ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2020, 12 (2), 340-352 KapmaTcbki MmaTem. my6a. 2020, T.12, N2, C.340-352
doi:10.15330/cmp.12.2.340-352

(L)

EXTREME AND EXPOSED SYMMETRIC BILINEAR FORMS ON THE SPACE 55(2130)
KiM SUNG GUEN

We classify extreme points and exposed points of the unit ball of the space of bilinear symmetric
forms on the real Banach space of bilinear symmetric forms on I2,. It is shown that for this case, the
set of extreme points is equal to the set of exposed points.
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INTRODUCTION

Throughout the paper, we let n € IN,n > 2. We write B for the closed unit ball of a real
Banach space E and the dual space of E is denoted by E*. An element x € Bg is called an extreme
point of Bg if y,z € Bg with x = %(y + z) implies x = y = z. We denote by ext B, the set of all
extreme points of Br. An element x € Bg is called an exposed point of B if there is a functional
f € E*suchthat f(x) =1 = ||f|| and f(y) < 1foreveryy € Bg\ {x}.Itis easy to see that every
exposed point of B is an extreme point. We denote by exp Br. the set of exposed points of Br.
A mapping P : E — Ris a continuous n-homogeneous polynomial if there exists a continuous
n-linear form T on the product E X - -- x E such that P(x) = T(x,...,x) for every x € E. We
denote by P("E) the Banach space of all continuous n-homogeneous polynomials from E into
R endowed with the norm ||P|| = sup,_; [P(x)|. We denote by L("E) the Banach space of
all continuous n-linear forms on E endowed with the norm ||T|| = Sup|jy, =1 |T(x1, - -, xn)]-
Ls("E) denotes the closed subspace of all continuous symmetric n-linear forms on E. For more
details about the theory of polynomials and multilinear mappings on Banach spaces, we refer
to [8].

Let us introduce the history of classification problems of extreme and exposed points of
the unit ball of continuous n-homogeneous polynomials on a Banach space. We let I;; = R”
for every 1 < p < oo equipped with the [,-norm. Choi et al. ([3,4]) initiated and classified
ext BP("—Z%) for p = 1, 2. Choi and Kim [7] classified ext B’P(Zlf—,) for p = 1,2, 0. Later, B. Grecu [12]
classified the sets ext B'P(Zl%) forl] < p < 2o0r2 < p < co. Kim et al. [37] showed that if
E is a separable real Hilbert space with dim(E) > 2, then, ext Bp ) is equal to exp Bp ap).
Kim [16] classified exp BP(ZZ%,) for every 1 < p < oo. Kim [18] characterized ext Bp 2y, (1,4)2),

where d, (1, w)? denotes R? equipped with the octagonal norm

x| + |y }

Gl = max { x| lyl, 55
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for 0 < w < 1. Kim [25] classified exp Bp 24, (1,4)2) and showed that exp Bp 24, (1 ,4)2) is @ proper

subset of ext Bp(24, (1,1)2)- Recently, Kim ([30, 33]) classified ext BP(ZR,Z(l)) and exp BP(2R5(1>),
(2 2

where IRfl denotes R? endowed with a hexagonal norm

()
1
Gy gy = max{ Iyl 1] + 51yl }-

Parallel to the classification problems of extBp i) and expBp(xr), it seems to be very natural
to study the classification problems of extreme and exposed points of the unit ball of con-
tinuous (symmetric) multilinear forms on a Banach space. Kim [17] initiated and classified
ext By op ) and exp By op ). Kim ([19,21,22,24]) classified ext B., 24, (10)2), €Xt Br (24, (1,0)2)/
exp Bz (24, (1,w)2), and exp By 24, (1,)2)- Kim ([28,29]) also classified ext B, (23 ) and ext B, (3p2 ).
It was shown that ext B, 23, and ext B s;2) are equal to exp B, o3y and exp B 32, re-
spectively. Kim [32] classified ext B L) and extB,_ @) Kim [34] characterized ext B L)
ext Bpnp ), ext By 2, exp By nz ) and showed that exp B, (np2 ) and exp B (2 ) are equal to
ext By ) and ext B, (up2 ), respectively. Recently, Kim [35] characterized for m > 2, ext Bz (nm),
ext By (npm), ext Bg (npm), exp By (um) and showed that exp B (nm) and exp By (um) are equal to
ext By (nym) and ext By (nym), respectively.

