ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2021, 13 (2), 377-385 KapmaTcbki MaTem. my6a. 2021, T.13, N2, C.377-385
doi:10.15330/cmp.13.2.377-385

[\ J

Bounds on the first leap Zagreb index of trees

Dehgardi N.!, Aram H.>>

The first leap Zagreb index LM1(G) of a graph G is the sum of the squares of its second vertex
degrees, that is, LM1(G) = Lyev(q) dy(v/G)?, where dy(v/G) is the number of second neighbors
of v in G. In this paper, we obtain bounds for the first leap Zagreb index of trees and determine the
extremal trees achieving these bounds.
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Introduction

Let G be such a simple graph with vertex set V and edge set E. The order |V| of G is
denoted by n and the size |E| of G is denoted by m. The degree of a vertex v in G is the number
of edges incident to v and is denoted by d(v/G). The maximum degree of a graph G are
denoted by A = A(G). The distance dg(u, v) between any two vertices u and v of a graph G is
equal to the length of a shortest path connecting them. For a vertex v € V(G) and a positive
integer k, the open k-neighborhood of v in the graph G, denoted by Ni(v/G), is defined as
Ni(v/G) = {u € V(G) : d(u,v) = k}. The k-distance degree of a vertex v in G, denoted
by di(v/G), is the number of k-neighbors of the vertex v in G, i.e., di(v/G) = |Nk(v/G)]|.
Evidently, d1(v/G) = d(v/G) for every v € V(G).

A leaf of a tree T is a vertex of degree one and a stem is a vertex adjacent to a leaf. A rooted
tree is a tree having a distinguished vertex w, called the root. If v is a vertex in T other than the
root, the parent of v is the vertex connected to v on the path to the root. A spider is a tree with
at most one vertex of degree greater than 2, called the center of the spider. If there is no vertex
of degree greater than two, then any vertex can be considered as the center. A leg of the spider
is a path from the center to a vertex of degree one. Thus, a star with k edges is a spider with k
legs, each of length 1, and the path is a spider with 1 or 2 legs.

Two of the oldest bond-additive invariants are Zagreb indices which were introduced by
I. Gutman and N. Trinajsti¢ in [15]. For a graph G, the first and second Zagreb indices are
defined as

My =M(G)= Y d@w/G)? and M,=M(G)= Y d(u/G)d(v/G),
veV(G) uveE(G)

respectively. For more properties of Zagreb indices, see the surveys [4,14].
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In recent years, some novel variants of topological indices have been put forward, such as
Zagreb coindices [3,9,13], general Zagreb index [12], entire Zagreb indices [2, 16], augmented
Zagreb index [1, 6,11], Lanzhou index [8, 21], Mostar index [7,10], revised Szeged index [5,18],
etc.

A.M. Naji, N.D. Soner and I. Gutman [17] extended the concept of Zagreb index to the
second vertex degrees. For a graph G, the first, second, and third leap Zagreb indices are
defined as follows

LM; = LMi(G) = Y da(v/G)?, LMy =LM(G)= Y da(u/G)dr(v/G),
veV(G) uveE(G)
LM; = LM3(G) = ) d(v/G)d2(v/G).
veV(G)

For more information about leap Zagreb indices, see for example [20,22].

In this paper, we focus on the first leap Zagreb index. We obtain lower bounds on the first
leap Zagreb index and characterize the extremal trees achieving these bounds. We also present
upper bounds for the first leap Zagreb index of trees.

1 Bounds on first leap Zagreb index of trees

In this section, we present sharp lower bounds for the first leap Zagreb index of trees in
terms of their order and maximum degree, and characterize all extremal trees.

Throughout this section, T denotes a rooted tree with root w, where w is a vertex of maxi-
mum degree and N(w) = {wy,wy, ..., wa}.

We start with some lemmas.

Lemma 1. Let T be a tree of order n with maximum degree A. If T has a vertex u of degree
at least three, that is in maximum distance from w, then there is a tree T’ of order n with
maximum degree A such that LM;(T") < LM;(T).

Proof. Let u # w be a vertex of T with d(u/T) = « > 3 and let Np(u) = {1/, x1,x2,..., %41},
where 1’ is the parent of u. Assume d(u'/T) = B. We consider the following cases.

Case 1. All neighbors of u except 1’ are leaves.

Subcase 1.1. u' is adjacent to a leaf y.

