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EXTREME AND EXPOSED SYMMETRIC BILINEAR FORMS ON THE SPACE Ls(2l2
∞
)

KIM SUNG GUEN

We classify extreme points and exposed points of the unit ball of the space of bilinear symmetric
forms on the real Banach space of bilinear symmetric forms on l2

∞
. It is shown that for this case, the

set of extreme points is equal to the set of exposed points.
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INTRODUCTION

Throughout the paper, we let n ∈ N, n ≥ 2. We write BE for the closed unit ball of a real
Banach space E and the dual space of E is denoted by E∗. An element x ∈ BE is called an extreme

point of BE if y, z ∈ BE with x = 1
2(y + z) implies x = y = z. We denote by ext BE the set of all

extreme points of BE. An element x ∈ BE is called an exposed point of BE if there is a functional
f ∈ E∗ such that f (x) = 1 = ‖ f‖ and f (y) < 1 for every y ∈ BE \ {x}. It is easy to see that every
exposed point of BE is an extreme point. We denote by exp BE the set of exposed points of BE.
A mapping P : E → R is a continuous n-homogeneous polynomial if there exists a continuous
n-linear form T on the product E × · · · × E such that P(x) = T(x, . . . , x) for every x ∈ E. We
denote by P(nE) the Banach space of all continuous n-homogeneous polynomials from E into
R endowed with the norm ‖P‖ = sup‖x‖=1 |P(x)|. We denote by L(nE) the Banach space of
all continuous n-linear forms on E endowed with the norm ‖T‖ = sup‖xk‖=1 |T(x1, . . . , xn)|.
Ls(nE) denotes the closed subspace of all continuous symmetric n-linear forms on E. For more
details about the theory of polynomials and multilinear mappings on Banach spaces, we refer
to [8].

Let us introduce the history of classification problems of extreme and exposed points of
the unit ball of continuous n-homogeneous polynomials on a Banach space. We let ln

p = R
n

for every 1 ≤ p ≤ ∞ equipped with the lp-norm. Choi et al. ([3, 4]) initiated and classified
ext BP(2l2

p)
for p = 1, 2. Choi and Kim [7] classified ext BP(2l2

p)
for p = 1, 2, ∞. Later, B. Grecu [12]

classified the sets ext BP(2l2
p)

for 1 < p < 2 or 2 < p < ∞. Kim et al. [37] showed that if

E is a separable real Hilbert space with dim(E) ≥ 2, then, ext BP(2E) is equal to exp BP(2E).
Kim [16] classified exp BP(2l2

p)
for every 1 ≤ p ≤ ∞. Kim [18] characterized ext BP(2d∗(1,w)2),

where d∗(1, w)2 denotes R
2 equipped with the octagonal norm

‖(x, y)‖w = max
{

|x|, |y|,
|x|+ |y|

1 + w

}
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for 0 < w < 1. Kim [25] classified exp BP(2d∗(1,w)2) and showed that exp BP(2d∗(1,w)2) is a proper
subset of ext BP(2d∗(1,w)2). Recently, Kim ([30, 33]) classified ext BP(2R2

h( 1
2 )
) and exp BP(2R2

h( 1
2 )
),

where R
2
h( 1

2 )
denotes R

2 endowed with a hexagonal norm

‖(x, y)‖h( 1
2 )

= max
{

|y|, |x|+
1

2
|y|

}

.

Parallel to the classification problems of extBP(nE) and expBP(nE), it seems to be very natural
to study the classification problems of extreme and exposed points of the unit ball of con-
tinuous (symmetric) multilinear forms on a Banach space. Kim [17] initiated and classified
ext BLs(2l2

∞
) and exp BLs(2l2

∞
). Kim ( [19, 21, 22, 24]) classified ext BLs(2d∗(1,w)2), ext BL(2d∗(1,w)2),

exp BLs(2d∗(1,w)2), and exp BL(2d∗(1,w)2). Kim ([28, 29]) also classified ext BLs(2l3
∞) and ext BLs(3l2

∞
).

It was shown that ext BLs(2l3
∞) and ext BLs(3l2

∞
) are equal to exp BLs(2l3

∞) and exp BLs(3l2
∞
), re-

spectively. Kim [32] classified ext BL(2ln
∞
) and ext BLs(2ln

∞
). Kim [34] characterized ext BL(nl2

∞
),

ext BL(nl2
∞
), ext BLs(nl2

∞
), exp BLs(nl2

∞
) and showed that exp BL(nl2

∞
) and exp BLs(nl2

∞
) are equal to

ext BL(nl2
∞
) and ext BLs(nl2

∞
), respectively. Recently, Kim [35] characterized for m ≥ 2, ext BL(nlm

∞
),

ext BL(nlm
∞
), ext BLs(nlm

∞
), exp BLs(nlm

∞
) and showed that exp BL(nlm

∞
) and exp BLs(nlm

∞
) are equal to

ext BL(nlm
∞
) and ext BLs(nlm

∞
), respectively.

We refer to [1,2,5,6,9–11,13–15,20,23,26,27,31,36,38–47] for some recent work about extremal
properties of homogeneous polynomials and multilinear forms on Banach spaces.

In this paper, we classify ext BLs(2Ls(2l2
∞
)) and exp BLs(2Ls(2l2

∞
)). It is shown that

ext BLs(2Ls(2l2
∞
)) = exp BLs(2Ls(2l2

∞
)).