We refer to [1,2,5,6,9-11,13-15,20,23,26,27,31,36,38-47] for some recent work about extremal
properties of homogeneous polynomials and multilinear forms on Banach spaces.

In this paper, we classify ext By 2p 22 )) and exp B. 2r 22 ). It is shown that
extBy 2r.212)) = exp B or 212,))-

1 RESULTS

Throughout the paper, IR%S 22 denotes R® with the £4(?I2)-norm

[@beden|, s = max{lal, bl 4], 5(1a=dl+lel), 5(1b-dl+1f1),

3(a+b—2a1+1cl), 3| la+b—2d] ~1el |+ Sl — f1}.

Notice thatif (a,b,c,d,e, f) € ]R%S (
ld| <1,]|c| <4,le] <2,|f] < 2. Notice that

22 with H(a, b, c,d,e,f)Hﬁ o) =1,then|a| <1,|b| <1,

H(a,b,c,d,e,f))

_ H(b, a,c,d, f,e)) .

= H(a, b,c,d,—e,—f)

Ls(1%)

Ls(%13%,)

Therefore, without loss of generality we may assume thata > |b|, ¢ > 0and e > 0.
In [36] it was shown that the space ]R% ez) is isometrically isomorphic to the space

Ls(PLs(*I3))-
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Theorem 1. Let (a,b,c,d,e, f) € R®. Then, the following statements are equivalent:

(1) (a,b,c,d,e, f) EextB]Re ;
£s(213;)
(2) (b,a,c,d,f,e) € extBge

£s%)
3) —c,d,e, f) € extBpe ;
4)

(

( Ls(21,)

(a bc,d,—e,—f) € extBrs
®) (-

a,—b,c,—d,e, f) € ext Bye

Proof. Tt is obvious. 0

Lemma 1. Leta, b € R be such that |a| + |b| = 1. Then the following are equivalent:
(1) (Ja| =1,b=0)or(a=0,|b| =1);
(2) ife, 6 € R satisfies |[a+¢|+ |b+ 6| <land|a—¢e|+|b—6| <1, thene =05 = 0.

Proof. By symmetry, we may assume that |a| > |b].

(1) = (2). Suppose that |a| = 1,b = 0 and let ¢,6 € R be such that [a +¢| + [b+ 5| < 1
and |a —¢|+ |b—6| < 1. Then |[a+¢|+|6] < 1and |a—¢| + |5] < 1, which shows that
1> |a| + |e| + |0] =1+ |e| + || Therefore, e = = 0.

(2) = (1). Assume otherwise. Then 0 < |b| < |a| < 1. Lett > 0 be such that t|a| < |b]|. Let
¢ := tla|sign(a) and § := —t|a|sign(b). Notice that ¢ # 0 and § # 0. It follows that

|a+ e + [b+ 6| = (|af + tla]) + (b — t]a]) = |a] + |b] =1

and
|a —e| + b — 6] = (|a] — t|a]) + (|b| + t|a]) = [a| + |b] = 1.
This is a contradiction. Therefore, (2) = (1) is true. O
We are in position to classify the extreme points of By .
Ls(#15%)
Theorem 2.
ext Bs o T { +(1,1,+4,1,2,2), £(1,1,£4,1,-2,-2), +(1,-1,4+4,0,1,1),
ﬁs(l )
+(1,-1,£4,0,-1,-1), +£(1,-1,4+2,1,2,0), £(1,-1,£2,1,-2,0),
+(1,-1,£2,-1,0,2), £(1,-1,%+2,-1,0,—-2), +(1,1,£2,0,1,-1),
+(1,1,+£2,0,—-1,1), £(1,1,0,1,£2,0), +(1,1,0,1,0, +2),
+(1,1,0, —1,0,0)}.
Proof. Let T = (a,b,c,d,e, f) € extBps . Without loss of generality we may assume that

L5(213,)
a>1b|,c>0ande > 0.

