(F°Z),

which completes the proof. 0

4 PROOF OF THEOREM 4

Let F': Comp — Comp be a monomorphic functor with finite supports. By Theorem 3,
its maximal @-modification F° : Comp — Comp is a monomorphic, epimorphic functor
with finite supports, which preserves intersections. The remaining two properties of F°
stated in Theorem 4 are proved in the following two lemmas.

Lemma 5. Fach monomorphic functor F' : Comp — Comp with finite supports is conti-
nuous.

Proof. By Lemma 3, F' is epimorphic. By Theorem 2.2.2 of [5] the continuity of the functor
F will follow as soon as we check that for each cardinal x and any two distinct elements
a,b € F(I*) there is a finite subset D C & such that Fpp(a) # Fpp(b) where pp : I — TP
is the projection of the Tychonov cube I* onto its face I”.

Since F' has finite supports, there is a finite subset C' C I* such that a,b € Fi¢(FC)
where i¢ : C' — I* denotes the identity embedding. Find elements ac,be € FC such that
a = Fi%ac) and b = Fi%(bg). Since C' is finite, we can find a finite subset D C & such
that the composition pp 0 i : C — I” is injective. Since F is monomorphic, the map
Fpp o Fi¢ : FC — FIP is injective and hence

FpD(CL) = FpD @) Fic(ac) 7£ FpD @) Flc(bc) = FpD(b)
[

For a topological space X by w(X) we denote its weight (equal to the smallest cardinality
of a base of the topology of X). For two compact Hausdorff spaces X,Y by C(X,Y) we
denote the space of continuous functions from X to Y, endowed with the compact-open
topology.

Lemma 6. If FF : Comp — Comp is a monomorphic functor with finite supports, then
w(FX) <sup{w(X),w(Fn):n € w} for each infinite compact space X.

Proof. By Lemmas 3 and 5, the functor F is epimorphic and continuous. Then by Theorem
2.2.3 of |5], for every n € w the map

F:Cn,X)—C(Fn,FX), F:fw— Ff,
is continuous and so is the map

£ :C(n, X)x Fn— FX, & :(f,a) — Ff(a),
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according to the exponential law for the compact-open topology [4, 3.4.8]. Then the image
F,X =¢&,(C(n,X) x Fn) C FX is a compact space of weight

w(F,X) <w(C(n,X) x Fn) <max{w(X"),w(Fn)} = max{w(X),w(Fn)},

see [4, 3.1.22].

Since F' has finite supports, the compact space F'.X is equal to the countable union F X =
Unew £ X and hence has weight w(FX) < sup,,c, w(F,X) < sup{w(X),w(Fn) : n € w}
according to [4, 3.1.20]. O
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