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Asymptotic solutions of boundary value problem for
singularly perturbed system of differential-algebraic equations

Samusenko P.F.}, Vira M.B.>™

This paper deals with the boundary value problem for a singularly perturbed system of differ-
ential algebraic equations of the second order. The case of simple roots of the characteristic equation
is studied. The sufficient conditions for existence and uniqueness of a solution of the boundary
value problem for system of differential algebraic equations are found. Technique of constructing
the asymptotic solutions is developed.
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Introduction

The boundary value problems for singularly perturbed differential equations of the
second order began to be intensively studied in the middle of the last century. Note, that
in R. Mises [17], O.A. Oleinik and A.I. Zhizhina [19], W. Wasow [26] theorems on the existence
and uniqueness of solution x = x(t, €) of the next scalar two-pointed boundary value problem
were proved

e2x" = f(x,x',t), 1)

x(to,€) = xo, x(f,€) = x1. (2)

Moreover, it was found conditions under which x(f,&) — x(t), e — 0, where x(¢) is the solu-
tion of the corresponding degenerated problem

f(x/ x/’ t) =0, (3)
x(to,0) = xo, x(#1,0) = x7. 4)

R.E. O’'Malley [16] and J.W. Searl [22] used the method of multiple scales for construction
of the asymptotic solution of the problem (1)—-(2) in powers of parameter . An overview of
the results of using this method for construction of the asymptotic solutions of the singularly
perturbed differential-algebraic equations (DAEs) can be found in [14].

Another classical method of studying boundary value problems is the method of matched
asymptotic expansions or the closely related method of boundary functions. According to this
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technique, the formal solution of the problem (1)—(2) can be found as a sum of a regular se-
ries and two boundary layer series [12,24]. The presence of boundary layer series allows us to
construct a uniform asymptotic solution of the problem (1)-(2) on the segment [to; f1]. In or-
der to prove the asymptotic properties of the constructed formal solutions the barrier function
method was used [2,13,18,25]. Note that under certain conditions imposed on the coefficients
of the equation (1), the barrier function method can be used for the estimate the difference be-
tween the solution of the problem (1)—(2) and the solution of the corresponding degenerated
problem (3)—(4), when the boundary function method is not applicable [3]. This idea allows us
to study boundary value problems, for example, when their solutions are oscillating. The sig-
nificant limitation of using the method of barrier functions is the impossibility of its effective
application in researching of boundary value problems for systems of singularly perturbed
equations [4, 6,10].
This paper deals with the two-point boundary value problem

ezA(t e)@ = f(x,t,e), te€][0;T] (5)
" dt? et T
x(0,e) =x9, x(T,e) = x7, (6)

where x(t,¢) is an n-dimensional vector, A(t,¢) is an (n x n)-matrix, f(x,t¢), xo, X7 are
n-dimensional vectors with real or complex-valued elements, ¢ is a small parameter. Using
the method of boundary functions, the formal solution of the problem (5)—(6) is constructed.
Moreover, it is proved the asymptotic properties of the obtained solution.

Necessary and sufficient conditions for the existence and uniqueness of the solution of the
boundary value problem for the DAEs (5) in case where ¢ = 1 was obtained in [1,15]. The
estimates for the exact solution were found as well. There was investigated the structure of the
fundamental matrix in linear case [15,20]. This result has been used for the construction of the
solution of the given boundary value problem. Similar results for the DAEs with an irregular
point one can found in [5].

The two-point boundary value problem for a singularly perturbed system of the first
order with the identity matrix A(t,¢) and special boundary conditions was considered by
A.B. Vasil’eva and V.F. Butuzov [24]. Moreover, the boundary conditions for the components
of the solution were agreed with the sign of the real parts of the eigenvalues of the matrix

(aﬁ@o(t),t,m)
e

4

ax]‘ : ‘_17

where X((t) is the solution of the equation f(x,¢,0) = 0. We generalize the results, obtained
by A.B. Vasil’eva and V.F. Butuzov to the case of the differential algebraic system (5).
The boundary value problem (5)—(6) in such form is considered for the first time.