Claim: a = 1.
Assume otherwise. Then, a4 < 1. We claim that |d| < 1. Assume that |d| = 1. Since T =
(a,b,c,d,e, f) € extBgs  ,by Lemmal,

Ls5(213,)

%<|a—d|+e> :%<|b—d|+|f|) :}L<|a+b—2d|—|—c> 1, atb—2d|=c, |e—f| = 2.
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Hence, c = 2.Since2 = |2d| =2+4+a+b>2,a+b=0,s0a =b = 0. Hence,

1= (la—dl+e) = 50+, 1= 3 (Io—dl+Ifl) = 51+ IfD),

which shows thate = |f| = 1. Since |e — f| =2,e = —f = 1. Hence, T = (0,0,2,+1,1,—1).
We will show that T is not extreme. Notice that for n € N,

1,,1 1 1 1 1 1 1 1
0,0,2,1,1,-1)==((=,—=,2,1,14+ =, -1+ — -, +=2,1,1-=,—-1—=
(0,0,2,1,1,-1) 2((n, —2 114, +n)+( — 2,11 n))

and [|(£3, F5,2,1,1% 3, =14 1)z, 22,) = 1. Notice that for n € N,
1,,1 1 1 1 1 1 1 1
(0,0’2,_1,1’_1>_§<<E,_E,2’_1’1_E’_1_E)+<_E,+E,2’_1’1+E’_1+E)>

and |(£3, 71,2, -1,1534, -1 %)Hﬂs(zlgo) = 1. This is a contradiction. Therefore, |d| < 1.
Since |b| < a < 1,|d| <1, choose N € IN such that

1
N < min{l —a, 1—|d|}.

Then,

s s s o)

Ls(%1Z,)
and 1 1 1 1 1 1 1
T = E((a—l— N’b+ N’C’d+ N,e,f) + (a = N’b_ N,C,d— N,e,f)),
which shows that T is not extreme. This is a contradiction. Therefore, the claim holds.
Claim: c = 0or2or4.
Assume otherwise. Then, 0 < ¢ < 2 or2 < ¢ < 4. We will reach to a contradiction.
Suppose that 0 < ¢ < 2. Let |d| < 1. Notice that if b = 1, then, by Lemma 1,

1 1 1 1 1

so,d = 0and c = 2+ d = 2, which is a contradiction. Notice that if b = —1, then, by Lemma 1,

1 1 1 1 1
1—5(1—d+e>—§(1+d+\f’)—Z(z\d\JFC)—Z\z\d\—C’Jri\e—f!/

so, ¢ = 4 — 2|d| > 2, which is a contradiction. Let |b| < 1. Notice that if (1 —d +e¢) = 1, then,
by Lemma 1,
b—d=0,|f|=2 1+b—-2d|=c¢c, |e—f| =2,

which shows that ¢ = 0 and d = -1, which is a contradiction. Let us note that if
(1 +b—2d|+c) =1, then, by Lemma 1,

b—d=0,|f|=2 [1+b-2d] =¢, e~ f| =2,

which shows that ¢ = 2, which is a contradiction. Let us note that if (1 —d +¢) =
1(1+b—2d| +c) =1, then, by Lemma 1,

1 1
b—d =0, |f| =2, {|[1+b—2d|—c[+ e~ f| =1,
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which shows that ¢ = 3+d > 2, which is a contradiction. Suppose that (1 —d +e¢) =
T14+b—2d+¢c) = 1LIfb—d =0, |f| =2 3|[1+b—2d| —c|[+%le—f| = 1, then
¢ = 3+d > 2, which is a contradiction. If [1+b—2d| =¢, [e— f| =2, J(1—d+|f]) =1,
then ¢ = 2, which is a contradiction.

Letd = 1. Suppose e < 2.If |b| < 1, then, by Lemma 1,

1:%(1—b—|—|f|):31(1—b+c),1—b—c:0, e—fl =2,

which shows that ¢ = 3 4+ b > 2, which is a contradiction. If b = 1, then, by Lemma 1,
1 1
fl=2, ZCWLE’@—JC\ =1,

soT =(1,1,¢,1, %C,Z) or (1,1,¢,1, —%c, —2) for 0 < ¢ < 2. Hence, T is not extreme. This is a
contradiction. If b = —1, then, by Lemma 1,

1 1
f=0, 2= +35le—fI=1,

which shows thate = 2 + %c. Hence, ¢ = 0, which is a contradiction. Suppose e = 2. If |b| < 1,
then, by Lemma 1,

