ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2020, 12 (2), 492-498 KapmaTcbki MmaTem. my6a. 2020, T.12, N2, C.492-498
doi:10.15330/cmp.12.2.492-498

(L)

WIMAN'’S TYPE INEQUALITY FOR ANALYTIC AND ENTIRE FUNCTIONS AND
h-MEASURE OF AN EXCEPTIONAL SETS

SKASKIV O.B., KURYLIAK A.O.

—+00
Let &g be the class of analytic functions f represented by power series of the form f(z) = Y a,z"
n=0

with the radius of convergence R := R(f) € (0;4o0]. For r € [0,R) we denote the maximum
modulus by M¢(r) = max{|f(z)|: [z] = r} and the maximal term of the series by y(r) =
max{|a,|r": n > 0}. We also denote by Hg, R < 400, the class of continuous positive functions,
which increase on [0; R) to +co, such that h(r) > 2 for all r € (0,R) and frﬁh(r)dlnr = +oo for
some rg € (0, R). In particular, the following statements are proved.

19.If h € Hyg and f € &g, then for any § > 0 there exist E(5, f,h) := E C (0,R), o € (0, R) such
that

Vr e (ro, R\NE: My(r) < h(r)ps(r){ Inh(r) In(h(r)pus(r))}'**° and /Eh(r)dlnr < o0,
20, If we additionally assume that the function f € &g is unbounded, then

In My (r) < (14 0(1)) In(h(r)p (1))

holdsasr — R, r ¢ E.

Remark, that assertion 1° at i(r) = const implies the classical Wiman-Valiron theorem for entire
functions and at h(r) = 1/(1 — r) theorem about the Kovari-type inequality for analytic functions
in the unit disc. From statement 2° in the case that Inh(r) = o(Inps(r)), r — R, it follows that
InMg(r) = (1 +0(1)) Inpg(r) holdsasr — R, r ¢ E.
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exceptional set, h-measure.
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1 INTRODUCTION

Let £r, 0 < R < +00, be the class of analytic functions in Dg = {z € C: |z| < R} of the
form

+0c0
f(z) = Z anz". (1)
n=0

In particular, £ := £« is the class of entire functions. We denote by M(r) = max{|f(z)|:

lz| = r} and ps(r) = max{|a,|r": n > 0}, r € [0,R), the maximum of the modulus and
maximal term of series (1), respectively. By the classical theorem of A. Wiman and G. Valiron
we have (see [1, 16,18, 19]) that for each entire function f € £ of the form (1), for every ¢ > 0
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there exists a set E C [1;+00) of finite logarithmic measure (i.e. [;dInr < +co) such that
Vre (1,+0)\E:
Mf(r) < yf(r) Int/2+¢ yf(r). (2)

Regarding the statement about the Wiman inequality, Prof. I.V. Ostrovskii in 1995 formulated
the following problem: what is the best possible description of the value of an exceptional set E? Later,
the same issue was considered of a number of articles (for example, see [2,5-7,11,13-16]) in
relation to many other relations obtained in the Wiman-Valiron theory.

We denote by Hp the class of continuous positive increasing to +o0 on [0;R), R < +o0,
functions such that h(r) >2,Vr € (0,R), and

/R@dr:—}—oo
7 r

0

for somery € (0, R). We also denote H = H 4. The following theorem from [16] complements
the classical statement on the Wiman inequality.

Theorem A ([16]). For every functions f € £ and h € H such that Inj h(r) = o(In, ur(r)),
r — +o0, and for each € > 0 there exists a set E = E(g, f,h) C [1;+o0) of finite h-logarithmic
measure (i.e. h-measE := [ h(r)dInr < +o0) such thatV r € (1,+00)\E :

Mg (r) < h(r)ps(r)(In pg(r)) /27, 3)

In the article [11], Theorem A was proved for a function % such that k(r) < Inr,r > ry, and
with the factor Inr instead h(r) in inequality (3). Note, that the condition h(r) < Inr, r > 1,
implies Iny (r) = o(In, pr(r)), r— oo

From Theorem A it follows also such statement.

