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We characterize metric spaces that are coarsely equivalent to the macro-Cantor set 2<N.

The well-known Cantor set
[S k37 () € 10,217} R
i=1

has a macro analog
{Y k-3 meN (k) €{0,2)"} CR,
=1

called the macro-Cantor set (see, e. g., [1]).

The macro-Cantor set plays the same role in the zero-dimensional asymptotic geometry
as the Cantor set does in the zero-dimensional topology. It is well known that every zero-
dimensional compact metric space without isolated points is homeomorphic to the Cantor
set (see e. g. [3]). The main result of this paper is a characterization of metric spaces that
are coarsely equivalent to the macro-Cantor set.

It is convenient to introduce the notion of coarse equivalence with help of multi-valued
maps. By definition, a multi-valued map between sets X,Y is any function f that assigns
to each point x € X a (possibly empty) subset f(x) C Y. Such a function f assigns to a
subset A C X the subset f(A) = J,c4 f(a) of Y.

The oscillation of a multi-map ® : X — Y between metric spaces is the function we :
[0,00) — [0, 00| assigning to each § > 0 the (finite or infinite) number

we(0) = sup{diam(P(A)) | A C X, diam(A) < d}.
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Definition 1. A multi-valued map ® : X — Y between metric spaces X,Y is called
e macro-uniform, if we(d) is finite for each 6 < oo;

e a coarse equivalence, if ®(X) =Y, ® 1Y) = X and both multi-valued maps ® and
®~! are macro-uniform.

Two metric spaces X,Y are called coarsely equivalent if there is a coarse equivalence
f X — Y. In particular, the macro-Cantor set is coarsely equivalent to the macro-Cantor
cube
2N = {(2)icw € {0,1}* | In€ewVn>m (z,=0)}

endowed with the metric
d((z;), (y;)) = min{i € w | z; = y;, for all j > i}.

In the sequel, for a metric space (Y, p) and a subset C' C Y by U.(C') we denote the
g-neighborhood of C' in Y. For any nonempty sets A, B C Y we put

dist(A, B) = inf{p(a,b) |a € A, b€ B}.
The following is a characterization theorem for the macro-Cantor set.

Theorem 1. A metric space (Y, p) is coarsely equivalent to the macro-Cantor set if and
only if there exist numbers a > 0, n € N and monotonically increasing divergent sequences
(@;)ien, (ni)ien of real and natural numbers respectively, such that the following holds: for
every i the set Y can be written as the disjoint union of a countable family of sets {Y;},en,
such that for every j, k € N diam(Y;) < a;, dist(Yj, Ys) > a;_1 and the set Y; can be covered
by 2"t sets and cannot be covered by less than 2™ sets of diameter not exceeding a.

Proof. Without loss of generality we can assume that n; 1 —n,_o —n > 2 for every 1.
Necessity. Let a metric space (Y, p) be coarsely equivalent to the macro-Cantor set X.
Then consider a multi-valued map f: X — Y from the definition of coarse equivalence and
define sequences {a;}ien, {bi}ien in the following way.
Put b; = 1. Suppose that we have defined bq,...b; and aq,...,a;_1. From the definition
of coarse equivalence for f there exist natural numbers a; > wy(b;) and b1 > wp-1(a;).

Let i € N. We can represent X as the union X = |J X}, where diam(X}) = b;,
jEN
Up,(X}) = X} for all j € N. Then for all i,j € N define Y = f(X}). It is easy to see that
Y =Y/, diam(Y}) =a; forall j €N, i eN.
jEN
Since for all i > 1 dist(X}, X;) > b, 7,j € N, we easily obtain that dist(Y},Y{) > a;_1,
jkeN.
Then we can see that for any 7,5,k € N, ¢ < j, there exists a unique [ € N such that
YiCY.
2bi—b1

Note, that for all > 1,5 € N, the set Y} can be written as the union Y/ = (J Y;!. The
k=1

set YJ’ can be covered by at most 2%~ sets of diameter a.
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2b —boy

Similarly, Y»i U Y2 Since the distance between the sets Y2 and Y2 is greater then

ay, the set Yz Cannot be covered by less than 2% sets of diameter not exceeding a;.
The necesswy is proved.

Sufficiency. Let Y be a metric space, numbers a > 0, n € N, and monotonically
increasing sequences (a;)ien, (ni)ien, of real and natural numbers respectively are from the
conditions of the theorem.

