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THE NONLOCAL BOUNDARY VALUE PROBLEM WITH PERTURBATIONS OF
MIXED BOUNDARY CONDITIONS FOR AN ELLIPTIC EQUATION WITH
CONSTANT COEFFICIENTS. 11

In this paper we continue to investigate the properties of the problem with nonlocal conditions,
which are multipoint perturbations of mixed boundary conditions, started in the first part. In par-
ticular, we construct a generalized transform operator, which maps the solutions of the self-adjoint
boundary-value problem with mixed boundary conditions to the solutions of the investigated mul-
tipoint problem. The system of root functions V(L) of operator L for multipoint problem is con-
structed. The conditions under which the system V(L) is complete and minimal, and the conditions
under which it is the Riesz basis are determined. In the case of an elliptic equation the conditions of
existence and uniqueness of the solution for the problem are established.
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1 INTRODUCTION AND MAIN RESULTS

In the papers [1-5] by the methods of the theory of transformation operators (see [12]),
we studied nonself-adjoint problems with a multipoint spectrum and an infinite number of
root functions (see [10]). In the one-dimensional case such problems are generated by regular
but not strongly regular Birkhoff conditions (see [11]). For equations containing involution,
multipoint problems were studied in the works [5-7]. In this paper we continue the study of
the problem for an elliptic equations with constant coefficients with mixed conditions initiated
in[1,7,8].

For our investigation we will use the following notations. Let G := {x := (x1,x2) € R?:
0 < x1, xp < 1}, Dy, D, be the operators of differentiation by the variables x;, x; respectively,
W2"(G) be a Sobolev space with the following scalar product and norm respectively:

(13 0)yzn () = (:0) 1y (6) + (D"u; DY"0) 1y 6) + (D3"u; D3"0) 1y )
H”H%v;-n((;) = (u;u)wzzn(c),
W3"(0,1) := {y € AC[0,1] : y") € C[0,1], r=1,2,...,2n =1, y®) € L,(0,1)},
Ls2(0,1) :={y(t) € Ly(0,1) : y(t) = (—-1)°y(1—1t)}, s € {0,1},
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[L2(0,1)] be a set of linear and continuous operators given in the space L,(0,1).
Let us consider the multipoint problem

n
2 2n—2
L(D)u:= Y a,D"Dy" u = f(x), x € G, (1)
p=0

( — _

Esllu = D%s Zu]xlzo + D%S Zu’xlzl + [élu = Or 5= 1r2/ L

fn_,_s,lu = D%s_2u|x1:0 - D%S_2u|x1:1 = 0/ 5= 1/ 2/ co N,

55,214 = D%Sizu’XZZO + D3572u’3€2:1 = 0/ 5= 1/ 2! - n, (2)
£n+512u = D%s_1u|xZ:O + D%S—1u|x2:1 + g?” = O/ 5= 1/ 2/ s n,

j S5 q

1487 =Y Y bq,r,s,jD].u(x)]xj:xr,j, s=1,2,...,n,

q=07r=0

where 0 = X < Xpj <o < Xpj = 1, ap, bq,r,s,j € R, ks,j <2n, ke N,s=1,2,...,n,
p=01,...,nj=12

Let L : Ly(G) — Ly(G) be the operator of the problem (1)—~(2), Lu := L(D)u, u € D(L),
D(L) :={u e W3"(G) : bgu=0,s=1,2,...,2n, j=1,2}.

Let us consider the following assumptions and theorems, that are necessary for further
investigation.

Assumption Py 1 by, s ; = (—1)Q+qu,kj_r,slj, Xpj=1—=%rjq=0,1,.. kst =0,1,...,k,
s=1,2,...,nj=12
Assumption P, : there exists a positive number C; such that the inequality

n

p,n—p
Y apuip,
p=0

Calpf* <

holds for y := (uy, u2) € R?, |uf? := |p1|> + |pu2)? — oo.
Assumption Py : kg1 <25 =2, ksp <25—1,5s=1,2,...,n.

Theorem 1. Let Assumption P; holds. Then, the operator L has a set of eigenvalues

n
0= {)\k,m = (=1)"Y_aphp 1t s s 1 = TR, pmp =70 (2m — 1)%, k,m € IN}, (3)
p=0
and a system V (L) of root functions, which is complete and minimal in the space L,(G).
Let Assumptions P—P; hold. Then, the operator L has the system V (L), which is the Riesz
basis of the space L(G).

Theorem 2. Let Assumptions P;—P5 hold. Then for an arbitrary function f € L,(G) there exists
a unique solution u € W3"(G) of problem (1)—2).