Proposition 1. If the functions f € £ and h € M are such that In" h(r) = o(Inpps(r)),
r — 4oo, then for every ¢ > 0 inequality (2) holds for all v € [1;4o0) \ E(¢, f,h), where a
set E(¢, f,h) := E has finite h-logarithmic measure, i.e. h-measE < +oco.

From the example of the entire function constructed in [11] (see also [16]) it follows that
the description given in Proposition 1 of an exceptional set for the fixed entire function f is
essential cannot be improved. Actually [11,16], for every € > 0 there exist an entire function f
and aset E C [1,4o0) such that forallr € E

n r 1/2+¢
£ 2 ) npgr) e ana [P

On the other hand, in the paper [16] it was established also that the estimate

1 1/2
/E_ﬂ@W<+w
E r

of an exceptional set E in the Wiman'’s inequality (2) is fulfilled in some sense almost surely.

Moreover, it is known about exceptional sets in analogues of the Wiman inequality for
power series of form (1) with radius of convergence equal to one. In this article, we will obtain
some new estimates for the magnitude of the exceptional set, and in this case.
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For every analytic function f € &; of form (1) there exists a set E¢(6) C (0,1) of finite
logarithmic measure on (0, 1), i.e.

dr
[
Ef(0) 1—vr

such that for all 7 € (0,1)\Ef(¢) the inequality

pr(r 17246 Hf (1)
< TV LRSS
Mf(r) (1 —r)tte In 1—7r

holds ([17]). Similar inequality for analytic functions f € £ one can find in [3].
+0c0
Also in [17] it is noted that for the function g(z) = Y exp{n®}z", e € (0,1), we have
n=1

. Mg(r)
lim pe(r) 1 1/2 pg(r) 2C>0.
r=1-0 1g r In 1g—r

In [12], it was proved that by some additional conditions inequality (2) holds outside a some
exceptional set for every analytic function of the form (1) in the unit disc.

The purpose of this note is to obtain for analytic functions an analogue of Theorem A from
which, as a consequence, we obtain assertions about Wiman-type inequalities that take place
outside exceptional sets of finite 1-measure, without any additional conditions.

2 AUXILLARY PROPOSITIONS

Let W be a class an positive continuous increasing on [0, +o0) functions (x) such that

too dx

X0 (x)

< 400

for some xg € (0, +00).
We need the following lemmas.

Lemma 1. Let T € (ty,+o0], tg € (—oo,+00), and go(x) be positive differentiable non-
decreasing on (to, T) function, € W, and hy(x) be positive local integrable on [ty; T) function
such that ftz ho(x) dx = +oo. Then there exists a set Eg C [to; T) such that [; ho(x) dx < +o0
and

Vx € [to; T) \ Eo:  go(x) < ho(x)9(go(x))-

The proof of Lemma 1 is carried out by verbatim repetition of the arguments from article [8]
(see also [4,7,9]). Indeed, denote

Eo = {x € (to, T): go(x) > ho(x)9(g0(x))}-

Then

adx< [ S0 g [ dgolx) [T e
Je 0O = ™ = e 9o < o 760 * Ly 9 <
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Lemma 2. Leth € Hpg, and f be any analytic function represented by power series of form (1)
with radii of convergence R(f) = R € (0,4o0], and ry € (0, R) be such that In9(ry) > 10.
Then, there exists a set Ey := E(f,h) C (0,R) such that
Vre (ro,R)\ Eo: In9g(r) <2In (h(r)us(r)) and h-meas Eg := fh r)dlnr < +oo,
~+o00

where M (r) = ¥ |an|r".

n=0

Proof. Denote g(x) = M(e¥), g1(x) = Ing(x), x = Inr < InR. Remark, that g}(x) = g

Thus for a = 2g] (x) we obtain

/
80~ X lanle” = X lanle” < 1 ¥ njaafe < 8 = o)

n<a n>a n>a a

Hence,
g(x) <2 ) |anle™ < 287 (x)pus(r).