Let T’ be the tree obtained from T — x; by attaching the edge yx;. Clearly, T' is a tree of
order n with A(T) = A(T'). Also dy(u/T) = dp(u/T"), da(u'/T) = da(u'/T'), do(y/T) =
dy(y/T"), dp(x1/T) = da(x1/T')+a—2 =a—1,and dp(x;/T) = dp(x;/T') +1 = a — 1 for
2 <i < a — 1. By definitions we have

LM{(T) = LMy(T) = Y. do(v/T')>— Y do(v/T)?
veV(T') veV(T)

a—1

— Y da(xi/T)? = da(x1/T')?

=2

1

a—1
=Y (/T +da(x1/T')?
i=2

=(@—2)(a—2*+1—(a—2)(a —1)> = (a —1) = —2a*> + 6a — 4 < 0.
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Subcase 1.2. u’ has no leaf neighbor.

Let T’ be the tree obtained from T — x; by attaching the edge x1x;. Then dy(u'/T) =
dy('/T')+1 =k+a—1fork > p—1,dy(u/T) = dp(u/T')—1 = B—1, do(x;/T) =
dy(x;/T)+1=a—1for2 <i<wa—1,anddy(x1/T) = dp(x1/T') +a —2 = a — 1. Hence,

LMi(T') — LM (T) = ) da v/T')? — ) dof (v/T)?
veV(T') veV(T)
ax—1
=Y do(xi/ TV +da(u/T' )V + do(u' /T + do(x1 /T')?

i=2

a—1
— Y do(xi/T)* —do(u/T)* — do(u' /T)? — dp(x1/T')?
i=2

2 @12+ - (B 12+ (a+k—2)

—(a+k—1)2+1—(x—1)?
=(a—2)(—20+3)+28—-1—2(a +k)+3—a®+2a
= 202+ 70 —6+2B—1—2u — 2k +3—a® +2u

—3a% + 70 — 4 < 0.

Case 2. u is adjacent to a leaf x; and uyjy, ...y, is a pathin T for £ > 2 such that y; = xp.

If u' is a stem, then the result is immediate as in Case 1. So assume that u’ is not a
stem. Let T’ be the tree obtained from T — x; by attaching the edge y,x;. Then dy(1//T) =
dy(' /T +1=k+a—1fork>B—1,d(u/T) =do(u/T), dp(x1/T) = do(x1/T") + a — 2,
and dp(x;/T) = do(x;/T') +1,for2 <i<wa—1.

If £ > 3, then dz(]/g_l/T) = dz(yg_l/T/) —1=1and

LMy(T') —LMy(T) = ) dof v/T')? - Y @b (v/T)?
veV(T’) veV(T)

= i dy(x;/ TV 4+ do(u' /T +da(y_1/T')? +dp(x1/T')?

a—1
— Y da(xi/T)? —da(u'/T)? = dp(ys—1/T)* — da(x1/T')?
=2

I
—_

o

[(da(x;/T) —1)* —do(x;/T)?] + (w +k —2)> +4+1
2

—(a+k—1)2-1—(a—1)2

~.

i (da(x;/T) — 1) — do(x;/T)?] — 2k — &% + 6 < 0.

Now, if ¢ =2, then dy(yy_1/T) = d2(y,_1/T’), and so we obtain

LMy (T') — LMy(T Y /T — Y. do(v/T)?
veV(T’) veV(T)
= Y [(da(x;/T") —1)% — dy(x;/T)?] — 2k — a* + 3 < 0.

x;€N(u)—{x1,x2=y1}
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Case 3. u is not a stem and uyy2...ys, uz1z3...2¢, s,t > 2, are two paths in T such that
y1 = x1 and z; = xp.

Clearly dy(u/T) = a+B—2, dp(u'/T) = k+a—1fork > B—1and dy(z:/T) =
dy(z;—1/T) = 1. Let T' be the tree obtained from T — uy; by attaching the edge z;y;. Then
dz(u//T/> =k+u«a -2, dz(u/T/> = 0(+ﬁ—3.

Ifs =t =2, then dz(yl/T) = dz(Zl/T) =ua—1, dz(yz/T) = dz(yz/T/), dz(yl/T/) =1,
dz(Zl/T/) = & — 1, dz(Zz/T) = 1, dz(Zz/T/) = 2 and dz(xl‘/T/) = dz(xl‘/T> — 1 for
3 <i<a—1. Hence,

LM{(T) —LMy(T) = Y do(o/T')*— Y da(v/T)>

veV(T') veV(T)

a—1
=) d(xi/T' +da(u'/T')? + do(u/T') + do(y1/T')? + do(z2/ T')?