1 1
1=§O—d+VD=Zﬂ—b+®

or

1 1 1
1= (—d+|f) = g1 =b—c|+ 32~ )
o 1 1 1
If
1 1 1 1 1
then ¢ = 3+ b > 2, which is a contradiction. If
1 1 1
1—5(1—d+’f\) —le—b—c]+§(2—f),

then T = (1,b,—(1+3b),1,2,1+b) for -1 < b < —%. Hence, T is not extreme. This is a
contradiction. If b = 1, then f = 2or jc+3(2—f) = L.If f = 2, then T = (1,1,¢,1,2,2)
for 0 < ¢ < 2. Hence, T is not extreme. This is a contradiction. If }IC + %(2 — f) = 1, then
T=(1,1¢1,2, %c) for 0 < ¢ < 2. Hence, T is not extreme. This is a contradiction. If b = —1,
then f = 0 and ¢ > 2, which is a contradiction. Letd = —1. If |b| < 1, then, by Lemma 1,

1 1
1:§@+b+VD:Z®+b+o
or
1= Yagdar ) =2@+b—0 + 1
2 4 2
or
1—1@+b+d—16+b—®+lv
4 4 2
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Hence, T = (1,b, 1 —0b, —1,0, £(1 — b)) for —1 < b < 1. Hence, T is not extreme. This
is a contradiction. If b = 1,then f = Oand 1 > X(Ja+b—2d|+c¢) = 1+ £ Hence,
¢ = 0, which is a contradiction. If b = —1, then f = 0 and (2 —¢) + 3|f| = 1. Hence,
T=(1,-1¢ —1,0, £(1+5)) for 0 < c < 2. Hence, T is not extreme. This is a contradiction.
We have shown that if 0 < ¢ < 2, then T is not extreme.

Suppose that 2 < ¢ < 4. Let |d| < 1.If |b| < 1, then, by Lemma 1,

b—d, |fl=2 1+b—2d=c, |e—f] =2.

If}(1—d+2)=1,thene =0and d = —1, which is a contradiction. If 2(|1+b —2d| +¢) =1,
thenc =1 —d < 2, which is a contradiction. If b = —1, then, by Lemma 1,

1 1 1 1 1
1= 5(1_d+6) _5(1+d+yﬂ) = Z(2d+c) _Z‘Zd_CHE’e_ﬂ'

Hence, T = (1,—1,¢, 2 — %c, 3— %C, -1+ %c) for 2 < ¢ < 4. Hence, T is not extreme. This is
a contradiction. If b = 1, then

1 1 1 1 1
1—5(1—d+e)—§(1—d—|—\f]) —Z(Z—Zd—irc)—Z\Z—Zd—cH—E\e—ﬂ.
Hence, d = 2, e = 4c = |f|. If f = 3¢, then1 = }[2—2d —¢| = § —1,s0 ¢ = 4. This is
a contradiction. If f = —1c, then 1 = ¢ — 1, so ¢ = 2. This is a contradiction. Let |d| = 1.

Suppose that e < 2.If || < 1, then, by Lemma 1,

1:%(1—b—|—|f|):31(1—b+c),1—b—c:0, e—fl=2.

Hence b = —1. This is a contradiction. If b = 1, then T = (1,1,¢, £1, i%c, +2) for2 < ¢ < 4.
Hence, T is not extreme. This is a contradiction. If b = —1, then f = 0 and ¢ < 2. Thisis a
contradiction. Suppose that e = 2. If [b| < 1, then, by Lemma 1,

1:%(1—b—|—|f|):}L(l—b+c)or1—b—c:f:0.

If1=11-b+|f]) =11 -b+c), then T = (1,b,3+b, 1,2, £(1+b)) for -1 < b < 1.
Hence, T is not extreme. This is a contradiction. If 1 —b —c = f =0, thenc =1 —b < 2. This
is a contradiction. Letd = 1. If b = 1, then, by Lemma 1,

f=0 or ic—l—%(Z—f) =1
If f=0,thenT = (1,1,¢,1,2,0) for 2 < ¢ < 4. Hence, T is not extreme. This is a contradiction.
If %c + %(2 —f)=1,thenT = (1,1,¢,1,2, %c) for 2 < ¢ < 4. Hence, T is not extreme. This is a
contradiction.
Letd = —1.1If |b| < 1, then we reach to a contradiction as in the proof of the case d = 1. If
b =1,then by Lemmal, f =0and 1 > }(la+b—2d| +|c) = }(4+c),soc = 0. Thisisa
contradiction. If b = —1, then, by Lemma 1,