1 RESULTS

Throughout the paper, R
6
Ls(2l2

∞
)

denotes R
6 with the Ls(2l2

∞
)-norm

∥

∥

∥
(a, b, c, d, e, f )

∥

∥

∥

Ls(2l2
∞
)

: = max
{

|a|, |b|, |d|,
1

2

(

|a − d|+ |e|
)

,
1

2

(

|b − d|+ | f |
)

,

1

4

(

|a + b − 2d|+ |c|
)

,
1

4

∣

∣

∣
|a + b − 2d| − |c|

∣

∣

∣
+

1

2
|e − f |

}

.

Notice that if (a, b, c, d, e, f ) ∈ R
6
Ls(2l2

∞
)

with
∥

∥

∥
(a, b, c, d, e, f )

∥

∥

∥

Ls(2l2
∞
)
= 1, then |a| ≤ 1, |b| ≤ 1,

|d| ≤ 1, |c| ≤ 4, |e| ≤ 2, | f | ≤ 2. Notice that

∥

∥

∥
(a, b, c, d, e, f )

∥

∥

∥

Ls(2l2
∞
)

=
∥

∥

∥
(b, a, c, d, f , e)

∥

∥

∥

Ls(2l2
∞
)
=

∥

∥

∥
(a, b,−c, d, e, f )

∥

∥

∥

Ls(2l2
∞
)

=
∥

∥

∥
(a, b, c, d,−e,− f )

∥

∥

∥

Ls(2l2
∞
)
=

∥

∥

∥
(−a,−b, c,−d, e, f )

∥

∥

∥

Ls(2l2
∞
)
.

Therefore, without loss of generality we may assume that a ≥ |b|, c ≥ 0 and e ≥ 0.

In [36] it was shown that the space R
6
Ls(2l2

∞
)

is isometrically isomorphic to the space

Ls(2Ls(2l2
∞
)).
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Theorem 1. Let (a, b, c, d, e, f ) ∈ R
6. Then, the following statements are equivalent:

(1) (a, b, c, d, e, f ) ∈ ext B
R

6
Ls(2l2

∞
)

;

(2) (b, a, c, d, f , e) ∈ ext B
R6

Ls(2l2
∞
)

;

(3) (a, b,−c, d, e, f ) ∈ ext B
R

6
Ls(2l2

∞
)

;

(4) (a, b, c, d,−e,− f ) ∈ ext B
R6

Ls(2l2
∞
)

;

(5) (−a,−b, c,−d, e, f ) ∈ ext B
R

6
Ls(2l2

∞
)

.

Proof. It is obvious.

Lemma 1. Let a, b ∈ R be such that |a|+ |b| = 1. Then the following are equivalent:
(1) (|a| = 1, b = 0) or (a = 0, |b| = 1);
(2) if ε, δ ∈ R satisfies |a + ε|+ |b + δ| ≤ 1 and |a − ε|+ |b − δ| ≤ 1, then ε = δ = 0.

Proof. By symmetry, we may assume that |a| ≥ |b|.
(1) ⇒ (2). Suppose that |a| = 1, b = 0 and let ε, δ ∈ R be such that |a + ε| + |b + δ| ≤ 1

and |a − ε| + |b − δ| ≤ 1. Then |a + ε| + |δ| ≤ 1 and |a − ε| + |δ| ≤ 1, which shows that
1 ≥ |a|+ |ε|+ |δ| = 1 + |ε|+ |δ|. Therefore, ε = δ = 0.

(2) ⇒ (1). Assume otherwise. Then 0 < |b| ≤ |a| < 1. Let t > 0 be such that t|a| < |b|. Let
ε := t|a|sign(a) and δ := −t|a|sign(b). Notice that ε 6= 0 and δ 6= 0. It follows that

|a + ε|+ |b + δ| = (|a|+ t|a|) + (|b| − t|a|) = |a|+ |b| = 1

and
|a − ε|+ |b − δ| = (|a| − t|a|) + (|b|+ t|a|) = |a|+ |b| = 1.

This is a contradiction. Therefore, (2) ⇒ (1) is true.

We are in position to classify the extreme points of B
R6

Ls(2 l2
∞
)

.

Theorem 2.

ext B
R6

Ls(2l2
∞
)

=
{

± (1, 1,±4, 1, 2, 2), ±(1, 1,±4, 1,−2,−2), ±(1,−1,±4, 0, 1, 1),

±(1,−1,±4, 0,−1,−1), ±(1,−1,±2, 1, 2, 0), ±(1,−1,±2, 1,−2, 0),

±(1,−1,±2,−1, 0, 2), ±(1,−1,±2,−1, 0,−2), ±(1, 1,±2, 0, 1,−1),

±(1, 1,±2, 0,−1, 1), ±(1, 1, 0, 1,±2, 0), ±(1, 1, 0, 1, 0,±2),

±(1, 1, 0,−1, 0, 0)
}

.