1 Formal solutions

Assume that the following conditions are satisfied.

1. Elements of matrix A(t,¢) are infinitely continuously differentiable functions with re-
spect to variables t and € (A(t, &) € C*(G)) on the set

G={(te): 0<t<T,0<e<eg}.
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2. Components of vector-function f(x,t,¢) are infinitely continuously differentiable func-
tions with respect to variables x, t and ¢ (f(x,t,&) € C*®(K)) on the set

K={(xte): ||x]| <c, 0<t<T,0<e<e}, |xl <c |xr]<ec.
3. Equation f(x,t,0) = 0 has the solution x = X(t), which satisfies the conditions:

(i) %o(t) € C[0;T);
(ii) the root x = Xy(t) is isolated on the segment [0; T|], that is, there is such 77 > 0, that
f(x,t,0) #0,when0 < ||x —Xo(t)|| <5, t €[0T
4. det A(t,0) =0, t € [0;T).

5. Pencil of matrices f1.(%o(t),t,0) — AA(t,0), t € [0; T], where
—_ 0 (xo(t),t,0
fu(To(t),1,0) = (M)
Lj

aJCj

./ ‘:1,1’1

is regular. Moreover, it has n — 1 distinct eigenvalues.

Then there exist such nonsingular smooth matrices P(t, ¢), Q(t, ¢), that
P(t,e) fr(Xo(t),t,0)Q(t €) = Q(t, e) = diag{e(t, e), W,,_1(t,€)},
P(t,e)A(t,e)Q(t,e) = H(t,e) = diag{a(t,e), [,_1(t, €)},
where e(t,0) = 1, W,_1(t, ) = diag{A1(t,€), Aa(t,€), ..., Ap_1(t,€)}, Ai(t,e), i = 1,n—1, are
the roots of the characteristic equation
det(fy(Xo(t),t,0) — AA(t,€)) =0;
a(t,0) =0, I,_1(¢,0) = I,,_1, I,_1 is identity matrix of the (n — 1)th order [21,23]. Without loss
of generality [8,21], we can assume that
fr(Xo(t),t,0) = Q(t,0), A(t0) = H(t0).
Formal solution of the problem (5)-(6) we will find in the form

where X(t, &) = Y oo, €X;(t) is a regular part of the asymptotics, I1x(7,¢) = Yoo o TLx(T),
T=1t/¢g,and Qx(¢, e) = Y ov€°Qsx(8), ¢ = (t — T) /¢, is a singular part of the asymptotics.
Substituting representation (7) into the system (5), we get

d?x(t,e) d*T1x(7,€)
dt? dt?

d>Qx(Z¢)
a2
= f(x(t, &) + TIx(7,€) + Qx(&,¢), t,€).

Then we find the functions X (¢, ¢), I1x(7,€), Qx(&, €), solving the following systems

e2A(t,€) + A(et, €) +A(8e+T,e)

2x -
ezA(t,e)d—tf = F(te), 8)
2
A(sr,s)% =TIIf(7,¢), 9)
ZQJC

>
o
_l._
=
I

d
d—(:z Qf (S e), (10)
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where
flt,e) = f(x(t,e), t,2),
I1f(t,¢e) = f(x(eT,e) + IIx(T,€),€7,€) — f(X (€T, €), €T, €),
QF(&,¢) = f(R(ge+ T, ) + Qx(&e), e+ Te) — f(¥(e + T,e), Ge+ T,e).
Let
F.60) = LeT0, Tf(ne) = L eThf(n), f@e) = L o0
Here, in particular
fo(t) = f(Zo(t),1,0), Thof (7) = f(%0(0) +ILox(7),0,0) — f(%0(0),0,0),
Q()f(g) = f(YO(T> + QOX(C>/ T, O) - f(YO(T>/ T, 0)/
fo(t) = fe(Zo(t), £, 0)%s(t) +Z,(t),
I£ (1) = fx(%0(0) +ITox(1),0,0)ITsx(T) + 8s(T),
Qsf(8) = fr(xo(T) + Qox(£), T,0)Qsx(Z) + hs(8), s€EN,