1 1 1 1
st c= e +3lf=1



346 KiM SUNG GUEN

so ¢ = 2. This is a contradiction. We have shown that if 2 < ¢ < 4, then T is not extreme.
Casel1l: ¢ = 0.
Claim: || = |d| = 1.
Assume otherwise. Then, (|b| < 1,]d| < 1) or (|b| = 1,|d| < 1) or (|| < 1,|d| = 1).
Assume that |b| < 1and |d| < 1. By Lemma 1,
1 1
E(l—d+e) = §(|b—d|—|—|f|) =1,14b-2d=0, le— f| =2
Hence, b = —1, which is a contradiction. Assume that |b| = 1 and |d| < 1. If b = 1, then, by
Lemma 1,

1 1 1
~1-d+e)=z(1—-d+|f])=s1—-d+le—f]) =1
2 2 2

Hence, d = —1, which is a contradiction. If b = —1, then, by Lemma 1,

1 1
5(1—d+e):§(1+d+\f]) =1,d=0,le—f| =2

Hence, T = (1,—1,0,0,1, —1). Notice that T is not extreme since

21 1 1 2 1 1 1
T:_ 11_11_1_11 _/_1 - 1/_1/__/__11__1_1__ )
2<( nn +n +n)+( n o n n n)
and [|(1, =1, 42,453,141, —1+ 1)[ ez, = 1 for every n € N. Assume that [b| < 1 and
|d| = 1.1fd = 1, then, by Lemma 1,
1

1 1

Hence, T = (1, —%, 0,1,2, %) Notice that T is not extreme since

1 1 1 3 2 1 1 13 2 1
T_§<(1,_§+E’_E’1,2’§+E)+(1’_§_E1E11;2/§_E)>
and L1 s .
I =g 7 b 252 Dleer) =1

for every n > 3.1f d = —1, then, by Lemma 1,

1 1 1
e=0, 5(1+b+m) _Z(3+b)+§yﬂ =1.

Hence, b = 1, which is a contradiction. We have shown that the claim holds.
Suppose that b =d = 1. By Lemma 1,

(e=|f[=2) or (e=le—f]=2) or (|f|=le—f]=2).
Ife=|f| =2,thenT = (1,1,0,1,2,2). Notice that T is not extreme since

1 1 1
T = 5((1,1; E11/2/2) + (1/11_E11/2’2)>

and ||(1,1,:l:%,1,2,2)||55(2150) = 1 for every n € IN. This is a contradiction. If e = |e —

fl =2,then T = (1,1,0,1,2,0) € extBge s .Indeed, let Ty := T + (&1, €2, €3,61,02,03) and
ES( loo)
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Ty := T — (&1, €2,€3,01,02,03) for some ej, Bj € R (j =1, 2, 3). Obviously, &g = &3 = 61 = 0.
Since |2 £ ;| < 2, we have d, = 0. Since

1 1 1 1
— —2—93] <2, -| — 124463 <2
4’83‘+2‘ 3‘ — =7 4‘ 83‘_'—2’ + 3‘ — =7

we have 63 = €3 = 0. Therefore, Ty = T, = T. Hence, T is extreme. If |f| = |e — f| = 2,
then T = (1,1,0,1,0,%2). By Theorem 1, T is extreme. If b = —d = 1, then, by Lemma 1,
T = (1,1,0,—1,0,0). We claim that T is extreme. Let Ty := T + (e1,¢€p,€3,01,02,63) and
T, :=T— (81,82,83,(51,(52,(53) for some €j, ‘B] eR (] =1, 2, 3). ObViOLlSly, € =¢& =01 =0.
Since [2 £ 6| < 2, |2+ d3] < 2, we have 6, = 83 = 0. Since (4 + |e3|) < 1, we have 3 = 0.
Therefore, T) = T, = T. Hence, T is extreme. Notice that (1,1,0,—1,0,0). If —=b = —d =1,
then |[f| =1and T = (1,—1,0,—1,0, +1). Notice that T is not extreme since
T= %((1,—1,%,—1,0,1 + %) +(1,-1, —%,—1,0,1 - %))

and ||(1, -1, j:%, -1,0,1+ %) Hﬁs(zlgo) = 1forevery n € IN. This is a contradiction. If —b=d=1,
then ¢ = 2. This is a contradiction.