Our research is structured as follows. In Section 2 we investigate the properties of the
problem with self-adjoint boundary conditions. In Section 3 we study the spectral properties
for nonlocal problem with nonself-adjoint boundary conditions. In Section 4 we construct
a commutative group of transformation operators. Using spectral properties of multipoint
problem and conditions for completeness the basis properties of the systems of eigenfunctions
are established in Section 5. In Section 6 the main theorems are proved.
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2 THE SELF-AJOINT PROBLEM

Let us consider for equation
—z®) (t) = pz(t), te(0,1), peC, (4)
the problem with boundary conditions
20 0)+ 20 (1) =0, r=0,1. (5)
Let By : L»(0,1) — L(0,1) be the operator of problem (4)—(5):
Boz (t) := —z?) (1), z(t) € D(By),
D (By) = {z e W2(0,1): z(0) +zM(1) =0, r = 0,1},
Ty = {rr,m,z(t) € L(0,1) : Toma(t) := V2sinm(2m — 1)t,
T ma(t) := V2cos t(2m —1)t, m € N, r = O,l},
Tip:={Tm2(t) € Lj2(0,1): me N}, j=0,1.
Lemma 1. The operator By has a point spectrum
o (Bg) := {pmp € R: pyo = m*(2m —1)?, m € N}
and system of eigenfunctions T».

Proof. A direct substitution proves that the elements of system T, are the eigenfunctions of
operator By, which correspond to the eigenvalues o (By).

Taking into account, that the subsystem of eigenfunctions T, of the operator By is an or-
thonormal base of space Lio (0,1), j = 0,1, we obtain the statement of lemma. O

We consider the spectral problem

n
L(D)u := Z aprngnfzpu =Au(x), x€ G, A€C, (6)
p=0
g(),s,lu = D%Sizubq:o + D%572u|x1:1 =0,
gO,nJrs,lu = D%S_Zu’xlzo - D%S_Zu‘xlzl =0, (7)
by s ol = D%S*2u|xZ:0 + D%szu|x2:1 =0,
longspt = D%s_lu]xzzo + D%s_lu\xzzl =0,s=12,...,n.

Let Ly : Ly(G) — Lp(G) be the operator of the problem (6)—(7):
Lou := L(D)u, u € D(Lo), D (Lo) := {u € W3(G) : Lo,ju=0,r=1,2,...2n j= 1,2},
T = {Tslkll(xl) € Ly(0,1) : Typ1(x1) := V2sin(2k —s)xy, k=1,2,..., 5 = 0,1},

V(Lo) = {r5km(% Lo) €L2(G) : Opehm(x, Lo) =T 1 (1) Toma(x2), 7,8 = 0,1,m,k=1,2,....}.
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Lemma 2. The operator Ly has eigenvalues (3) and a system of eigenfunctions V(Ly).

Proof. By direct substitution we obtain that v, ¢ i ,,(x, Lg) € D (Lo) and

LOUr,s,k,m(x/ LO) = Ak,mvr,s,k,m(xr LO)/
n
Nom = (~1)72 Y ayk? (2m — 122, k,m € N.
p=0

Therefore, the set of eigenvalues (3) for the operator Ly corresponds the system of eigenfunc-
tions V(Lg). O

Theorem 3. Let Assumption P, holds. Then for any function f € Ly(G) there exists a unique
solution u € W3"(G) of the problem (6)—~(7).

Proof. Let us expand the functions f, u € Ly(G) as a series by the system V(Ly):

f = X fr,s,k,mvr,s,k,m(xr LO)I

r,s,k,m
u= ) ur,s,k,mvr,s,k,m(x/ LO)-
r,s,k,m

Substituting these functions into the equation (1), we obtain
-1
Uy s km = )\k,mfr,s,k,mr r, s € {Or 1}! k,m € N.
Consider the ratio

2p ~2n—2 —p,
DlpDzn Pu=(—1)" Z Fl;}:,lﬂfn,zp)\k,yly,fr,s,k,mvr,s,k,m(xz Ly), p=0,1,...,n.

r,s,k,m

Taking into account Assumption P, for some C, > 0, we obtain

poon—py—1 _
Mi1tms Mol <C2 p=0,1,...,m,

2 2n—2
IDY" D5 P ull 1,6y < Collfllry 6y, P =0.1,...,m,

[l ey < Callflliy ()
Therefore, u € W3"(G). Theorem is proved. O

For fixed k € IN, s € {0,1}, we consider the solutions of the problem (6)—(7) as a product

u(x) ==z (x2) T (x1)- (8)

To determine the unknown function z(x;) we obtain the following eigenvalues problem

Y. (—DPapuf 222 (xp) = Az(x2), x2 € (0,1), A €C, 9)
p=0

{ZO/S/ZZ = 2(25_2) (O) + Z(ZS_Z) (1) (10)

lO,Tl+S,ZZ = Z(zsfl)(o) + 2(2571)(1>

I
SIS
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Let Loy : L2(0,1) — L(0,1) be the operator of the problem (9)-(10)

n

Loz = Y (—=1)Papuf 12> ) (x3), z € D (Lox),
p=0

D (Lox) :={z € W3"(0,1) : I,z =0, r=1,2,...,2n}.
The roots @, i (A) of the equation

n

X:()(—l)p“pwzn_ZPV;lz,l =A
p:

which is characteristic for equation (9), are chosen so that
Re Wy k (}\) < Re Wy_1k (}\) <...<Re @1k ()\) <0, wn+q,k ()\) = —Wyk (}\) , 4= 1,2,...,n.