a—1
— Y do(xi/T)* — do(u' /T)* — dp(u/T)* — da(y1/T)* — do(22/T)*
i=3
a—1

= Y [(do(x;/T) = 1)* = da(x;/T)*] + (a + k= 2)* + (a + B—3)* +5

i=3
—((x+k—1)2—(rx+ﬁ—2)2—1—((x—1)2

Z (dy(x;/T) —1)% —do(x;/T)?| — 2k — 2B — a®> — 20 + 11 < 0.
Now, ifs =2and t > 3, then dy(y1/T) = —1,d2(21/T) = &, do(y1/T') = 1,dr(y2/T) =

d2(y2/T') and da(z1/T') = « — 1, da(2z:/T') = da(z;-1/T') = 2 and dz(z;/T) = da(z;/T’) for
2 < j <t —2. Therefore we have

LMy (T") — LMy (T Y /T — Y. do(v/T)?
veV(T’) veV(T)

a—1
=Y d(xi/T )V +do(u /T + do(u/T' ) + da(y1/T')?
i=3

+dy(z1/T)? + do(ze_1/T')? + dy(z:/T')? Zdz (x;/T)?

—do(u'/T)? —da(u/T)? — dy(y1/T)?
—dy(21/T')? —dy(2-1/T)* — da(2:/T)?

T
L

I
g

[(do(xi/T) —1)% —da(x;/T)?] + (w +k —2)2 + (« + B — 3)?

~.

(=12 4+9—(a+k—12—(a+p-22—a?—(a—1)2-2

(R

2

[(da(x;/T) —1)% —dp(x;/T)?] — 2k — 2B — a® — 4 416 < 0.

I
@

Finally, lets,t > 3. Then dy(y1/T) = da(z1/T) = &, dp(y1/T') =2 and dp(z1/T') = a — 1.
Also, dy(y;i/T) = da(y;i/T') for 2 < i <'s,dy(z/T') = da(zi—1/T') = 2 and da(z;/T) =
dz(z]-/T’) for2 < j <t—2. Hence,
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LM{(T) = LMy(T) = Y. do(v/T')>— Y. do(v/T)?
veV(T’) veV(T)

a—1
=) da(xi/ TV +da(u'/T')? + do(u/T')? + dp(y1 / T')?

+do(z1 /T +do(zp—1/T')? + dy(2z:/ T')? Zdz (x;/T)?

—do(u'/T)? —da(u/T)? — dy(y1/T)?
—dy(z1/T')? —dy(2-1/T)* — da(2:/T)?

2
I
_

[(do(x;/T) —1)% —da(x;/T)*] + (w 4+ k —2)2 + (« + B — 3)?

[
Ing

(R

~

(=12 49— (a+k—12—(a+p-22—a?—(a—1)2-2

2

[(da(x;/T) —1)* —dp(x;/T)?] — 2k — 2B — a® — 6 418 < 0.

I
@

O

By Lemma 1, among all trees of order n with maximum degree A, the spiders have the
minimum first leap Zagreb index. In what follows, we determine the spiders having minimum
tirst leap Zagreb index. If A = 2, then T = P,,. Therefore, let A > 3.

Lemma 2. Let T be a spider of order n with A legs. If T has two legs of length at least 3, then
there is a spider T' of order n with A legs such that LM1(T") < LM;(T).

Proof. Let w be the center of T and let wx1xy... x5, wyiya ...y, £, > 3, be two legs of length
at least three in T. Let T’ be the tree obtained from T — x;x; by adding the edge y:x, and let
dy(w/T) = k. Clearly T’ is a spider of order n with A legs. By definition we have,

LM{(T) —LMy(T) = Y, do(v/T')*— Y. do(v/T)?
veV(T") veV(T)
=(k—12—K+4-1+4-1+(A-1)>—-A°
= 2k—-2A+8<0.

O

Lemma 3. Let T be a spider of order n with A legs and let w be the center of T such that
dy(w/T) = k. If T has a leg of length 2 and a leg of length at least 3, then there is a spider T' of
order n with A legs such that LMy (T") < LM;(T) with equality if and only if k = 2.

Proof. Let wx;x, be the leg of length 2 and wy Y5 . .. y: be the leg of length at least three in T.
Let T’ be the tree obtained from T — x;x; by adding the edge y;x;. By definition we have

LM{(T) —LMy(T) =}, do(v/T')*— Y do(v/T)?
veV(T) veV(T)

= (k-1 -k +4-1=-2k+4<0.
The equality LM;(T’") = LM;(T) holds if and only if dy(w/T) = k = 2. O
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Theorem 1. Let T be a tree of order n > 5 with maximum degree A < (n—1)/2. Then
LMy(T) > A3 —2A% — A + 4n — 10, with equality if and only if T is a spider whose T has
exactly one leg of length at least three and at most one leg of length two.

Proof. Let Ty be a tree of order n > 5 with maximum degree A < (n — 1) /2 such that
LM;(T;) = min{LM;(T) | T is a tree of order n with maximum degree A < (n —1)/2}.