Case 2: c = 2.

Claim: |[d| =0or L

Assume that 0 < |d| < 1.If b = d, by Lemma 1,

1

1 1
|f| =2, 5(1—d+e)_1(1_d)+§_1_

Hence, d = —1, which is a contradiction. Assume that b # d.1If |b| < 1, by Lemma 1,

1 1 1 1
SA—d+e)=3(b—d|+|f) = z(1+b—2d) +5 =1, |1+b—-2d| ~2[ =4, e~ f =0

or
1 1 1 1
E(1—d+e):E(\b—d\ﬂfy):Z(1+b—2d)+§:1, 1+b—2d =2, |e— f|] =2.
fll—d+e)=3(b—d +|f]) =1(1+b—2d)+3 =1, [1+b—2d| =2,|e— f| = 2, then
b = —1, which is a contradiction. If J(1 —d +e¢) = 3(|b—d|+ |f]) = $(1+b—2d) + 3 =1,

[|I14+b—2d| —2| =4,e— f =0, then |d| = 2, which is a contradiction. If |b| = 1, then, by
Lemma 1,

1 1 1
If b =1, then d = 0, which is a contradiction. If b = —1, then d = 1, which is a contradiction.
Therefore, we have shown that |d| = 0 or 1.

Suppose that d = 0. If || < 1, then, by Lemma 1,
1 1 1
e=1, §(|b|+|f|) _Z(1+b)+§_1'

Hence, b = 1, which is a contradiction. Let |b| = 1. Suppose that % + %e = 1. Then, e = 1 and
T=(1,1201-1)or(1,1,2,0,—1,1). We claim that (1,1,2,0,1, —1) is extreme. Indeed, let
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Ty :=T+ (e1,€2,€3,61,02,03) and Tp := T — (e1, €2, €3, 01, 82, 63) for some ej, B € R(j =1,23).
Obviously, e; = €3 = 0. Since

TFa|+1£6]<2, [1£6]+1£85]<2, 25201+ 2] <4,

we have 61 = 6, = — 3 = %83. Since
3
Z\ +o|+1+6] <1,

we have 61 = 6, = —d3 = %83 = 0. Therefore, Ty = T, = T. Hence, T is extreme. By Theorem 1,
(1,1,2,0,—1,1) is extreme.

Suppose that % + %e < 1.ByLemmal, |[f| = 1.If f = 1, then T = (1,1,2,0,¢,1) for
0 < e < 1. Notice that such (1,1,2,0,¢,1) is not extreme. If f = —1,then T = (1,1,2,0,0, —1).
Notice that (1,1,2,0,0, —1) is not extreme since

T= %((1,1,2+ L PR U €5 0 S 1))
n'n'n n n n n n

and |(1,1,2+£2,+£1 +1 14 1) |z, 212) = 1 for every n > 2. This is a contradiction.

Suppose that |d| = 1. We claim that |b| = 1. Assume that [b| < 1.If d = 1, then, by
Lemma 1,

1 1 1
“(1-b = -(1-b)+-=1
Sl = b))
or 1 1 1 1
- 1-b)+===-1-b)+==1
J1-b+5=70-b)+7
o 1 1 1
SI=b+[f]) = 7(1+b) +5le—fl =1
Hence, b = —1, which is a contradiction. If d = —1, then, by Lemma 1,
1 1 1
e 0,2( +b+1f]) 4(3—|— )+2
Hence, b = —1, which is a contradiction. Therefore, |b| = 1. Suppose that b = d = 1. If
% + %|e —f]l <1,thenT = (1,1,2,1,2,£2). Notice that (1,1,2,1,2, £2) is not extreme since
1 1 1
T=-((1,1,24+-,1,2,2 1,1,2—-—,1,2,2 )
2 <( + n ) + ( n )

and |(1,1,2 + %,1,2,2)”55(2150) = 1 for every n > 2. This is a contradiction. Suppose that
T+ile—fl =1.1Ife =2 then T = (1,1,2,1,2,0). Notice that (1,1,2,1,2,0) is not extreme
since

1 1.1 1 1
r=s(L12+-12 )+ (1L1,2- 1,2, —5))

and [(1,1,2+1,1,2, 1) |22,y = 1 for every n € IN. This is a contradiction.