Proof. Let T = (a, b, c, d, e, f ) ∈ ext B
R6

Ls(2 l2
∞
)

. Without loss of generality we may assume that

a ≥ |b|, c ≥ 0 and e ≥ 0.
Claim: a = 1.
Assume otherwise. Then, a < 1. We claim that |d| < 1. Assume that |d| = 1. Since T =

(a, b, c, d, e, f ) ∈ ext B
R6

Ls(2 l2
∞
)

, by Lemma 1,

1

2

(

|a − d|+ e
)

=
1

2

(

|b − d|+ | f |
)

=
1

4

(

|a + b − 2d|+ c
)

= 1, |a + b − 2d| = c, |e − f | = 2.
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Hence, c = 2. Since 2 = |2d| = 2 + a + b ≥ 2, a + b = 0, so a = b = 0. Hence,

1 =
1

2

(

|a − d|+ e
)

=
1

2
(1 + e), 1 =

1

2

(

|b − d|+ | f |
)

=
1

2
(1 + | f |),

which shows that e = | f | = 1. Since |e − f | = 2, e = − f = 1. Hence, T = (0, 0, 2,±1, 1,−1).
We will show that T is not extreme. Notice that for n ∈ N,

(0, 0, 2, 1, 1,−1) =
1

2

(

( 1

n
,−

1

n
, 2, 1, 1 +

1

n
,−1 +

1

n

)

+
(

−
1

n
,+

1

n
, 2, 1, 1−

1

n
,−1 −

1

n

)

)

and ‖(± 1
n ,∓ 1

n , 2, 1, 1 ± 1
n ,−1 ± 1

n )‖Ls(2l2
∞
) = 1. Notice that for n ∈ N,

(0, 0, 2,−1, 1,−1) =
1

2

(

( 1

n
,−

1

n
, 2,−1, 1 −

1

n
,−1 −

1

n

)

+
(

−
1

n
,+

1

n
, 2,−1, 1 +

1

n
,−1 +

1

n

)

)

and ‖(± 1
n ,∓ 1

n , 2,−1, 1 ∓ 1
n ,−1 ∓ 1

n)‖Ls(2l2
∞
) = 1. This is a contradiction. Therefore, |d| < 1.

Since |b| ≤ a < 1, |d| < 1, choose N ∈ N such that

1

N
< min{1 − a, 1 − |d|}.

Then,
∥

∥

∥

(

a ±
1

N
, b ±

1

N
, c, d ±

1

N
, e, f

)∥

∥

∥

Ls(2l2
∞
)
= 1

and

T =
1

2

((

a +
1

N
, b +

1

N
, c, d +

1

N
, e, f

)

+
(

a −
1

N
, b −

1

N
, c, d −

1

N
, e, f

))

,

which shows that T is not extreme. This is a contradiction. Therefore, the claim holds.
Claim: c = 0 or 2 or 4.
Assume otherwise. Then, 0 < c < 2 or 2 < c < 4. We will reach to a contradiction.
Suppose that 0 < c < 2. Let |d| < 1. Notice that if b = 1, then, by Lemma 1,

1 =
1

2
(1 − d + e) =

1

2
(1 − d + | f |) =

1

4
(2 − 2d + c) =

1

4
|2 − 2d + c|+

1

2
|e − f |,

so, d = 0 and c = 2+ d = 2, which is a contradiction. Notice that if b = −1, then, by Lemma 1,

1 =
1

2
(1 − d + e) =

1

2
(1 + d + | f |) =

1

4
(2|d| + c) =

1

4
|2|d| − c|+

1

2
|e − f |,

so, c = 4 − 2|d| > 2, which is a contradiction. Let |b| < 1. Notice that if 1
2(1 − d + e) = 1, then,

by Lemma 1,
b − d = 0, | f | = 2, |1 + b − 2d| = c, |e − f | = 2,

which shows that e = 0 and d = −1, which is a contradiction. Let us note that if
1
4(|1 + b − 2d|+ c) = 1, then, by Lemma 1,

b − d = 0, | f | = 2, |1 + b − 2d| = c, |e − f | = 2,

which shows that c = 2, which is a contradiction. Let us note that if 1
2(1 − d + e) =

1
4(|1 + b − 2d|+ c) = 1, then, by Lemma 1,

b − d = 0, | f | = 2,
1

4
||1 + b − 2d| − c|+

1

2
|e − f | = 1,
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which shows that c = 3 + d > 2, which is a contradiction. Suppose that 1
2(1 − d + e) =

1
4(|1 + b − 2d| + c) = 1. If b − d = 0, | f | = 2, 1

4 ||1 + b − 2d| − c| + 1
2 |e − f | = 1, then

c = 3 + d > 2, which is a contradiction. If |1 + b − 2d| = c, |e − f | = 2, 1
2(1 − d + | f |) = 1,

then c = 2, which is a contradiction.
Let d = 1. Suppose e < 2. If |b| < 1, then, by Lemma 1,

1 =
1

2
(1 − b + | f |) =

1

4
(1 − b + c), 1 − b − c = 0, |e − f | = 2,

which shows that c = 3 + b > 2, which is a contradiction. If b = 1, then, by Lemma 1,

| f | = 2,
1

4
c +

1

2
|e − f | = 1,

so T = (1, 1, c, 1, 1
2 c, 2) or (1, 1, c, 1,−1

2 c,−2) for 0 < c < 2. Hence, T is not extreme. This is a
contradiction. If b = −1, then, by Lemma 1,

f = 0,
1

4
(2 − c) +

1

2
|e − f | = 1,

which shows that e = 2 + 1
2 c. Hence, c = 0, which is a contradiction. Suppose e = 2. If |b| < 1,

then, by Lemma 1,

1 =
1

2
(1 − d + | f |) =

1

4
(1 − b + c)

or

1 =
1

2
(1 − d + | f |) =

1

4
|1 − b − c|+

1

2
(2 − f )

or

1 =
1

4
(1 − b + c) =

1

4
|1 − b − c|+

1

2
(2 − f ).