the functions g.(t), gs(7) and hs(&) are expressed recursively through % (f), ITyx(7) and Q (),
k <s.
Note that, generally speaking,

f(x(te) +TIx(T,8) + Qx(G, ), t,e) # f(t,€) +T1f(T,€) + Qf (G, 2). (11)

But since in a neighborhood of t = 0 function Qx(¢, ¢) should be as small as, like a func-
tion I'lx (7, ¢) in a neighborhood of + = T [24], then (11) can be considered as an approximate
equality.

Substituting (7) in boundary conditions (6), we can write

%(0,¢) + Ix(0,¢) = x0,%(T,€) + Qx(0,¢) = x7. (12)
Assume that the following conditions are satisfied:

10°A(t,0)
85

= Z SSAS(t) = S:Z:OSSETI,

o0 51 asA( )
S =
A(et,€) ZS I A = ;:O l;)ll(s —1)! ots—igel ’
) s —i
gs i aSA(T,O)
. S = s
A(le+T,e) = ;)8 QsA(G) = S;JS 1;:)1'!(5 —i)! ors—igel

Let us equate coefficients at the similar powers of € in (8)—(10). For the leading terms of the
asymptotics (Xo(f), ITox(7) and Qox(¢)), we obtain

Fol),1,0) =0,
2 X

A0,0 T 79 — f(x0(0) +T1ox,0,0) — £(20(0),0,0), (13)

A(T,0) 2% fy — F®(T) + Qux, T,0) — f(%(T), T,0). (19

a2
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In view of condition 3 systems (13)—(14) will have the form

2
A(0,0)d dl;lgx = f(%0(0) + IIox,0,0),
dZQox _
A(T, O)ng = f(xo(T) + Q()x, T, 0)

Let us denote through ITy x, f1(X0(0) 4+ Ilpx,0,0), Qo1x, X01(#), Xo1 and x71 the first compo-
nents of the vectors I'yx, f(Xo(0) + Ipx,0,0), Qox, Xo(t), xo and xT respectively, and through
Igpx, f2(%0(0) + Ipx,0,0), Qozx, X02(f), xp2 and x1p we denote the vectors, containing other

components of vectors ITyx, f(xXo(0) + ITox,0,0), Qox, Xo(t), xp and x7.

Further we make the following assumptions.

6. The equations f1(Xp(0) + ITpx,0,0) = 0 and f1(Xo(T) + Qox, T,0) = 0 have the solu-
tions Ty x = Iy x(ITppx) and Qux = Qo1x(Qo2x), which are continuous in the field of

parameters change ITppx, Quox respectively, and
Hoyx(x02 — X02(0)) = xo1 —=%01(0);  Horx(Ilgzx) — 0,  Tlgox — 0,
Qoix(xr2 = %2(T)) = x11 = X01(T);  Qo1x(Qo2x) = 0, Qoax — 0.
7. The problems

A T x _
dT‘f = (%o (0) + Ty, 0,0),

HOQX(O) = X2 — 702(0); Hozx(T) —0, T— oo,

and

2
a dQ;fx — fo(%o(T) + Qox, T, 0),

Qu2x(0) = x12 —X02(T);  Qoox(¢) =0, & — —oo,

have such solutions ITgpx = T x(T), Quax = Quox(&), that
IIXo(f) + Tox(t/€)|| <c, te€0;T],

and
IXo(f) + Qox((t —T)/e)|| <¢, te€][0;T].

(15)

8. {fx(X0(0) +TIox(7),0,0)}11 # 0, T > 0; {fx(*o(T) + Qox(¢),T,0)}11 # 0, ¢ < 0,
where, for example, { f1(X0(0) 4+ ITox(7),0,0) }11 is a corresponding element of the matrix

fx(%0(0) +Iox(7),0,0).