Let us determine the functions

{zo,,,,k (x2,A) := J(exp @px (A) X2+ exp @y (A) (1= x2)) € Lop(0,1), g=1,...,n, )

Zontqk (X2,A): T(exp @gx (M) xa—exp@y (A) (1 —x2)) € L12(0,1), g=1,...,n.
Substituting the general solution

2n

z(x2) = Y ez (x2,A)
r=1

of the equation (9) into boundary conditions (10), we obtain the equation to determine the
eigenvalues for Lo
A(A, k) = det(lO,S,QZOIr,k (XZ, )\))Zn

rs=1 —

Taking into account the ratio zg 14k (X2,A4) € Ly (0,1), lopntj2 €Wy, p € {0,1}, we obtain

lontj220gk (X2,A) =0, j,g=1,2,...,n,
)

(
lojpZon+qr (X2,A) =0, j, g =1,2,...,m,

A(A/ k) = A0()\/ k)Al (A/ k)/
AP ()‘/ k) = det(lo,pn+j,220,pn+q,k (XZIA))]Y‘I,qzll p=01,
AN K) =TT @g(A) X +e@M)2 TT (@) (A) — @ (A))* = 0. (12)
q=1 1<j<q<n

Let @y, = 171(2m — 1), 1 := \/—1 are the roots of equation (12) and @, ;,x = @;(An k),
qg=23,...,n, m=1,2,....By direct calculations we obtain that the operator L has the
system of eigenfunctions

V(Lox) := {vsm(x2, Lox) € L2(0,1) : vs (X2, Lok) := Tsm2(x2), s =0,1, m=1,2,...}

and the set of eigenvalues o} := {Ak,m €o: me ]N}.
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3 THE NONSELF-AJOINT PROBLEM

Let us consider the spectral problem

—z@ (t) = uz(t), n€ C, t € (0,1),

hz:=2z(0)+2z(1) =0, (13)
Lz =z (0) + 2N (1) + 3z =0,

where
13z :=b(zM(0) — zV(1)), b € R. (14)

Let B: Ly(0,1) — L(0,1) be the operator of the problem (13)-(14) and V(B) the system of
root functions for operator B.

Taking into account the results of the papers [1,2], we define eigenfunctions and attach
functions of the operators B by formulas

Z)1,m(i'/ B) = Tl,m,z(t);
vom(t,B) = (1 b2t — 1)>T0,m,2(t), m=12,....

Therefore, the operator B has the system V(B) of root functions, which are related by ratio

BUO,m(t/ B) - Vm,ZUO,m(f/ B) + émvl,m(tz B)/

where §,, = 4bt(2m —1), m=1,2,....
Taking into account the results of the paper [2], we obtain the following statement.

Lemma 3. The operator B has the point spectrum o (By) and the system of root functions V(B),
which is the Riesz basis of the space L,(0,1).

We consider the solutions of the spectral problem (6), (2) as a product (8). To determine
the unknown function z(x,) we obtain for the equation (9) the eigenvalues problem with the
conditions

lspz := z(B-2)(0) 4+ 2(3-2)(1) =0, (15)
Lntspz = z(zs_l)(O) + 2(25_1)(1) +1l+s2=0,5s=1,2,...,n,
where
ks,z kz
Lyysz := Z Z bq,r,s,ZZ(q)(xr,Z)r s=1,2,...,n. (16)
q=0r=0

Let Ly be the operator of the problem (9), (15)—(16):

n
Lyz := Z(—1)papy,fllz(2"’2p)(x2), z€ D(Ly),
p=0

D (L) :={z € W3"(0,1) : L,,z=0, r=1,2,...,2n}.
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Lemma 4. Let Assumption P; holds. Then the eigenvalues of the operators L and L coincide.