If

1 =
1

2
(1 − d + | f |) =

1

4
(1 − b + c) or 1 =

1

4
(1 − b + c) =

1

4
|1 − b − c|+

1

2
(2 − f ),

then c = 3 + b > 2, which is a contradiction. If

1 =
1

2
(1 − d + | f |) =

1

4
|1 − b − c|+

1

2
(2 − f ),

then T = (1, b,−(1 + 3b), 1, 2, 1 + b) for −1 < b < −1
3 . Hence, T is not extreme. This is a

contradiction. If b = 1, then f = 2 or 1
4 c + 1

2(2 − f ) = 1. If f = 2, then T = (1, 1, c, 1, 2, 2)
for 0 < c < 2. Hence, T is not extreme. This is a contradiction. If 1

4 c + 1
2(2 − f ) = 1, then

T = (1, 1, c, 1, 2, 1
2 c) for 0 < c < 2. Hence, T is not extreme. This is a contradiction. If b = −1,

then f = 0 and c ≥ 2, which is a contradiction. Let d = −1. If |b| < 1, then, by Lemma 1,

1 =
1

2
(1 + b + | f |) =

1

4
(3 + b + c)

or

1 =
1

2
(1 + d + | f |) =

1

4
(3 + b − c) +

1

2
| f |

or

1 =
1

4
(3 + b + c) =

1

4
(3 + b − c) +

1

2
| f |.
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Hence, T = (1, b, 1 − b, −1, 0, ±(1 − b)) for −1 < b < 1. Hence, T is not extreme. This
is a contradiction. If b = 1, then f = 0 and 1 ≥ 1

4(|a + b − 2d| + c) = 1 + c
4 . Hence,

c = 0, which is a contradiction. If b = −1, then f = 0 and 1
4(2 − c) + 1

2 | f | = 1. Hence,
T = (1,−1, c, −1, 0, ±(1 + c

2)) for 0 < c < 2. Hence, T is not extreme. This is a contradiction.
We have shown that if 0 < c < 2, then T is not extreme.

Suppose that 2 < c < 4. Let |d| < 1. If |b| < 1, then, by Lemma 1,

b − d, | f | = 2, |1 + b − 2d| = c, |e − f | = 2.

If 1
2(1 − d + 2) = 1, then e = 0 and d = −1, which is a contradiction. If 1

4(|1 + b − 2d|+ c) = 1,
then c = 1 − d < 2, which is a contradiction. If b = −1, then, by Lemma 1,

1 =
1

2
(1 − d + e) =

1

2
(1 + d + | f |) =

1

4
(2d + c) =

1

4
|2d − c|+

1

2
|e − f |.

Hence, T = (1,−1, c, 2 − 1
2 c, 3 − 1

2 c, −1 + 1
2 c) for 2 < c < 4. Hence, T is not extreme. This is

a contradiction. If b = 1, then

1 =
1

2
(1 − d + e) =

1

2
(1 − d + | f |) =

1

4
(2 − 2d + c) =

1

4
|2 − 2d − c|+

1

2
|e − f |.

Hence, d = c−2
2 , e = 1

2 c = | f |. If f = 1
2 c, then 1 = 1

4 |2 − 2d − c| = c
2 − 1, so c = 4. This is

a contradiction. If f = −1
2 c, then 1 = c − 1, so c = 2. This is a contradiction. Let |d| = 1.

Suppose that e < 2. If |b| < 1, then, by Lemma 1,

1 =
1

2
(1 − b + | f |) =

1

4
(1 − b + c), 1 − b − c = 0, |e − f | = 2.

Hence b = −1. This is a contradiction. If b = 1, then T = (1, 1, c, ±1, ±1
2 c, ±2) for 2 < c < 4.

Hence, T is not extreme. This is a contradiction. If b = −1, then f = 0 and c ≤ 2. This is a
contradiction. Suppose that e = 2. If |b| < 1, then, by Lemma 1,

1 =
1

2
(1 − b + | f |) =

1

4
(1 − b + c) or 1 − b − c = f = 0.

If 1 = 1
2(1 − b + | f |) = 1

4(1 − b + c), then T = (1, b, 3 + b, 1, 2, ±(1 + b)) for −1 < b < 1.
Hence, T is not extreme. This is a contradiction. If 1 − b − c = f = 0, then c = 1 − b < 2. This
is a contradiction. Let d = 1. If b = 1, then, by Lemma 1,

f = 0 or
1

4
c +

1

2
(2 − f ) = 1.

If f = 0, then T = (1, 1, c, 1, 2, 0) for 2 < c < 4. Hence, T is not extreme. This is a contradiction.
If 1

4 c + 1
2(2 − f ) = 1, then T = (1, 1, c, 1, 2, 1

2 c) for 2 < c < 4. Hence, T is not extreme. This is a
contradiction.