Let X denotes the macro-Cantor set and

X;={$=($17$2,$3,---)|9Uz‘:771a95i+1:7727~-7}a

where
j=El+m+2m+22 g4 ta, 22

e € {0,1}. It is easy to see that diam(X}) < 2', and for every a < b, ¢, d, either X¢ C X} or
XinXh=0o

We will use that ©(A) is the minimal natural number k£ such that A can be written as
the disjoint union of k£ balls of diameter not exceeding a.

For every natural i let Y = YUY U... be a decomposition such that for every natural
g, k, diam(Y}) < a;, dist(Y},Y{) > a;_1 and 2" < ©(Y]) < 2%+ for every natural j, k. Let
Oy = max O(V;).

We assume that
}/lk — }/115 U Y'2t ‘U Yt

717

Y=Y Uy U Uy

T2

for every natural k. ¢, k > t.

Step a). Consider a sequence of real numbers (a4) such that 1 < ag < 2, [[ ax = 2,
keN
Qo = 1.

Let us construct sequences of natural numbers (¢;);en, (d;)ien by induction. Let d; = 1,
and let ¢; > d; be such that

Qndi—‘rn . QM +3n+2 | 8

1+ —~ < (41, ,
ond; . znd;+3n+2 1 (CL(2Z + 1))
1 —
2neitn 8 T gy

d; > ¢;—1 and for any t > 2™,

t+@fﬁa)1( St'agi,

ooy (al20))

max =
a21

Let us consider the following conditions for a multi-valued function f: A — B:

wf(acz‘ﬂ) < N, wf_l(ndi) < Q- (f(”)
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Let p/ = 2na+3n+2,

Step b). During this step for every natural i we have to construct a multi-valued surjective
function f;(A, B)(x) : A — B, which maps the set A C Y into B C X. Here A =
Yzfi -U Yld , B = X , 1 < p <p'. Also the function f; must satisfy conditions (f(1)),

U@%mJNM-

Fix i € N, and let A, B be sets. Let us construct f;(A, B) by induction. Without loss of
generality we can assume that

A:}/ldiU.”U}/;)di’ B:X?dz

It is easy to see that

Base of induction. Let A} = A.
Step j, j € {1,...,i—1}. We see that the set Y is written as a disjoint union of sets

V=A"u---ud]

2" di i1

such that for any k € {1,..., 2" "~}

2(j-1) 2(j-1)
O(A) 1 -
-7 . — < O(A
QM TNy tll ay @( k ) di Ty gy H %)

the set A7~" is the union of sets from the family {Y; 7}, and it is assumed that
i—1 nd;_; - Nd;_; i—1
filA, B)(A7) =X, [T A B, ) = A
Consider the set Ai_l. We can represent it as the union
AT =Y U Uy

Now write the set X:di‘j“ as the disjoint union of 2"%-i+17 "4 = £ sets, X:di‘f“ —
XU U Xefd'_]. We have to divide these sets between the sets Y;:‘J.
Let 5 : {e1,...,ef} — {ki1,...,ks} be a surjective function. Note that £ > s. Let

Bky) = [{e:] (et) = k. }|. We have to find ' that minimizes the difference of o, 1)]).

We see that Z oY, ) = ©(A]™"). Thus there is 4’ such that, for every I € {1,...,s},

O (50s) ) < 00) < P Do) 4,
oA, 2 . _e) _ e 2
e TS B = ¢ Tam))
Now let us look at 5(k,):
Oy, ”)-f 1
@(Ai_l) Z < 5(]{;7")7
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@(YCZ 7)€ QMei—j . QMi—j+1 . QNd; > 2
@(AJ 1) = QMg L. Qra T QR 4 T g

2 2" it 4y
<1+ ——F—— < Q35415
A+ gy St~z <o
2 Mdi_j . 1
B (k) 2" AT Qi)
We see that
oA 251 i oA 2i—1
WE—”J— I o= é( kr) < 2"‘%;2@--3- I e
t=2(i—j)+1 ¢ t=2(i—j)+1

Now consider the set Y, and ((k,). The sets Xl X

Bir ]) are mapped to the set
V7. Represent the set Y, as the disjoint union of sets

Cimj=1(J ... Ci—j—1
YQl U U Yqz :

Now map them into the sets Xo 7, ... Xo:(’k’) to minimize the difference of ©(A7), where
; _ Nd,
Ai =f I(Xk 7).
This can be done so that

O, ") e i OO el
Tk O SO S g
We see that _
oY) S .9 1 S gna 1
B(kr) 2
then by condition (a(2(: — j)))
) | ey OO

oY~ oY~
(5 1) .,
B(kr) a2(i—j) B(kr)
Thus,
@(A) 2i—1 1 ' @(A) 2i—1
ond; T, H Oc_t < @(Ai) < W H Q.
t=2(i—j) t=2(i—j)