Proof. Substituting the general solution (11) of the equation (9) into boundary conditions (10),
we obtain the equation to determine the eigenvalues of the operator Ly

Al ()\, k) = det(ls,zzolp,k (xz, A))%Tg:l =0.
Taking into account the relations

Z0mtqk (X2, A) € Lro(0,1), Losnijo € WS, Iy € Ws, 5, r€{0,1}, j € {1,2,...,n},

we obtain
linzogk (x2,A) = @?_2(7\)(1 + ),
LitinZonsqk (X2, A) = @g(M)F71(1 4 M),
linZonigr (X2, A) = loj2Zonsgk (X2,A) =0,
Livj2zontak(X2,A) = lontj2Zonsqr (X2,A),
linzogk(x2,A) = linozogi(x2,A), g=1,2,...,m,
A(A k) = Do(A, k)A1(A, k),
As(A k) = det(losn+j22z0sntqk (¥2,4))7q=1, s =0,1,
and .
A AK) =TT @g(A) X +e@M)2 TT (@) (A) — @ (A))* = 0.
q=1 1<j<g<n
Therefore A'(A, k) = A(A, k). The lemma is proved. O

Let us consider the boundary-value problem for the equation (9)

150z := 7(25-2) (0) + 2(25*2)(1) =0,s=1,2,...,n,

Hnyspz =22 D0) +22 V(1) =0, j#s,5s=1,2,...,1, (17)
lntjoz = z&=D(0) + 2D (1) + E}H]-z =0,
where . ‘
Iz :=bj(z%(0) - 2% V(1) =0, bjeR. (18)

Let Ly x : L2(0,1) — L(0,1) be the operator of the problem (9), (17)—(18)

n

Lijxz:= Y (=1)Fapul ;z* %) (xy), z € D (Ly i),
p=0 '
D (Lyjy) = {z EWZ(0,1): Iz =0, r= 1,2,...,2n}.
We determine the system of functions

1 )
Znt1,mik(X2) 1= 5(1 — 2x2) sin Py 2X2, (19)

1
Znqmk(x2) 1= 5 (14 e%mk) =1 (ePamit2 — Prmill=02)) g =23, n, (20)



180 BARANETSKIJ] YA.O., KALENYUK P.I., KOPACH M.I., SOLOMKO A.V.

and a square matrix of order n, whose elements are defined as follows. j-th row is determined
by the functions (19), (20) and elements of other rows are determined by numbers

Sk = lejzzrll,n+r,22n+1,m,k(XZ) = (_1)r711

_ 1-2r _ ~2r—1
19q,r,m,k = Pm,Z ll,n+r,22n+q,m,k(x2) — (Dq,m,kr

whereq=2,3,...,n, r#j, r=12,...,n.
We denote the determinant of the resulting matrix by zj,m,k(xz), m=1,2,....

. n
r#j, s
Let Ajymx := det(ﬁsmm,k)ri % 9. Then Zjmk(X2) = 21 Nj g mkZntgmk(X2)-
5=1, 4=
Remark 1. For any fixed k € IN and m — oo we obtain the relations

‘Sl,r,m,k = 191,r,m,kp%,12 =1 ‘Sq,r,m,k = 19q,r,m,kpa,lz =& <1 + O(m)_l) ’
where ¢, are the roots of equation (—=1)"e?" =1, Im £;<0,9=2,3,...,n.
Substituting the function z; ;, x (x2) into boundary conditions (17)-(18), we obtain the equal-
ities
ll,s,ZZj,m,k =0,s#n+j,s=12,...,2n, m=12,...,

11,n+j,2Zj,m,k(x2) = Cjmks

n
2j—1
Cj,m,k = pm,Z Zm,k | | (Dq,m,k/ m=1,2,...,
q=1

where Z,, ; is the Vandermonde determinant of order n, which is constructed by numbers
52 g=12,...,n.

q,r,mk’

Remark 2. For an arbitrary k € IN the number sequence {Z,,}%_, asm — oo converges to the

Vandermonde determinant Z,, (e?l, s, e%) , which is constructed by numbers s%, ees, ei.

In addition, the sequence {5q,r,m,k}°m°:1 converges toeg, 9 =1,2,...,n.

Thus, there are positive numbers C3, C4 such that the following inequality holds
0< Cs < [ejmpl 10, <Ca<oo, je{L,2,..m}, m=12,.... (1)

We determine the function z; ; ,, x(x2) such that the following inequality holds

n
20imk(%2) = Znpami(¥2) + ) Ajjll,m,kAj,q/m,kznmm,k (x2) .
q=2
Therefore,
21,jmk(X2) = A 11,m,kzj,m,k(x2>/ (22)

n
- _ A1 2j-1 _
gl,n+jzl,j,m,k(x2) T Xj,m,k/ Xj,m,k - A]‘,Lm,kzm,kpnilz H (Dq,m,k/ m = 112/ s
q=1
By substituting into boundary conditions (17)—(18) we conclude that the operator Ly ;x has
eigenfunctions

01,m (Xz, Ll,j,k) = Tl,m,Z(XZ)/ m = 1, 2, e (23)
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The root function v, (x2, Ly jx) of operator L j is determined by the sum

vom (%2, L1jk) := Tom2(x2) + Mjmrz1jmk(x2), m=1,2,.... (24)

To determine the unknown parameters 7; ,, x we substitute the expression (24) into boundary
conditions (17)—(18).
Taking into account the formula (22), we obtain

1 -1
17j,7”rZ,k = _ln+]‘70,m,2(ll,n—i-j,ZZl,j,m,k) , m = 1, 2, e

From the definition of the determinant A; ; ,, x we have inequality |A | < Cs.