If [f| = 2,then T = (1,1,2,1,0,2). By Theorem 1, (1,1,2,1,0,2) is not extreme. Suppose
that -=b =d = 1.Then T = (1,—1,2,1,¢,0) for 0 < e < 2. Since T is extreme, ¢ = 0 or 2.
Notice that (1, —1,2,1,0,0) is not extreme. We claim that T = (1,—1,2,1,2,0) is extreme. Let
Tl =T+ (81,82,83,51,52,(53) and Tz =T-— (81,82,83,(51,(52,(53) for some Sj, ﬁ] e R (] =1, 2,
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3). Obviously, e; = ¢, = §; = I, = J3 = 0. Since 2 + |2 £ ¢3| < 4, we have €3 = 0. Therefore,
T; = T, = T. Hence, T is extreme.

Suppose thatb =d = —1. Then T = (1,—1,2,—1,0, f) for =2 < f < 2. Since T is extreme,
f =42.By Theorem 1, T = (1,—1,2,—1,0, £:2) is extreme. Suppose that b = —d = 1. Then,
1 3

1> 4(\1+b—2d\ +c) = X
which is a contradiction.
Case 3: c = 4.
Claim: || = 1.

Assume that [b| < 1. By Lemma 1, we have 0 < d < 1, 3(1—d +e) = 1. Hence,
T =(1,2d —1,4,d,1+d,1+d) for 0 < d < 1. Hence, T is not extreme. This is a contra-
diction. Therefore, |b| = 1.1fb =1, then T = (1,1,4,1,¢,¢) for 0 < e < 2. Since T is extreme,
e = 0 or 2. We claim that (1,1,4,1,2,2) is extreme. Let Ty := T + (&1, €3, €3,01,02,03) and
Ty, =T — (81,82, €3,01, 02, (53) for some €j, ﬁ] eR (] =1, 2, 3). ObViOLlSly, g =¢ =¢€e3=0=0,
J3 = J5. Since |2 + 85| < 2, we have §, = 0. Therefore, Ty = T, = T. Hence, T is extreme.

Notice that (1,1,4,1,0,0) is not extreme since

1 11 1 1
T=> ((1,1,4,1, )+ (1141, _E)>

and [|(1,1,4,1, 1, £1)]|, (212 = 1 for every n € IN. This is a contradiction.

Ifb=—1,thend =0,e=f, 0<e<1.Hence, T =(1,—-1,4,0,¢,e) for0 < e < 1.Since T
is extreme, e =0 or 1. Notice that (1, —1,4,0,0,0) is not extreme since
11

1 1
EI E) + (1/ _1/4701 _EI __)>

1
(1,-1,4,0,0,0) = §<(1’_1’4’0’ ~

and [|(1,-1,4,0,+1,+1) .12, = 1 for every n € IN. This is a contradiction. We claim that
T =1(1,-1,4,0,1,1) is extreme. Let
Ty :=T + (e1,€2,€3,01,02,03) and Tp:=T — (e1,€2,¢3,61,02,03)
for some €, ,8]- € R (j =1, 2, 3). Obviously, € = 0forj=1,2,3.Since
2001/ +4 <4, 1+ [1+£6] <2, 1+[1+5| <2,

we have 6;=0 for j =1,2,3. Therefore, Ty = T, = T. Hence, T is extreme.
Therefore, we complete the proof. O

Theorem 3 ([22]). Let E be a real Banach space such that ext Bg is finite. Suppose that
x € extBg satisfies that there exists f € E* with f(x) =1 = ||f|| and |f(y)| < 1 for every
y € ext Be\{%x}. Then, x € exp Bg.

The following theorem gives the explicit formula for the norm of every linear functional on

6
Rz

Theorem 4. Let f € (R%s(zlgo))*. Let a1 := f(e1), ax = f(ea), a3 := f(es), B := f(es),
71 := f(es), v2 := f(eq). Then,

Ifll = {|“1 +ay +az| + 4|8 + 2[r1 + 72, |ar — 2| +4|B] + |71 + 72|,
g — ap +az| +2|B] + 2|71, |a1 —az —az| +2|B] +2|72],
‘061+062‘+2‘ﬁ‘ —|—")/1—’)’2‘, ’0614—0624—063’-1-2")/1‘, ’0614-0(2—0(3‘}.
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Proof. 1t follows from the Krein-Milman Theorem and the fact that

1A= sup [A(T)].