n<a
By Lemma 1 with go(x) = g1(x), ho(x) = ( ¥), ¥(x) = x(Inx)?, there exist a set E C
(—oo,InR) and ty < InR such that gj(x) < hp(x)g1(x)(Ing1(x))? for all x € (t, InR) \ E
and [ ho(x)dx < +oo. Therefore, M¢(r) = g(Inr) < 2u¢(r)h(r)g1(Inr)(Ing; (Inr))>. Conse-
quently,
InM(r) <In2+In(pp(r)h(r)) +1Ingi(Inr) +2Inin g (In7). (4)
Sincex —Inx —2Inlnx —In2 > x/2 for all x > 10, then

gi(Inr) —In2—Ingi(Inr) —Inln gy (Inr) > —lnimf()

Statement of Lemma 2 is proved, because

/ h(r)dlnr = / h(e¥)dx < oo,

Eo E

where the set Ej is the image of the set E by the mapping r = e*. O
If in addition to the conditions of Lemma 2 we assume that the function f is unbounded,

then we obtain the following proposition.

Proposition 2. Leth € Hg and f € &g be any unbounded analytic function represented by
power series of form (1) with radii of convergence R(f) = R € (0,+o0|. Then, there exists a
set Eg := E(f,h) C (0, R) such that

InM(r) < (14 0(1)) In (h(r)ps(r)) (5)
holds trueasr — R, r & E(, where Ey is the set from Lemma 2.

Indeed, by the condition that f is unbounded it follows Mt¢(r) — +oo,r — R — 0, hence
In2+1Ingi(Inr) +2Inlng;(In7) = o(InM(r))

asr — R, because g1(In7r) = InMis(r). Therefore inequality (4) implies that relation (5) holds

asr — R, r & E, where the set E is the set from Lemma 2.

Remark 1. If the functions h € Hg and f € g are such thatInh(r) = o(Inug(r)),r =+ R -0,
then Proposition 2 follows

In Mg(r) = (T+0(1)) Inps(r)
asr =+ R—0,r ¢ E, h-measE < +oo. In particular, as a corollary in the case R = +o0, we
obtain one statement from article [2] (see also [10, p.58]).
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3 MAIN RESULT

Theorem 1. Leth € Hg, R € (0,+o0|. For every analytic function f € &g, for every functions
i € W, j € {1,2}, and for any 6 > 0 there exist a set E := E(¢, f,h) C (0,R) and ry € (0, R)
such that h-measE = [ h(r)dInr < 400 and

Vre (o RIVE: My(r) < )y 1)z (W0 (1 g )B0)) ),
in particular,

1/2+6
Vre (ro, R)\E: 9Ms(r) < h(r)ps(r)(Inh(r) In(h(r)ps(r))) .
Remark 2. It is easy to see that the assertion of Theorem A follows from Theorem 1.

Proof of Theorem 1. We first repeat the reasoning from the proof of Theorem 2 in [16]. Let again
g(x) = ¥ |an|e™, x < InR, and ¢ be a discrete random variable with distribution
n=

P{=n}= e )|an|e n > 0.

Then we have the mean M¢ = g} (x) and the variance D¢ = g/ (x), where g (x) = Ing(x).
By Bienayme-Chebyshev inequality we obtain (see also [4,8,9])

P{|g — g (x)] < /2 (x)} =P{|¢ —M¢| < \/2D¢} > 1 — (%‘;)2 — %

i.e.

x) <29()P{|¢ —g1(x)] < /287(x)} =2 )3 [anle™
g1 (x) < /287 x)

Hence, at In7 = x < In R we have (see also [16, (7) on p.16])

g(x) < 2us(r) (24/24; (x) +1).

Without of the loss of generality we can assume that ¢,(x) > 1 for x > 1. We denote the sets
Er={x <InR:g (x) > 2 "h(e") (g} (x)), gi(x) > 1},

Er = {x <InR: g (x) > h(e")pr (21(x)/2), @1(x) > 1}.