Therefore, taking into account the inequality |1} /T0,m,2
we obtain the relations

]p P and the estimates (21),

1jml < je{1,2,...,n}, meN. (25)

Thus, the operator Ly jx has the system of root functions (23)—(24).
Let us consider the operator Bj; : L»(0,1) — L»(0,1), which has a point spectrum ¢ (By)
and the system of root functions

V(Bjx) :== {Ur,m(x2, Bix) € L2(0,1) 1 v1,m(x2, Bjx) == T,m2(x2),
Z)O,m(xz, Bj,k) = <1 + qj,m,k(sz — 1))T0,m,2(x2), m=1,2,... }

Lemma 5. The system of functions V(B;) is the Riesz basis in the space L>(0,1).

Proof. From the inequality (25) we obtain that the system V(B; ) is Bessel (see [10]). Therefore,
the operator R(Bj,k)Tr,m,z(xz) = U m (X2, B]-,k), r=0,1, m=1,2,...,is continuous in L,(0,1).
In addition, the operator S(B; ) := R(B;jx) — E is continuous in the space L>(0, 1).
Taking into account the definition of functions in V(B; ) we obtain

S(Bj,k) . L1,2(0,1) — O, S(Bj,k> : Lolz(o,l) — L1,2(0,1).

Thus, $?(B; ) and R™!(B;y) := E — R(Bjx) € [L2(0,1)].
Therefore, from the Bari theorem (see [10]) the system V(B]-,k) is the Riesz basis in the space
L»(0,1). O

Lemma 6. Let Assumption Py holds. Then the operator Ly ;i has the system of root functions
1% (Ll,j,k) , which is the Riesz basis in the space L(0, 1).

Proof. The system of functions V(L1 ;x) is complete and minimal in space L (0, 1) because the
boundary conditions (17)—(18) are regular by Birkhoff (see [11]).

We show that the systems of functions V/(B; ;) and V(L) are quadratically approximate
in space L,(0,1).

Let us estimate the sum of the series

H(Lyjx; Bjx) ZHUsm x2, Ly jx) — Us,m(xZIBj,k)H%z(o,U

2
= 21 l[v0,m (x2, Ll,j,k) — vo,m (%2, Bj,k) ||L2(0,1)f
m=

n
H(Lljk/ B] k) < max ’77] mk’ ‘A] 1, mk‘ Z X:Z ‘A]‘,q,m,kyz”Zl,q,m,k(XZ)H%Z(O,l)'
q:
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Taking into account the choice of numbers @, ,, x, we obtain the estimate
H(Lyjk Bjk) < oo.

Therefore, the complete and minimal system V(L i) € L2(0,1) is quadratically approxi-
mate to Riesz basis V(B k).
Thus, applying the Bari theorem (see [10]), we obtain the statement of Lemma 6. O

4 TRANSFORMATION OPERATORS
Let us determine

22 jmk(X2) = Njmpz1jmk(x2), m=1,2,....

By choosing of arbitrary sequence of real numbers 6 = {6,,}"_, we define the operator
Bjg: L2(0,1) = L2(0,1), which is generated by the differential expression

n

Y (= 1)Papuf 2" ) (x5)
p=0

and has the system V(B g) := {vs,m(xz, Bjg) € L2(0,1): s =0,1, m=1,2,... } of functions

U1,m(%2, Bjg) := T1,m2(x2),

(26)
00,m(x2, Bjg) := Tom2(x2) + Omzo jmi(x2), m=1,2,...,
which are root functions in the sense of equalities
B]',gvllm (Xz, leg) = )\k,mvllm (Xz, B]‘,Q), m = 1, 2, ey (27)
Bjgvom(x2,Bje) = AkmVom(x2,Bjg) + CikmV1,m(x2, Bjg), (28)

n p— p— p—
where i = (=1)"4n1; 5 k0n L ”PCEZ Zpy,’zlpinz =1 m = 1,2,..., and has the set of
p=0 o

eigenvalues oy.
Let us consider the operators R(Bjg), which are defined in the space L,(0,1) by

R(B]‘,Q) :=E + S(Bjﬁ),
S(Bjp)T,m2(x2) :=0, S(Bjg)Tom2(x2) := Omzojmi(x2), m=1,2,....

Let Qj(Lox) be the set of operators B; g, which have purely point spectrum oy and the system
of root functions (26), I';(Lo ) be the set of operators R(B; ).
For any Bjg,, Bjg, € Tj(Lox), we define on T';(Lgy) the commutative multiplication opera-
tion
R(Bjg,)R(Bjg,) = E+ S(Bjg,) + S(Bjs,) = R(Bjs,)R(Bje,)

and the inverse operator R™!(B;4) = E — S(Bjg), Bjo € T1(Loy)-
Therefore, T'j(Lg) is the Abelian group, which contains a subgroup I';(Lox) N [L2(0,1)].
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Lemma 7. For any sequence {0y };,_; C R the system of functions V(B;y) is complete and

minimal in L,(0, 1).