9. ReA;i(£,0) > 0,t € [0;T),i =1,n— 1.

Then we can assume that Re \/A;(¢,0) > 0,t € [0;T],i = 1,n — 1. From the Conditions 6-8

it follows, that ITpx(7) € C*[0;00) and Qpx({) € C*®(—o0;0] [9].
Let us show that there are constants &, ¢y, for which

ITTox(T)|] < coexp(—apT), T >0.
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For this purpose we will represent the system (15) in the following form

dZHOZx
dt?

= W,—1(0,0)IIp2x + G2 (ITpx),

where G2 (Hox) = f2 (EO (O) + Hox, 0, O) — féx (f() (O), 0, O)Hozx, f2/x = (ale' /axj)i,j:l—n. Note that
G2(0) = 0.
Suppose that T > 1, where 1y will be defined below. The solution of the problem

d%y;
5 — 0,0y = {Ga(y) (16)

yi(T()> = {H()zx(”(()>}i; yi(T) — O, T — 00,

i = 2,n, satisfies the integral equation

, o—V/2i(00) (—1)) ( I a0 [ 1GW) w/)\lv(o,o)sd>
yZ(T) { OZX(T())} e / 2m §
e~V Ai(00) T {GZ eVAi(00)s g5 1 o\/Ai(00) T / {GZ e~ VAi(0.0)s 7o
1 2¢/A O 0 2/ A 0 O

According to the Lagrange finite-increments formula we get ||Ga(y) — G2(0)]| < 4|yl
where 6 = 6(y(7)), 6(y(7)) — 0, T — oo0.
Consider an equation

(17)

zi =y, i=2mn, (18)

where the operator ®; is determined by the right-hand side of the formula (17) on the set

T ={yi(t) € Cltp; +0) : |yi(T)] < crexp(—ap(T— 7))}, 0<apg<Rey/A;(0,0), i=2,n.

For a sufficiently large 79 the mapping z; = ®;y; is a contraction mapping of the set T
into itself. That is why the equation (18) has a unique solution on the set T [11]. Therefore,
1i(T)] < crexp(—ao(T — 1)), T > .

For 0 < T < 19 the solution of the equation (16) satisfying the condition y;(0) = {xp2}; —
{X02(0) }; is bounded by some constant ¢y, |y;(7)| < ¢2,0 < T < 1.

We set ¢p = max{c1 exp(apTp), c2exp(oT)}. Then according to the construction we get
lyi(1t)| < coexp(—agt), T > 0,i =2,n. Thus, ||[TTpx(7)|| < cgexp(—apt), T > 0.

Similarly, we prove the existence of such a constant By, 0 < Bo < Re y/A;(0,0),i = 2, n, that
1Qux(E) || < coexp(Bog), & < 0.

Equating the coefficients of like powers of ¢ in the equations (8)—(10), we obtain

5—2 2= .
Fuo(0), L 0% = ¥ A0 T2l g ),
i=0
2
(0,055 = £1(%0(0) + Iox(r), 0,0)ILx(x) + ro(x), (19)
PQux

A(T,0)—=~ a2 = fr(%o(T) + Qox(£), T,0)Qsx(8) + 45 (2), (20)
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where X;(t) =0,t € [0;T],i <0,

B S d?TT,_;x(T)
rs(T) = gs(7) — Z; HiA(T)T,

S 2 x
0) = 1) - Y QA T2,
i=1

From the Conditions 5 and 9 it follows, that det f1(Xo(¢),£,0) # 0, t € [0; T]. That is why

dzysfifZ(t)

s—2
% (0 = (A0, 0) (L A0=520 g ), sen

We set
_ Ci(t) Ca(7)
’xo+er,0,o:< ! ,
fx( 0( ) 0 ( ) ) Cg(T) C4(T)
where C4(7) is the square matrix of the (n — 1)th order. Note that
fx(%0(0) +TIox(7),0,0) — £1(%0(0),0,0), T — co.