Let d = −1. If |b| < 1, then we reach to a contradiction as in the proof of the case d = 1. If
b = 1, then, by Lemma 1, f = 0 and 1 ≥ 1

4(|a + b − 2d| + |c) = 1
4(4 + c), so c = 0. This is a

contradiction. If b = −1, then, by Lemma 1,

1

2
+

1

4
c =

1

4
(c − 2) +

1

2
| f | = 1,
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so c = 2. This is a contradiction. We have shown that if 2 < c < 4, then T is not extreme.
Case 1: c = 0.
Claim: |b| = |d| = 1.
Assume otherwise. Then, (|b| < 1, |d| < 1) or (|b| = 1, |d| < 1) or (|b| < 1, |d| = 1).

Assume that |b| < 1 and |d| < 1. By Lemma 1,

1

2
(1 − d + e) =

1

2
(|b − d|+ | f |) = 1, 1 + b − 2d = 0, |e − f | = 2.

Hence, b = −1, which is a contradiction. Assume that |b| = 1 and |d| < 1. If b = 1, then, by
Lemma 1,

1

2
(1 − d + e) =

1

2
(1 − d + | f |) =

1

2
(1 − d + |e − f |) = 1.

Hence, d = −1, which is a contradiction. If b = −1, then, by Lemma 1,

1

2
(1 − d + e) =

1

2
(1 + d + | f |) = 1, d = 0, |e − f | = 2.

Hence, T = (1,−1, 0, 0, 1,−1). Notice that T is not extreme since

T =
1

2

(

(

1,−1,
2

n
,

1

n
, 1 +

1

n
,−1 +

1

n

)

+
(

1,−1,−
2

n
,−

1

n
, 1 −

1

n
,−1 −

1

n

)

)

and ‖(1,−1,± 2
n ,± 1

n , 1 ± 1
n ,−1 ± 1

n)‖Ls(2l2
∞
) = 1 for every n ∈ N. Assume that |b| < 1 and

|d| = 1. If d = 1, then, by Lemma 1,

e = 2,
1

2
(1 − b + | f |) =

1

4
(1 − b) +

1

2
|e − f | = 1.

Hence, T = (1,−1
3 , 0, 1, 2, 2

3). Notice that T is not extreme since

T =
1

2

(

(

1,−
1

3
+

1

n
,−

3

n
, 1, 2,

2

3
+

1

n

)

+
(

1,−
1

3
−

1

n
,

3

n
, 1, 2,

2

3
−

1

n

)

)

and
∥

∥

(

1,−
1

3
±

1

n
,∓

3

n
, 1, 2,

2

3
±

1

n

)
∥

∥

Ls(2l2
∞
)
= 1

for every n > 3. If d = −1, then, by Lemma 1,

e = 0,
1

2
(1 + b + | f |) =

1

4
(3 + b) +

1

2
| f | = 1.

Hence, b = 1, which is a contradiction. We have shown that the claim holds.
Suppose that b = d = 1. By Lemma 1,

(e = | f | = 2) or (e = |e − f | = 2) or (| f | = |e − f | = 2).

If e = | f | = 2, then T = (1, 1, 0, 1, 2, 2). Notice that T is not extreme since

T =
1

2

(

(

1, 1,
1

n
, 1, 2, 2

)

+
(

1, 1,−
1

n
, 1, 2, 2

)

)

and ‖(1, 1,± 1
n , 1, 2, 2)‖Ls(2l2

∞
) = 1 for every n ∈ N. This is a contradiction. If e = |e −

f | = 2, then T = (1, 1, 0, 1, 2, 0) ∈ ext B
R6

Ls(2 l2
∞
)

. Indeed, let T1 := T + (ε1, ε2, ε3, δ1, δ2, δ3) and
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T2 := T − (ε1, ε2, ε3, δ1, δ2, δ3) for some ε j, βj ∈ R (j =1, 2, 3). Obviously, ε1 = ε2 = δ1 = 0.
Since |2 ± δ2| ≤ 2, we have δ2 = 0. Since

1

4
|ε3|+

1

2
|2 − δ3| ≤ 2,

1

4
| − ε3|+

1

2
|2 + δ3| ≤ 2,

we have δ3 = ε3 = 0. Therefore, T1 = T2 = T. Hence, T is extreme. If | f | = |e − f | = 2,
then T = (1, 1, 0, 1, 0,±2). By Theorem 1, T is extreme. If b = −d = 1, then, by Lemma 1,
T = (1, 1, 0,−1, 0, 0). We claim that T is extreme. Let T1 := T + (ε1, ε2, ε3, δ1, δ2, δ3) and
T2 := T − (ε1, ε2, ε3, δ1, δ2, δ3) for some ε j, βj ∈ R (j =1, 2, 3). Obviously, ε1 = ε2 = δ1 = 0.
Since |2 ± δ2| ≤ 2, |2 ± δ3| ≤ 2, we have δ2 = δ3 = 0. Since 1

4(4 + |ε3|) ≤ 1, we have ε3 = 0.
Therefore, T1 = T2 = T. Hence, T is extreme. Notice that (1, 1, 0,−1, 0, 0). If −b = −d = 1,
then | f | = 1 and T = (1,−1, 0,−1, 0,±1). Notice that T is not extreme since

T =
1

2

(

(

1,−1,
2

n
,−1, 0, 1 +

1

n

)

+
(

1,−1,−
2

n
,−1, 0, 1−

1

n

)

)

and ‖(1,−1,± 2
n ,−1, 0, 1± 1

n)‖Ls(2l2
∞
) = 1 for every n ∈ N. This is a contradiction. If −b=d=1,

then c = 2. This is a contradiction.
Case 2: c = 2.
Claim: |d| = 0 or 1.
Assume that 0 < |d| < 1. If b = d, by Lemma 1,

| f | = 2,
1

2
(1 − d + e) =

1

4
(1 − d) +

1

2
= 1.