Proof. We prove on the contrary that the system of functions V/(B;g) is total (complete) in the

space L»(0,1).

Let us suppose that there exists a function h = hy + hy, hs € Lg(0,1) that is orthogonal to
all elements of the system V/(B; ). Taking into account, that the system T 5 is the orthonormal

basis of space L1,(0,1), we obtain hi; = 0.

Therefore h € Lo»(0,1). Assuming the orthogonality of the function & to the elements of

the system V(B 9), we have equality

(h,v(),m(JCz, B]',g)) L(01) — (l’l T()mz) L>(0,1) =0 m=1,2,....

Taking into account that the system Tj 5 is the orthonormal basis of L»(0,1), we obtain # = 0.

Let us prove the minimality of the system V(B; ). We determine the set of functions

1

Lr0(0,1) := {h = Z Hy mTrma(x2) € La(0,1) Z Z 12,62 < oo},

r=0m=1 r=0m=1

where 6,0 := 1, inthecase 8, =0, 0,,0 =0y, if6,, #0, m=1,2,....
The set L 4(0, 1) is a Hilbert space with respect to the scalar product

1 o
(h g ng 01 = Z Z mOhi’mgT’m

r=0m=1

Let us consider the relations

00,m(x2, Bjg) = R(Bjg)Tom2(x2) = (1 — Om)Tom2(x2) + Omvom(x2, L1jk),
(h; R(B;0)Tom2)T,(00) < 4(1+63) (1 T0,m2)T, 101y + 263 (1 00,m (X2, L1,j)) T, (01

(h; v0,m(x2, Bj0) )1, (0,1) = (R*(Bj,0); To,m,2) 1,(0,1)-
(h;R(Bjﬂ)Tl,mQ)Lz(O,l) = (h, Tl,M,2>L2(O,1)f m=1,2,....

Taking into account these relations and inequality

(1 vs,m (x2, Ll,j,k))%z(oll) < HR*(Ll,j,k)”[ZLZ((M)](h} Ts,m,z)%z(o,l), s=01m=12,...,

we obtain the estimate

IR* (o)l 7, 0,1 < (4+ IR (Laii) I, 0 ) I, 0,0
Therefore, for conjugate operator R*(B,g) the following inclusion holds (see [9])
R*(Bjg) € [L2(0,1); L2(0,1)].
So, the inverse operator exists

E — S*(Bj,g) € [L2,6(0,1); L2(0,1)],

that is, the system of functions V(L1 ) has the unique biorthogonal system W(Ly ;).

(29)
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Lemma 8. The system of functions V (B, ) is the Riesz basis in L»(0,1) if and only if the se-
quence {6,, }5_, is bounded.

Proof. Necessity. If the system of functions V(B;g) is the Riesz basis, then it is almost normal-
ized. From the opposite, if |0, — oo for m — oo, then, taking into account (27)—(28), we
obtain

(0,1) — 00, M —» Q.

[00,m (x2, Bjo)l|L5(0,0) = 1+ |Oml[|22,j,m,

Sufficiency. If the sequence 6 is bounded, then the spaces L, 4(0,1) and L,(0, 1) coincide. There-
fore, taking into account the inclusion (29), we obtain R(B;g) € [L2(0,1)]. O

The set of n real sequences {Gj,m}°m°:1, j =12,...,n, we denote by ®, and consider
the operator Bg, eigenvalues of which coincide with the eigenvalues of the operator L and

eigenfunctions are defined by the equalities

v1,m(X2, Be) = T1,m2(x2),

vo,m (X2, Be) = Toma2(x2) + Z Oimz2,jmr(x2), m=1,2,....
]_

(30)

We define the transformation operator R(Bg) := E + S(Bg) : L2(0,1) — Lp(0,1) which
maps the system of eigenfunctions V(L) of operator Ly into system of functions V(Bg) of
operator Bg

R(B@)Tslm,z(xZ) = vs,m,k(t/ B@), S = 0, 1, m = 1,2, e

From the definition of operator Bg we obtain
S(B@) : L(),z(o,l) — L1I2(O,1), L1,2(0,1) — O, SZ(B@) =0.
Therefore, the bounded operator R~ (Bg) = E — S(Bg) exists.

Lemma 9. For any sequences {0;,,};_1, j = 1,2,...,n, the system of eigenfunctions of oper-

ator Bg is complete and minimal in the space L,(0,1).
The system of functions V(Bg) is the Riesz basis in the space L,(0,1) if and only if the
sequences {Bj,m};j:l, j=1,2,...,n, are bounded.