Let us consider the system (19):

[Tg1x = —%(T)(Cz(T)Hszx +161(7)),
2
d ;szzx _ (C4(T) - %(Cf)m)ﬂszx(r) + % +ro(T), 1)

where Il x, 751(7) are the first components of the vectors I'l;x, 75(7), and I1sx, 75 (T) are the
rest components of the vectors ITsx, 75(7).

Equating the coefficients at the similar powers of ¢ in the first identity (12), we get initial
conditions for the solution of the system (21)

HSZX(O) = _YSZ(O)- (22)

Moreover, the functions I'l;x(7) are boundary functions. That is IT;x(7) — 0, T — 0.
Thinking as in the case of proving an exponential estimate for ITyx(7), using the method
of mathematical induction, we show that the problem (21)—(22) has a solution ITspx = ITgx(T)
for which |[TTx(7)|| < coexp(—agT), T > 0. According to the construction of the solution we
get the estimate
ITLsx(7)|| < coexp(—apT), T>0, sEN,

where constants ¢, &g are different than in previous estimates.
10. Suppose the following X1 (0) + IT;;x(0) =0, s € N.
Then x;(0) + ITsx(0) =0,s € N.

Remark. For example, the conditions

9°a(0,0)
e’
are sufficient for the fulfilling the condition 10.

asfl (Xo, 0, O)

=0
! oes

=0, s&N.
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Let us consider the system (20) with the initial conditions
Qax(0) = —x(T), Qsx(§) — 0, & — —oo.
11. Suppose, that X5 (T) + Qs1x(0) = 0,s € N.

We prove that the system (20) has the solution Qsx = Q;x(&) such that X;(T) + Qsx(0) =0,
s € N. Besides,

1Qsx(8)]] < coexp(Bod), §<0, seN.

2 Investigation of the asymptotic behaviour of the constructed formal
solution

Let us prove that the constructed formal solution of the problem (5)—(6) has the asymptotic
properties. For this purpose we make the substitution x(t,€) = x(t,€) + y(t,€) in system (5),
where x;,(t,e) = Y01, (Xs(t) + ITsx(7) + Qs(¢)), and y(t,€) is a new unknown function.
Then system (5) can be written in the form

2 2
E2A(t, e)ilz L — flxm(te) +y,t€) — eZA(t,e)de;ig'e). (23)
Then boundary conditions for the system (23) take the form
y(0,e) = — i &Qsx(—T/e), y(T,e) Z eTlsx(T/¢).
s=0 s=0
Thus, we can state that
y(0,€) = O(e"™), y(T,e) =0("™), e—=0+. (24)
We put
:issfs(t), [T,x(T,e) = ZSHS , Qu(ée) = ZSQS
5=0
Then
f(Xm(t,e) +Tux(t,e) + Qmx(E, ), t,€) = f(Xm(t, €),t,€) + (f(Xm(t, €) + Iyux(T,€),t,€)
— fEnlt,e),1,6)) + (FFnlt,e) + Qur(E,e), ) — f(Fultie), 1))
+ f(xXm(t, &) + ILux(7,€) + Qmx(E, €),t,€) — f(Xm(t, €) + ITux(T,€),t, €)
— f@u(t €) + Qux(C e), t,€) + f(Xm(t €)1 €)

Considering this expression on the segments [0; T/2] and [T/2; T], we obtain

f(xm(t e) +1Lux(T,€) + Qmx (G, €), t,€) = f(xm(t, €),t,€) + (f(Xm(t, €) + Lux(T, €)1, €)
— fGnlte),t€)) + +(FFnlte) + Qur(Ee), ) — f(Fulte), 6)) + O(emH)