Let v be a vertex with maximum degree A. Root T; at v. By the choice of T;, we deduce
from Lemma 1 that T is a spider with center v. Since A < (n—1)/2, then T; has at least
one leg of length at least three. It follows from Lemmas 2, 3, and the choice of T; that T has
exactly one leg of length at least three and at most one leg of length two. Then LM;(Ty) =
A3 —2A? — A+ 4n — 10. O

If T is a spider with exactly one leg of length at least three and at most one leg of length
two, then LM (T) = 4n + A> — 2A% — A — 10, and if T’ is a spider whose all legs have length
at most two, then LM (T') = n? + A3 — A? +2A — 2nA — n. Therefore

LM;(T) — LM{(T') = —(n — A)? +3(n — A) + 2n — 10. (1)
Letx =n—Aand f(x) = —x? + 3x + 2n — 10. Then
f(x) >0, when (3—+v8n—-31)/2<x<(34++v81—-31)/2,

and

f(x) <0, when x< (3—+v8n—-31)/2 or x> (3++v8n—31)/2.

If n > 5, then since x is positive integer number, we can see that x # (3 —+/8n —31)/2. In
other words, by equation (1), we have

(2)

2n —3 —+/8n —31 C A< 2n — 3+ +/8n — 31
2 4

LM;(T) > LMy(T'), when 5
2n — 3+ v/8n —31

LM;(T') > LM;(T), when A > , A3 — Sn =31 (3
and
LMy(T) = LMy(T'), when A—21=3 — Sn =31 (4)

Using an argument similar to that described in proof of Theorem 1 and equations (2), (3), (4),
we obtained the next results.

Theorem 2. Let T be a tree of order n > 8 with maximum degree

n—1<A<2n—3—\/8n—31 >2n—3+\/8n—31
2 - 2 - 2 ’

A

Then LMy (T) > 4n + A® — 2A% — A — 10, with equality if and only if T is a spider whose T has
exactly one leg of length at least three and at most one leg of length two.
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Theorem 3. Let T be a tree of order n > 8 with maximum degree

2n —3 —+/8n —31 <A<2n—3+\/8n—31
2 - 2 '

Then LM;(T) > n® + A®> — A? + 2A — 2nA — n, with equality if and only if T is a spider whose
all legs have length at most two.

In Figures 1-3 six trees of orders n = 10,12 with maximum degree A = 5,6 and with
minimum first leap Zagreb index are illustrated.

Fig. 1. The tree withn = 10, A = 6 and LM (T) = 162.

Sl

Fig. 2. Trees withn = 12, A = 6 and LM;(T) = 176.

St

Fig. 3. Trees with n = 10, A = 5and LM;(T) = 100.

R. Rasi et al. [19], proved the following upper bound for the first Zagreb index of trees.
They also characterized the corresponding extremal trees.
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Theorem 4. Let T be a tree of order n and maximum degree A. If n = v (mod A — 1), then

(A+2)n —4A +4, r=0,
My(T) < (A+2)n —3A, r=1,
(A+2)n—2A -2, r=2,
(A+2)n—2A-3+7r(r—2), r>3.

A.M. Naji et al. [17], proved the following result.

Theorem 5. Let G be a connected graph with n vertices and m edges. Then LM;(G) <
M;(G) + n(n —1)2 — 4m(n — 1). Equalities hold if and only if the diameter of G is at most
two.

The next result is an immediate consequence of Theorems 4 and 5.

Corollary 1. Let T be a tree of order n and maximum degree A. If n = r (mod A — 1), then

(A+2)n —4A+ 4+ (n—4)(n —1)?, r=0,

LMy (T) < (A+2)n =38+ (n—4)(n —1)?, r=1,
U ar 28— 24 (n—4)(n—1)2, r=2,
(A+2n—2A=3+7r(r—=2)+(n—4)(n—1)%, r>3.
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Inaexc 3arpeba nepiuoro crpubka LM1(G) rpadpa G — 1e cyMa KBaApaTiB CTeIleHiB 0ro Apy-
ryx BepimH, T0610 LM (G) = Loev () d(v/G)?, ae dy(v/G) — e KiabKicTb ApyTUX CyciaiB v ¥ G.
Y wiit poboTi oTpuMaHO MeXi AAs iHAeKCYy 3arpeba IepIoro cTpubka Aepes Ta BU3HAUEHO eKCTpe-
MaAbHi AepeBa, SIKi AOCSTAIOTh IMX MeX.

Kntouosi cnosa i ppasu: aepeso, iHaekc 3arpeba mepiroro crpubka, iHaekce 3arpeba.