Proof of Lemma 9 is similar to the proof of Lemma 7. O

Let Q(Ly) be the set of operators Bg, eigenfunctions of which is defined by formulas (30),
T'(Ly) be the set of transformation operators R(Bg).

Remark 3. On the setT'(Ly) we can define the multiplication operation and prove thatT'(Ly) is
an Abelian group.

5 THE NONSELF-AJOINT PROBLEM FOR A DIFFERENTIAL EQUATION OF EVEN ORDER
For equation (9) let us consider the eigenvalues problem with nonlocal conditions

(25-2)(1) =0, s=1,2,...,n,

Iy sz = z(2 O)+z
)+ 2z 1>(1)+12 z=0, 31)
) +23Y

2j— 1)(
)(0

butjpz =zl
@-1)(0

bnispz =2



THE NONLOCAL BOUNDARY VALUE PROBLEM FOR AN ELLIPTIC EQUATION 185

where
< ,2 k2

"+JZ =) Z b /‘1/]/22 (x2,)- (32)

q=07r=
Let Ly x : L2(0,1) — L2(0, 1) be the operator of the problem (9), (31), (32)

n

Lojz(x2) := ) (— pap]/t 22=2%)(x;), z € D (Lojjk)
p=0

D (L) = {z €W (0,1): borpz=0,7=12,...,2n},
and V (L) be the system of root functions for operator Ly x
R(Ly ) : L2(0,1) — L2(0,1), R(Lyjx): V(Lox) — V(Lajx)-

Lemma 10. Let Assumption P holds. Then the operator L, j has the system of root functions
V (Ly,jx) , which is complete and minimal in the space L»(0,1).

If Assumptions P1, P3 hold, then the system of functions V (L, ;) is the Riesz basis in the
space L»(0,1).

Proof. Substituting function 17, 2(x2) into boundary conditions (31), (32) we obtain that the
operator L, ; , has eigenvalues
O1,m(%2, Lojk) = Tyma(x2), m=1,2,.... (33)

Root function v, (X2, Lyx) of operator L, ; x is defined by the sum
00,m(x2, Lojx) = Toma(x2) + ﬂjl,m,kzz,j,m,k(xz), m=1,2,.... (34)

For determining of unknown parameters 17]-1 . We substitute the expression (34) into boundary
conditions (31), (32).
Taking into account the ratio (22) we have the equality

77j1,m,k = _(12,n+j,222,j,m,k>7ll%+]‘70,m,2~ (35)
Therefore, the operator L  ; has the system of root functions (33)—(35).

Remark 4. On the contrary, as in the proof of Lemma 8, we can prove the completeness of the
system V (L, ) in the space L5(0,1).

Taking into account that z; ; ,, x(x2) € L12(0,1), we have the inclusion R(Ly;x) € T'(Lo)-
Therefore, the system V(L) is minimal in the space L>(0,1).

Let Assumption P; holds. Then from the inequality (25) we obtain ]ﬂ]lmk] < Cg. Therefore,
taking into account the statement of Lemma 9, we obtain that R(Lyx) € T(Lgx) N [L2(0,1)].

Let us show that for the operator R(L;) Lemma 10 holds. Substituting into boundary con-
ditions (31), (32) we obtain that the operator Ly has the eigenfunctions

Ullm(xz, Lk) = Tllmlz(xZ>, m=1,2,....

Root function vy, (%2, Ly) of operator Ly is defined by the sum

n
00 (%2, Li) = Toma(x2) + Y 1} aZajmp(¥2), m=1,2,...,
=1
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where unknown parameters q},m,k are defined by formula (35).
Therefore, the transformation operator R(Ly) : Ly(0,1) — L(0,1)

R(Lk)TS,m,Z(XZ) = Us,m(xZ/ Lk)/ s = 0/ 1/ m = 1/ 2/ cecy

is the element of the set I'(Ly). Thus, the system V(L) is complete and minimal in the space
L»(0,1).

n
Taking into account the ratio R(Ly) = [T R(Lpjx) and the statement of Lemma 9, in the
j=1
case of Assumptions P;, Ps we have R(Ly) € [Lp(0,1)].
Thus, the system V(Ly) is the Riesz basis in the space L,(0,1). O

Therefore, for operator Ly Lemma 10 holds.

6 PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Particular cases of the operator L, when b,,s; = 0, we denoted by
L/, j = 1,2, respectively.

Let 71, 1 be the orthoprojector into one-dimensional proper subspace in L (0, 1). We define
the root functions of operator L? by

vs,r,k,m (x/ Lz) = Us,m (x2/ Lk) Tr,k,l (xl) 7 S,T’ e {Orl}r k/m e N/
and the transformation operator R(L?) : Lo(G) — L,(G) by
R(L?) := Z R(Lk) X Ty ,1,

r,k,m

Us rkom <x, L2> = R(L2>Us,r,k,m (x, Lo) , 8,7 € {0,1}, k,m € IN.