Hence, d = −1, which is a contradiction. Assume that b 6= d. If |b| < 1, by Lemma 1,

1

2
(1 − d + e) =

1

2
(|b − d|+ | f |) =

1

4
(1 + b − 2d) +

1

2
= 1, ||1 + b − 2d| − 2| = 4, e − f = 0

or

1

2
(1 − d + e) =

1

2
(|b − d|+ | f |) =

1

4
(1 + b − 2d) +

1

2
= 1, |1 + b − 2d| = 2, |e − f | = 2.

If 1
2(1 − d + e) = 1

2(|b − d|+ | f |) = 1
4(1 + b − 2d) + 1

2 = 1, |1 + b − 2d| = 2, |e − f | = 2, then
b = −1, which is a contradiction. If 1

2(1 − d + e) = 1
2(|b − d|+ | f |) = 1

4(1 + b − 2d) + 1
2 = 1,

||1 + b − 2d| − 2| = 4, e − f = 0, then |d| = 2, which is a contradiction. If |b| = 1, then, by
Lemma 1,

1

2
(1 − d + e) =

1

4
(1 + b − 2d) +

1

2
= 1, |1 + b − 2d| = |e − f | = 2.

If b = 1, then d = 0, which is a contradiction. If b = −1, then d = 1, which is a contradiction.
Therefore, we have shown that |d| = 0 or 1.

Suppose that d = 0. If |b| < 1, then, by Lemma 1,

e = 1,
1

2
(|b|+ | f |) =

1

4
(1 + b) +

1

2
= 1.

Hence, b = 1, which is a contradiction. Let |b| = 1. Suppose that 1
2 +

1
2 e = 1. Then, e = 1 and

T = (1, 1, 2, 0, 1,−1) or (1, 1, 2, 0,−1, 1). We claim that (1, 1, 2, 0, 1,−1) is extreme. Indeed, let
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T1 := T + (ε1, ε2, ε3, δ1, δ2, δ3) and T2 := T − (ε1, ε2, ε3, δ1, δ2, δ3) for some ε j, βj ∈ R (j =1, 2, 3).
Obviously, ε1 = ε2 = 0. Since

|1 ∓ δ1|+ |1 ± δ2| ≤ 2, |1 ± δ1|+ |1 ± δ3| ≤ 2, |2 ∓ 2δ1|+ |2 ± ε3| ≤ 4,

we have δ1 = δ2 = −δ3 = 1
2 ε3. Since

3

4
| ± δ1|+ |1 ± δ1| ≤ 1,

we have δ1 = δ2 = −δ3 = 1
2 ε3 = 0. Therefore, T1 = T2 = T. Hence, T is extreme. By Theorem 1,

(1, 1, 2, 0,−1, 1) is extreme.
Suppose that 1

2 + 1
2 e < 1. By Lemma 1, | f | = 1. If f = 1, then T = (1, 1, 2, 0, e, 1) for

0 ≤ e < 1. Notice that such (1, 1, 2, 0, e, 1) is not extreme. If f = −1, then T = (1, 1, 2, 0, 0,−1).
Notice that (1, 1, 2, 0, 0,−1) is not extreme since

T =
1

2

(

(

1, 1, 2 +
2

n
,

1

n
,

1

n
,−1 +

1

n

)

+
(

1, 1, 2 −
2

n
,−

1

n
,−

1

n
,−1 −

1

n

)

)

and ‖(1, 1, 2 ± 2
n ,± 1

n ,± 1
n ,−1 ± 1

n )‖Ls(2l2
∞
) = 1 for every n > 2. This is a contradiction.

Suppose that |d| = 1. We claim that |b| = 1. Assume that |b| < 1. If d = 1, then, by
Lemma 1,

1

2
(1 − b + | f |) =

1

4
(1 − b) +

1

2
= 1

or
1

4
(1 − b) +

1

2
=

1

4
(1 − b) +

1

2
= 1

or
1

2
(1 − b + | f |) =

1

4
(1 + b) +

1

2
|e − f | = 1.

Hence, b = −1, which is a contradiction. If d = −1, then, by Lemma 1,

e = 0,
1

2
(1 + b + | f |) =

1

4
(3 + b) +

1

2
= 1.

Hence, b = −1, which is a contradiction. Therefore, |b| = 1. Suppose that b = d = 1. If
1
2 +

1
2 |e − f | < 1, then T = (1, 1, 2, 1, 2,±2). Notice that (1, 1, 2, 1, 2,±2) is not extreme since

T =
1

2

(

(

1, 1, 2 +
1

n
, 1, 2, 2

)

+
(

1, 1, 2 −
1

n
, 1, 2, 2

)

)

and ‖(1, 1, 2 ± 1
n , 1, 2, 2)‖Ls(2l2

∞
) = 1 for every n > 2. This is a contradiction. Suppose that

1
2 + 1

2 |e − f | = 1. If e = 2, then T = (1, 1, 2, 1, 2, 0). Notice that (1, 1, 2, 1, 2, 0) is not extreme
since

T =
1

2

(

(

1, 1, 2 +
1

n
, 1, 2,

1

2n

)

+
(

1, 1, 2 −
1

n
, 1, 2,−

1

2n

)

)

and ‖(1, 1, 2 + 1
n , 1, 2, 1

2n )‖Ls(2l2
∞
) = 1 for every n ∈ N. This is a contradiction.