Assume that f(A) = X777, f~Y(XJ ) = Al. As a result the following condition
(f(i— 7)) holds:
wf(acifjfl) < Na;_; wf_l(ndi*j) < Ac;_;-
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After step (i — 1) we obtain our function. The set A is written as the union of the family
of sets {A;'}. For every k

O(A) 2i-1 .
O<p-2taa < ——— . || —<o4!
p 'S QNd; —Ndy tl:! ap ( k )7

therefore A,(;_l) is nonempty. For every k and for every = € Ag_l) let f(A, B)(z) = X, ™.
Note, that the constructed function satisfies conditions (f(1))-(f()).
Step c¢). Now we have a sequence (f;) of functions. We have to construct function from
Y to X. We can write Y as the union of the sets

Vi=Yh Y= (U U\ Y.

Let X = X, UX,U. .., where X1 = X and X; = X, \ X, for i € N\ {1}. For
every i we have to map (Y% \ ¥;"*') into X;.

Consider step i. We see that Y; = Yl‘f’” U---u Ylfi_l. Also 2™+ < O(Y;) < 24+ and
2™ < O(Y"1) < 2"t Then 2™ Mot < ¢ < 2™ P,

We have X; = X\ X; " = Xy U+ - -UX i ™" Tt s easy to see that u = 24 i1 —1,
Alsou <t <up.

Now we can write Y; as the disjoint union of sets ¥; = Y(;1) U -+ U Y(;,), where every
Y{i k) is the union of w sets of the family (Yl:l"‘l)7 1<w<yp.

Now for every k € {1,...,u} using the function fl-(l/(@k),X;f’l) we shall map the set
Yy into the set Xt O

The last theorem can be reformulated.

Theorem 2. A metric space (Y, p) is coarsely equivalent to the macro-Cantor set if and
only if there exist numbers a > 0, n € N and monotonically increasing divergent sequences
(ai)ien, (n;)ien of real and natural numbers respectively, such that the following holds: for
every i the set Y can be written as the disjoint union of a countable family of sets {Y}};en,
such that for every j, k € N, diam(Y;) < a;, dist(Y}, Y)) > a;_1 and the set Y; can be covered
by n - n; sets and cannot be covered by less than n; sets of diameter not exceeding a.

Now using Theorem 2 we can prove its more general version.

Theorem 3. A metric space (Y, p) is coarsely equivalent to the macro-Cantor set if and
only if there exist monotonically increasing divergent sequences (a;)ienuqoy of reals, (n;)ien
and (m;);en of naturals, such that the following holds: for every i the set Y can be written
as the disjoint union of a countable family of sets {Y;},en, such that for every j, k € N
diam(Y;) < a;, dist(Y},Y;) > a;_1 and the set Y; can be covered by m; sets and cannot be
covered by less than n; sets of diameter not exceeding ay.

Proof. To prove this theorem we will show that for the space Y the conditions from Theorem
2 hold true. We will construct monotonically increasing sequences (b;);en and (k;) of real and
natural numbers respectively, such that for all © € N the set Y can be written as disjoint union
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of a countable family of sets {Z}}jen, such that for all j,l € N diam(Z}) < b;, dist(Z}, Z) >
b;_1 and the set ZJ’. can be covered by k; sets and cannot be covered by less than k - k; sets
of diameter not exceeding by = ay.

By the formulation of the theorem, for all i € N set Y can be written as disjoint union
of a countable family of sets which we will denote by {Y}}jen.

Define k = max{3, ["*] + 1}.

Base of induction. Put by = ay, ki = ny, t; = 1. For all j € N, let Z} = Y}'. It is easy
to see that, for the family {Z;}jeN, all conditions hold.

i1-th step of induction, v > 1. We have a natural number ¢;,_; and a real number b; _; such
that b,_; = a;,_,. We have to find numbers b, > b;_; and k;, and write Y as disjoint union of a
countable family of sets {Z!};en, such that for all j,I € N diam(Z}) < b;, dist(Z}, Z{) > by
and the set Z} can be covered by k - k; sets and cannot be covered by less than k; sets of
diameter bg.

Consider the family of sets {Y}ti’lﬂ}jeN. The mutual distances between the distinct
elements of this family are at least a;,_,. Every of these sets can be covered by n;_,+1
sets and cannot be covered by less than my, 1 sets of diameter not exceeding by. Put
ki =my,_ 1.

Take a number ¢;, such that n;, > m,, ,+1. Consider the family of sets {Y]t’ }ien. The
diameter of each of them is less than a;,. Put b; = a;,. Each of them can be covered by m,,
and cannot be covered by less than n,, of sets of diameter by.