= ées(fs(f) +ILf(T) + Qs f(£)) +O(e" ).
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Thus, the system (23) can be written as

d2 _
EA(Le)F = FilFo(t),L0)y + (v te),

where ¢(y,t,e) = f(xm(t ) +y,t,e) — f(xm(te),t,e) — fi(xo(t),t,0)y + O(e™1). Note, that
g™, 1) —g(y®, 1 €)| < di(e +exp(—aot/e) + exp(Bo(t — T)/e)) Iy =y (25)

and
(0, t,€)|| < dae™™, te[0;T], (26)

for all yV), y? € D, 11, Dyy1 = {y(t,€) € C[0;T] = |ly(t,e)| < ke™ 1}
Suppose the following

y(t,e) = z(t,e) + @ (T—t)+ @ t,
where the functions ¢(¢) = y(0,¢), ¥(¢) = y(T, ¢) are defined from the conditions (24). Then
we have

’ dz /=

€ A(t,e)ﬁ = fr(Xo(t),t,0)z +q(z,t,¢€), (27)

z(0,¢) =0, z(T,e) =0. (28)

It should be noted, that function g(z, t, €) has asymptotic estimates (25), (26).
Setting z(t, &) = Q(t, €)u(t, ¢), the problem (27)—(28) can be represented in the form

’ d?u
€ H(t,e)w =Q(t, e)u+r(u,te), (29)
u(0,¢) =0, u(T,e) =0, (30)

where r(u,t,e) = P(t,e)q(Q(t,&)u,t,e) — e2H(t,e)Q 1 (t, &) (Q" (¢, e)u +2Q'(t, e)u’). Note, that
P(t,0) = E,, Q(t,0) = E, and Q'(£,0) = 0 [21,23].

12. Suppose that a(t,e) = €°ay(t,€),s € N, where Reay(t,0) > 0, t € [0; T]. We also suppose,
that ufl) (t,e) and u 1(2) (t,€) are the linearly independent solutions of the equation

dzuz-

2
€ hz‘(t, S)W

= wi(t, 8)141', (31)
where h;(t,€), wi(t, €) are diagonal matrix elements H(t,e) and Q)(t, €).

According to the construction of the solutions we have [7]

t
ul(l)(t/ 8) — 9;1/4(1{.’ 8) exp < — % [) A/ ei(tl 8) dt) 651)(1{'; 8)/
t
ufZ)(t,e) _ 9;1/4(15,5) exp <%/0 \/0i(t,€) dt)ez(z)(t,e),

where 6;(t,€) = wi(t,e) /hi(t,e), i =T,m; eV (te) =1+ O(e), e — 0+,j = 1,2.
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The functions

vf”(t,e) =u 1)(1',8)61(2)(0,8) - ufz)(t,e)egl)(o,e),
2 T
o (te) = ul (t,e)el (T,e) — u® (1) exp ( — = /0 Voilte)at)el (T,e)

are the solutions of the equation (43) and

”01(1)(0,8) =0, vfz)(T,e) =0.

The Wronskian of the functions " (t,¢), vfz) (t,e)is A(t,e) = (2/€)(1+O(e)), e = 0 +.

i

Then the solution of the problem (29)—(30) satisfies the system of integral equations

1 T
nite) = 5 [ Giltis,en(us,e)ds,

1 /T
ui(t,e) = 5_2/0 Gi(t,s,e)ri(u,s,e)ds, i=2,n,

where

(1) (2) <t<
Gi(t,s,e) - 1 {vl (trg)vl (S,S), Ostss,

At e) vfz)(t,s)vfl)(s,s), s<t<T,

(32)

(33)

(34)

is the Green’s function for the boundary-value problem (31)—(32). According to the construc-

tion we get

‘ € 0-1/4(s ¢)9-1/4 l/t ‘
Gilts,0)| < 56,406 s e exp (L | ik o) dt) (14 0(), 0<t <,

and

| € g-1/4(; g 1/4 17 /s
Gilt,s,e) < 567 V4(t, 2, (s,e)exp(s/t ,/el(t,e)dt)(HO(e)), s<t<T.