If | f | = 2, then T = (1, 1, 2, 1, 0, 2). By Theorem 1, (1, 1, 2, 1, 0, 2) is not extreme. Suppose
that −b = d = 1. Then T = (1,−1, 2, 1, e, 0) for 0 ≤ e ≤ 2. Since T is extreme, e = 0 or 2.
Notice that (1,−1, 2, 1, 0, 0) is not extreme. We claim that T = (1,−1, 2, 1, 2, 0) is extreme. Let
T1 := T + (ε1, ε2, ε3, δ1, δ2, δ3) and T2 := T − (ε1, ε2, ε3, δ1, δ2, δ3) for some ε j, βj ∈ R (j =1, 2,
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3). Obviously, ε1 = ε2 = δ1 = δ2 = δ3 = 0. Since 2 + |2 ± ε3| ≤ 4, we have ε3 = 0. Therefore,
T1 = T2 = T. Hence, T is extreme.

Suppose that b = d = −1. Then T = (1,−1, 2,−1, 0, f ) for −2 ≤ f ≤ 2. Since T is extreme,
f = ±2. By Theorem 1, T = (1,−1, 2,−1, o,±2) is extreme. Suppose that b = −d = 1. Then,

1 ≥
1

4
(|1 + b − 2d|+ c) =

3

2
,

which is a contradiction.
Case 3: c = 4.
Claim: |b| = 1.
Assume that |b| < 1. By Lemma 1, we have 0 < d < 1, 1

2(1 − d + e) = 1. Hence,
T = (1, 2d − 1, 4, d, 1 + d, 1 + d) for 0 < d < 1. Hence, T is not extreme. This is a contra-
diction. Therefore, |b| = 1. If b = 1, then T = (1, 1, 4, 1, e, e) for 0 ≤ e ≤ 2. Since T is extreme,
e = 0 or 2. We claim that (1, 1, 4, 1, 2, 2) is extreme. Let T1 := T + (ε1, ε2, ε3, δ1, δ2, δ3) and
T2 := T − (ε1, ε2, ε3, δ1, δ2, δ3) for some ε j, βj ∈ R (j =1, 2, 3). Obviously, ε1 = ε2 = ε3 = δ1 = 0,
δ3 = δ2. Since |2 ± δ2| ≤ 2, we have δ2 = 0. Therefore, T1 = T2 = T. Hence, T is extreme.

Notice that (1, 1, 4, 1, 0, 0) is not extreme since

T =
1

2

(

(

1, 1, 4, 1,
1

n
,

1

n

)

+
(

1, 1, 4, 1,−
1

n
,−

1

n

)

)

and ‖(1, 1, 4, 1,± 1
n ,± 1

n )‖Ls(2l2
∞
) = 1 for every n ∈ N. This is a contradiction.

If b = −1, then d = 0, e = f , 0 ≤ e ≤ 1. Hence, T = (1,−1, 4, 0, e, e) for 0 ≤ e ≤ 1. Since T

is extreme, e =0 or 1. Notice that (1,−1, 4, 0, 0, 0) is not extreme since

(1,−1, 4, 0, 0, 0) =
1

2

(

(

1,−1, 4, 0,
1

n
,

1

n

)

+
(

1,−1, 4, 0,−
1

n
,−

1

n

)

)

and ‖(1,−1, 4, 0,± 1
n ,± 1

n )‖Ls(2l2
∞
) = 1 for every n ∈ N. This is a contradiction. We claim that

T = (1,−1, 4, 0, 1, 1) is extreme. Let

T1 := T + (ε1, ε2, ε3, δ1, δ2, δ3) and T2 := T − (ε1, ε2, ε3, δ1, δ2, δ3)

for some ε j, βj ∈ R (j =1, 2, 3). Obviously, ε j = 0 for j = 1, 2, 3. Since

2|δ1|+ 4 ≤ 4, 1 + |1 ± δ2| ≤ 2, 1 + |1 ± δ3| ≤ 2,

we have δj = 0 for j = 1, 2, 3. Therefore, T1 = T2 = T. Hence, T is extreme.
Therefore, we complete the proof.

Theorem 3 ( [22]). Let E be a real Banach space such that ext BE is finite. Suppose that
x ∈ ext BE satisfies that there exists f ∈ E∗ with f (x) = 1 = ‖ f‖ and | f (y)| < 1 for every
y ∈ ext BE\{±x}. Then, x ∈ exp BE.

The following theorem gives the explicit formula for the norm of every linear functional on
R

6
Ls(2l2

∞
)
.