Applying Lemma 1 twice, with ¢g(t) = 2779 (t), ho(x) = h(e*) and go(x) = g} (x) in the
first case, and with ¢ (t) = P1(t/2), ho(x) = ( *) and go(x) = g1(x) in the second case, we
obtain

/h(ex)dx: / o (x dx</h0 dx+/ho )dx < oo

E1UE, E1UEy Ep

By E we denote the image of the set E; U E; under the mapping r = e*. Then

h-meas E = / d = / h(e*)dx < +oo.
E1UE,
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Now from definitions of the sets E; by using of inequality from Lemma 2 we get

Me(r)
2pp(r)

< (2428 (x) +1) < i\/h(r)wz <h(”)¢1(ln (Vf(r)h(r)))> +1
< 3B (1) (i (1)) )

forall r € (ro,R) \ (EUEp). This complete the first part of Theorem 1. To prove the second
part we put ¢(t) = ¢(t) = tIn'"° t. Then

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

My (r) < g ) 1)z (W91 (1 (1 1)BC)) )

< m(r)W(r) (h()1 (In (s (R(r))) ) 02 ((r)pr (In (g (r) () ) )
< h(r)pug(r) In'2 (g (r)h(r)) Int/2572 (In (g (r)h(r)))

X Int/22 () (1n? (g (r)h(r)) )
< h(r)pug(r) In'2 (g (r)h(r)) In'/2472 (In (g (r)h(r)))

x max{In'/2+9/2 (r), 21029 2 n (g (r)h(r) ) }

< k(e (r) (Inh(r) In(h(r)pp (r))) /21,
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Hexant £ — xaac aHaniTHUEMX PYHKII f, IPeACTaBACHNUX CTETIEHEBVMMM PSAAMM BUTASAY

f(z) = Eo anz" 3 paaiycom 36ixuocti R := R(f) € (0;+00]. Aast v € [0,R) uepes M¢(r) =
max{|f(;)|: |z| = r} Ta ps(r) = max{|an|r": n > 0} BiATIOBIAHO TIO3HAUMMO MAKCUMYM MOAYAS
i MakcMaABHIIL UAEH cTereHeBoro psiay. Yepes Hy, R < +00, TaKOX MO3HAUMMO KAAC HEIlepepB-
HUX AOMATHMX (PYHKIIM, IO 3pocTaioTh Ha iHTepBaai [0; R) A0 +00 i Takmx, mio h(r) > 2 AAst Bcix
€ (O,R)1 f rf h(r)dInr = +oo anst pesixoro g € (0, R). AoBeaeHO, 30KpeMa, Taki TBEpAKEHHSI.
19, SIxuio h € Hyi f € ER, TO AASI AOBiABHOTO & > 0 icaytors E(6, f,h) := E C (0,R), 79 € (0,R),
TaKi 110

V7€ (ro, R\E: Mp(r) < h(r)up(r) { Inh(r) In(h(r)ps(r) } /> 1a /};h(r)dlnr < oo.

20, SIKII0 AOAATKOBO MPUITYCTUTH, IO PYHKLIS f € ER HeObMeXeHa, TO CIIiBBi AHOIIEHHS]

In Mg (r) < (1+0(1)) In(h(r)ps(r))

BUKOHyeTbcss ipu v — R, v & E.

3ayBaxumo, mo 3 TBepaxenns 10 mpu hi(r) = const BunamBae KaacuuHa Teopema Bimana-Bani-
PpoHa AAst miavx dpyHKuii, a mpu h(r) = 1/(1 — r) — Teopema npo HepisHicTs THITy KeBapi AAst aHa-
AlTyaENX pYHKLII B OAMHIMHOMY Kpy3i. 3 TBepaxenHs 20 y Bumaaky, koan Infi(r) = o(Inps(r)),
r — R, orpumyemo, 1o crissiaHowwenss In M¢(r) = (1 + o(1)) Inp¢(r) Buxonyersest mpu r — R,
r ¢ E.

Kntouosi cnosa i ppasu: HepiBHicTb BimaHa, aHaAiTMUHA (PYHKIIiS, MAKCMMyM MOAYAS, MaKCH-
MaABLHWMIL YAEH, BUHITKOBAa MHOXMHA, h-Mipa.