Let d3 and dy be constants such that

/2 Re \/01(t,€) > d3z >0, 8_5/2|91_1/4(t,8)91_1/4(5,8)| <d,

and

Re\/0;(t,e) >d3 >0, [0, 14(t,e)07V4(s,e)| <dy, i=2,m; t,s€]0;T]

i
13. Suppose that dydy < 2d3.

For sufficiently large k the operator

1 T
Ty = 5_2/0 G(t, s, e)r(e,s, €)ds,

where é(t, s,¢) = diag{(1/¢°)Gy(t,s,¢€), Ga(t,s,€),...,Gnl(t,s,€)}, maps the set Dy, ;1 into it-
self. This mapping is a contraction mapping. Consequently, the systems (33)—(34) has one and
only one solution on the set D,, ;. That is why the problem (29)-(30) has unique solution

u = u(t, ) as well. Besides, |lu(t,¢)|| < ke, t € [0; T).
Thus, the main result of the paper can be formulated as follows.

Theorem 1. If A(t,e) € C""1(G), f(x,t,¢) € C"™(K) and the assumptions 3-13 are satis-
fied, then there exists a unique solution x = x(t,¢) of the boundary-value problem (5)—(6) for

sufficiently smalle, 0 < &€ < ¢1 < g, such that
|x(t, &) — xm(t, €)|| = O(smﬂ), tel0;T], e—0+.

(35)
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3 The special case

Suppose, that _
flxte) = B(H)(x = ¢(t)) +ef (v, t¢), (36)
where B(t) is an (n x n)-matrix [2,25]. Thus, fi(x,t,0) = B(t) and Xo(t) = ¥(t).

14. Assume, that the pencil B(t) — uA(t,0), t € [0; T], is regular and it has n — 1 distinct
eigenvalues.

Then, without loss of generality, we can state that B(t) = Q(t,0), A(t,0) = H(t,0). Ac-
cording to (36) the equations f1(x(0) + ITpx(7),0,0) = 0and f; (xo(T) + Qox(§), T,0) = 0 are
solvable for I'Tp; x(7) and Qg1 x(¢) respectively, and ITypx = 0, Qp1x = 0.

15. Suppose, that xg1 = X1 (0) and x71 = %01 (T).
Note, that in this case constant d; is determined from inequality

g™, t,e) — g(y@,t,e)|| <edi|ly™ —y?.
Theorem 2. If A(t,¢) € C"*+1(G), f(x,t,€) € C"1(K),

flx,te) = B(t)(x — (1) +ef (x, t¢)

and conditions 4, 9-12, 14, and 15 are satistied, then, for sufficiently smalle, 0 < ¢ < g1 < gy,
there exists a unique solution x = x(t,¢) of the boundary-value problem (5)—(6), for which the
asymptotic estimate (35) is valid.
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Y poboTi po3rAsAaEeThCs KpalioBa 3aAada AASI CMHTYASIPHO 36ypeHoi AndepeHITiaAbHO-aATebpa-
iuHOI cMcTeMU PiBHSIHD APYTOTO MOPSIAKY. PO3TASHYTO BMITAAOK IPOCTUX KOPEHiB XapaKTepucTH-
yHOro piBHsHHS. OTpMMaHO AOCTaTHi yMOBM iCHyBaHHS Ta €AMHOCTi PO3B’SI3Ky KpayoBoi 3apradi
A AudpepeHITiaAbHO-aATebpaiuHOl crcTeMy PiBHSIHD. Po3pobaeHO MeTOA MOOGYAOBM aCHMITOTH-
YHMX pO3B’SI3KiB IIOCTaBAEHOI 3aAaYi.

Koouosi ciosa i ppasu: Kpaliosa 3apada, aCMMITOTHYHIIL PO3B’ 530K, AvidpepeHITiaAbHO-aATebpa-
iuHa crcTeMa, CMHIYASIPHO 36ypeHa CucTeMa.