Theorem 4. Let f ∈ (R6
Ls(2l2

∞
)
)∗. Let α1 := f (e1), α2 := f (e2), α3 := f (e4), β := f (e3),

γ1 := f (e5), γ2 := f (e6). Then,

‖ f‖ =
{

|α1 + α2 + α3|+ 4|β|+ 2|γ1 + γ2|, |α1 − α2|+ 4|β|+ |γ1 + γ2|,

|α1 − α2 + α3|+ 2|β|+ 2|γ1|, |α1 − α2 − α3|+ 2|β|+ 2|γ2|,

|α1 + α2|+ 2|β|+ |γ1 − γ2|, |α1 + α2 + α3|+ 2|γ1|, |α1 + α2 − α3|
}

.
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Proof. It follows from the Krein-Milman Theorem and the fact that

‖ f‖ = sup
T∈ext B

R
6
Ls(2l2

∞
)

| f (T)|.

Notice that if f ∈ (R6
Ls(2l2

∞
)
)∗ and ‖ f‖ = 1, then |αj| ≤ 1, |β| ≤ 1

4 , |γk| ≤
1
2 for j = 1, 2, 3

and k = 1, 2.

Theorem 5. ext B
R

6
Ls(2l2

∞
)

= exp B
R

6
Ls(2l2

∞
)

.

Proof. It is enough to show that if T = (a, b, c, d, e, f ) ∈ ext B
R6

Ls(2l2
∞
)

, then T is exposed.

Claim: T = (1, 1, 4, 1, 2, 2) is exposed.
Let f ∈ (R6

Ls(2l2
∞
)
)∗ be such that α1 = α2 = α3 = 0, β = γ1 = γ2 = 1

8 . By Theorem 4,

f (T) = ‖ f‖ = 1 and | f (R)| < 1 for every R ∈ ext B
R6

Ls(2l2
∞
)

\{±T}. By Theorem 3, T is exposed.

By Theorem 1, ±(1, 1,−4, 1, 2, 2), ±(1, 1,±4, 1,−2,−2) are exposed.
Claim: T = (1,−1, 4, 0, 1, 1) is exposed.
Let f ∈ (R6

Ls(2l2
∞
)
)∗ be such that α1 = −α2 = 1

8 , α3 = 0, β = 3
16 , γ1 = γ2 = 0. By Theorem 4,

f (T) = ‖ f‖ = 1 and | f (R)| < 1 for every R ∈ ext B
R6

Ls(2l2
∞
)

\{±T}. By Theorem 3, T is exposed.

By Theorem 1, ±(1, 1,−4, 0, 1, 1), ±(1, 1,±4, 0,−1,−1) are exposed.
Claim: T = (1,−1, 2, 1, 2, 0) is exposed.
Let f ∈ (R6

Ls(2l2
∞
)
)∗ be such that α1 = −α2 = α3 = 1

3 , β = γ1 = γ2 = 0. By Theo-

rem 4, f (T) = ‖ f‖ = 1 and | f (R)| < 1 for every R ∈ ext B
R6

Ls(2l2
∞
)

\{±T}. By Theorem 3, T is

exposed. By Theorem 1, ±(1,−1,−2, 1,±2, 0), ±(1,−1,−2, 1,−2, 0), ±(1,−1,−2,−1, 0,±2)
are exposed

Claim: T = (1, 1, 2, 0, 1,−1) is exposed.
Let f ∈ (R6

Ls(2l2
∞
)
)∗ be such that α1 = α2 = −α3 = 1

6 , β = 0, γ1 = −γ2 = 1
3 . By Theorem 4,

f (T) = ‖ f‖ = 1 and | f (R)| < 1 for every R ∈ ext B
R

6
Ls(2l2

∞
)

\{±T}. By Theorem 3, T is exposed.

By Theorem 1, ±(1, 1,−2, 0, 1,−1), ±(1, 1,±2, 0,−1, 1) are exposed
Claim: T = (1, 1, 0, 1, 2, 0) is exposed.
Let f ∈ (R6

Ls(2l2
∞
)
)∗ be such that α1 = α2 = α3 = 1

6 , β = 0, γ1 = −γ2 = 1
4 . By Theorem 4,

f (T) = ‖ f‖ = 1 and | f (R)| < 1 for every R ∈ ext B
R6

Ls(2l2
∞
)

\{±T}. By Theorem 3, T is exposed.

By Theorem 1, ±(1, 1, 0, 1,±2, 0), ±(1, 1, 0, 1, 0,±2) are exposed
Claim: T = (1, 1, 0,−1, 0, 0) is exposed.
Let f ∈ (R6

Ls(2l2
∞
)
)∗ be such that α1 = α2 = −α3 = 1

3 , β = γ1 = γ2 = 0. By Theorem 4,

f (T) = ‖ f‖ = 1 and | f (R)| < 1 for every R ∈ ext B
R6

Ls(2l2
∞
)

\{±T}. By Theorem 3, T is exposed.

By Theorem 1, −(1, 1, 0,−1, 0, 0) is exposed. Therefore, we complete the proof.
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Кiм С.Ґ. Екстремальнi та виставленi симетричнi бiлiнiйнi форми на просторi Ls(2l2
∞
) // Карпат-

ськi матем. публ. — 2020. — Т.12, №2. — C. 340–352.

Класифiковано екстремальнi точки та виставленi точки одиничної кулi простору бiлiнiй-
них симетричних форм на дiйсному банаховому просторi бiлiнiйних симетричних форм на l2

∞
.

Показано, що в цьому випадку множина екстремальних точок дорiвнює множинi виставлених
точок.

Ключовi слова i фрази: екстремальна точка, виставлена точка.