Similarly, when Assumption P, holds, we can define the biorthogonal system W(L?).

Taking into account Lemma 10, we obtain that for operator L2 Theorem 1 holds. From The-
orem 1 of the paper [1] we obtain that for operator L' Theorem 1 holds and for transformation
operator R(L!) the ratio R(L') € [L,(G)] holds.

Let us define the transformation operator R(L) : L,(G) — Ly(G), R(L) := R(L')R(L?),
and the root functions of operator L

Vs rjom (X, L) := R(L)vs g m (x,Lo), s,v € {0,1}, k,m € IN.
By direct verification we obtain that the elements of the system V(L) are roots in sense

(L - /\k,m)vr,l,k,m(xz L) =0,
(L = Am)0r,0,m (X, L) = &0 kmOr,1km(x, L),
gr,O,k,m = 4”(_1)n_177r,0,k,mpiqn,2_1/ r,s € {0,1}, k,m € IN.

Taking into account Assumption P;, we obtain that the systems V(L/) have the unique biortho-
gonal systems W(L/), j = 1,2, in the space Ly(G).

Therefore, the system V(L) is complete and minimal in the space L,(G).

Let Assumptions P;—P; hold. Then from Theorem 3 of the paper [8] and from Lemma 10
we obtain R(L!') € [W2"(G)]. So, Theorem 1 is proved. O



THE NONLOCAL BOUNDARY VALUE PROBLEM FOR AN ELLIPTIC EQUATION 187

Remark 5. There are positive numbers Cy, C1g such that for any function

f(x) = Z fr,q,k,mvr,q,k,m(xr L) (36)
r,9.km
the inequality
C9Hf”%2(c) < Z ’fr,q,k,m‘z < ClOHf”%Z(G)
7,q9,k,m
holds.

Proof of Theorem 2. Tt is enough to consider the case q,,51 = 0. Let the right part of the
equation (1) has the expansion (36).
The solution of the problem (1)-(2) we find in the form of a series

u(x> = Z ur,q,k,mvr,q,k,m(xr L)-
r,q,km

Substituting these expansions into equation (1) we obtain the equalities

-1
ur/O/k/m = A'k,ﬂl.]crlofk/nl,
-1 -2
Up1km = )\k,mfr,l,k,m - )\k,mgr,O,k,mfr,O,k,mr re {Or 1}! k/ m € IN.

Let us consider the relations

D%”u(x) = Z A];iyfllfr,q,k,mvr,q,k,m(x, L).

r,q,km

Taking into account Assumption P,, we obtain

IDY"u|| 1,6y < Cuallfllr,(G)-

Similarly from Theorem 3 of the paper [1] we obtain the inequality

ID3"u||1,(6) < Cazll fllr,(G)-

Therefore, taking into account Theorem 3, we obtain R(L?) € [W2"(G)].
Thus, for the definition of the transformation operator R(L) we have R(L) € [W3"(G)].
Then
[llwzn ey < Cuall fllLy(c)-

Theorem is proved. 0
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bapanenskmii 51.0., Kaaenrok I'L1., Komau M.I.,, Coaomko A.B. HenokanvHa kpatiosa 3adaua 3i 30yperns-
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VY po60Ti IpOAOBXEHO po3movaTi y MepIIilif YacTUHI AOCAIAXKEHHS BAACTMBOCTEN 3apadi 3 He-
AOKaABHVMM YMOBaMI, sIKi € 6araToTOUKOBMMM 36y PEeHHSIMI MIllIaHMX KpalioBMX YMOB. 30KpeMma,
o6yAOBaHO y3ararbHEHIII OIlepaTop IepeTBOPEHH s, sIKMiT Biao6pakae pO3B’SI3KI CaMOCIIPSIKeHOT
KpaloBoi 3apadi i3 MillTaHMMM KpallOBMMM YMOBaMI B pO3B’SI3KM 6araToToukoBoi 3aaadi. ITobyao-
BaHO crcteMy V(L) xopeHeBux pyHKIiit oreparopa L 6araToToukoBoi 3araui. BusHaueHo yMoBH,
pu sikmx cucrema V(L) oBHa Ta MiHiMaABHA Ta YMOBY, 3a SIKVX BOHa € 6a3ucom Picca. AAst BUITaAKY
eAINTUYHOrO piBHSIHHS BCTAHOBAEHO YMOBM iCHYBaHHSI Ta €AMHOCTI PO3B’SI3KY 3aAadi.

Kntouosi crosa i ppasu: amdpepeHIiarbHe PiBHSHHS 3 YaCTMHHMMM IOXiAHMMM, KOpeHeBi pyH-
kuii, MeToa Pyp’e, MeToA omepaTopis epeTBOpeHHs], Hasnc Picca.