For all u € N consider the set Y. This set can be represented as disjoint union of a
finite number of sets from the family {th,-_1+1} jen. Without loss of generality we can write
Vi =Yooy oty Y Bach of the sets Yy pe {1, v}, can be covered
by my, 41 sets of diameter by. The set Y,/ cannot be covered by less than n;, > m,,_ 1 sets
of diameter b.

Put py = 0. There exist numbers pi,pa,...,pg, 0 = po < p1 < p2 < -+ < pg < v, such
that the sets Y;ff_‘f:ll U YZ’::; U---UYg " can be covered by 2 -my, 1 and cannot be
covered by less than my, ,1; sets, and the set Y;;jrllﬂ U Y;;jrl;l U---UY/ =11 can be covered
by my,_,+1 sets of diameter by. Then define

i ti—1+1 ti—1+1 ti—1+1
Zi =y uyy oty gyt

i ti—1+1 ti—1+1 ti—1+1
ZU? - Y;Dl-i-l U Y;71+2 U U Y;)Q ’

% _ ytic1tl ti—1+1 ti_1+1
ZU:(Q*l) T Y;Pq—2+1 U Yzﬂq—2+2 U U anq—l ’

7 . ti—1+1 ti—1+1 ti—1+1 ti—1+1 ti—1+1
Zi =Y Uyt u Ly Uyt U oyt

Put v’ = ¢q.
It is easy to see that the sets Z°

ur?

re{l,...,q—1}, can be covered by 2-my, ;11 < k-k;
sets and cannot be covered by less than m,, ,+1 = k; sets of diameter by. The set qu cannot
be covered by less than my, ,+1 = k;, can be covered by 3 -my, 41 < k- k; sets of diameter
by. Also the diameters of these sets are less than a;, = b;, and their pairwise distances are
less than a;, , = b;—;.
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So we represent the set Y as disjoint union of a countable family of sets, Y = U{Z;;,q\ pE
N,q = 1,...,p'}, for which all conditions are true. Now we can enumerate these sets by
naturals and we shall represent Y as the disjoint union of the family {Z}}en. O

Definition 2. A metric space (X, d) is called asymptotically zero-dimensional if for all a > 0
there exists a uniformly bounded a-disjoint cover of X.

A cover U of metric space X is called

o uniformly bounded if its mesh sup{diam U : U € U} is finite.
e a-disjoint if dist(A, B) > a for every A, B € U.

Theorem 4. A metric asymptotically zero-dimensional space (X, p) is coarsely equivalent
to macro-Cantor set if and only if there exists number a > 0, and the following conditions
are true:

1) for every n € N there exists r € N, such that for any « € X the r-ball U,(x) cannot
be covered by less than n balls of radius a,

2) for every r € N there exists m € N, such that each r-ball U,(x) can be covered by m
balls of radius a.

Proof. Necessity. By the Theorem 3 there exist monotonically increasing sequences
(a;)ienugoy of reals, (n;)ien and (m;)ien of natural numbers. Put a = ag. We will show
that conditions 1) and 2) are true.

a) Consider an arbitrary natural n. Then there exists j, such that n; > n. Put d = a;44.
It is easy to see that condition 1) is true.

b) Consider an arbitrary number d. Then there exists such j, that a; > d. Put m =m;;.
Easy to see that condition 2) is true.

Sufficiency. Suppose that (X, p) is a space and conditions 1) and 2) are true. We shall
construct by induction monotonically increasing sequences (a;);enuqoy of real, (n;)ien and
(m)ien of natural numbers to satisfy conditions of the Theorem 3.

Base of induction. Put ag = a, mg = 1.

i-th step of induction, i € N. Put n; = m;_1 + 1. By condition 1) for number n; there
exists d. By definition of asymptotic dimension zero, for the space X there exists a totally
bounded a;_1-disjoint cover. Let b be the mesh of this cover. Put a; = max{b,d, a;,_1 + 1}.

It is easy to see that this sequence satisfies the conditions of the Theorem 3. [

It is well known that every zero-dimensional compact metric space without isolated points
is homeomorphic to the Cantor set. In our characterization the first condition is an analogue
of “space without isolated points” in metric geometry.

Applying Characterization Theorem 4 one can easily prove the next corollary.
Corollary 1. For every n € N the hyperspace exp,,(2<V) is coarsely equivalent to 2<N.

Here for a metric space Y by exp, (Y) we denote the space of all at most n-element
non-empty subsets of ¥ endowed with the Hausdorff distance

pu(A,B) =inf{e >0: AC U.(B),B C U.(A)}.
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