Teext B]R6
L5(213,) O

Notice that if f € (R%s(zlé))* and ||f|| = 1, then |aj| <1, |B| < ¢, |m| < 3 forj=1,23
and k=1,2.

Theorem 5. ext B¢ = exp Bs .
Reez,) P Rz,

Proof. 1t is enough to show thatif T = (a,b,c,d, e, f) € ext Bye , then T is exposed.
Ls

(21%)
Claim: T = (1,1,4,1,2,2) is exposed.
Let f € (IR%S(ZZ%Q))* besuchthata; = ap = a3 =0, B =71 = 12 = %. By Theorem 4,
f(T) =|fll =1and |f(R)| < 1forevery R € ext Bgs - \{£T}. By Theorem 3, T is exposed.
Ls(“lgo)

By Theorem 1, +(1,1,—4,1,2,2), +(1,1,+4,1, —2, —2) are exposed.
Claim: T = (1,—1,4,0,1,1) is exposed.
Letf € (IR%s(zlgo))* besuchthata; = —ar = %, a3 =0, = %, ¥1 = 72 = 0. By Theorem 4,
f(T) =|fll =1and |f(R)| < 1forevery R € ext Bgs . \{£T}. By Theorem 3, T is exposed.
L

s(213,)
By Theorem 1, +(1,1,—4,0,1,1), +(1,1,+4,0, —1, —1) are exposed.
Claim: T = (1,—1,2,1,2,0) is exposed.
Let f € (IR%S(ZZ%Q))* be such that &7 = —a, = a3 = 3, B = 71 = 72 = 0. By Theo-

rem 4, f(T) = ||f|| = 1and |[f(R)| < 1 for every R € extBpe \a \{£T}. By Theorem 3, T is
Ls(°15%)

exposed. By Theorem 1, +(1,-1,-2,1,£2,0), +(1,-1,-2,1,—-2,0), £(1,-1,-2,-1,0,£2)
are exposed

Claim: T = (1,1,2,0,1, —1) is exposed.

Let f € (]R%S(zzgo))* be such that oy = ap = —a3z = %, B=0 91=—7= % By Theorem 4,
f(T) =||f]] =1and |f(R)| < 1 for every R € ext B]R6L . \{£T}. By Theorem 3, T is exposed.

s(1%)
By Theorem 1, +(1,1,-2,0,1,—1), +(1,1,£2,0,—1,1) are exposed
Claim: T = (1,1,0,1,2,0) is exposed.
Let f € (]R%S(ngo))* be such that a; = ay = a3 = %, B=0,71=—72= %, By Theorem 4,
f(T) = ||f]l| =1and |f(R)| < 1forevery R € extBpe . \{£T}. By Theorem 3, T is exposed.
ES( loo)

By Theorem 1, +(1,1,0,1,+2,0), +(1,1,0,1,0, £2) are exposed
Claim: T = (1,1,0,—1,0,0) is exposed.
Let f € (R%s(zzgo))* be such that a; = 0y = —a3 = %, B = 71 = 72 = 0. By Theorem 4,
f(T) = ||f]l| =1and |f(R)| < 1forevery R € extBpe \{£T}. By Theorem 3, T is exposed.
L )

s (213,

By Theorem 1, —(1,1,0, —1,0,0) is exposed. Therefore, we complete the proof. O
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KhracndikoBaHO excTpeMaAbHI TOUKM Ta BUCTaBA€H]I TOUKM OAVHUYHOI KYAi TpocTopy 6iAiHil-
HUX CUMeTPUUHMX (pOpM Ha AifICHOMY 6aHaXOBOMY TIPOCTOPI biAiHifHIX crMeTpuurx popm Ha 12,
INoxa3aHo, 110 B IbOMY BUIIAAKY MHOXMHA €KCTpeMaAbHIX TOYOK AOPiBHIOE MHOXIHI BMCTaBAEHIX
TOUYOK.
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