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Stability of a fractional heat equation with memory

Kerbal S.1, Tatar N.2

Of concern is a fractional differential problem of order between zero and one. The model gen-
eralizes an existing well-known problem in heat conduction theory with memory. First, we justify
the replacement of the first order derivative by a fractional one. Then, we establish a Mittag-Leffler
stability result for a class of heat flux relaxation functions. We will combine the energy method with
some properties from fractional calculus.
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Introduction

The problem we want to address here is the following;:

t
CDU(t, x) = A6(t, x) —b/ ot —5)A0(s,x)ds, t>0, xeQ,
0
-0,

0(t, x) t>0, x €90, 1
6(0,x) = 6p(x), x e,

where 0 < & < 1, D" is the Caputo fractional derivative of order « defined below, the kernel
¢ in the memory term is a nonnegative function, 6y (x) is the initial data of the state and Q) is a
bounded domain in IR” with smooth boundary d() and b is a positive constant.

This model is the fractional version (and multi-dimensional case) of a problem which ap-
pears in the theory of rigid heat-conductors with memory corresponding to the case & = 1
(andn =1)

0'(t, x) = bpbxx(t, x) — b/tgb(t —5)0xx (s, x) ds, t>0, x€(0,1),

0(L0) =0, 0(t1) =0, >0, 2)

6(0,x) = 6p(x), x e (0,1).
Model (2) describes the temperature distribution in a homogeneous bar of unit length while
the ends of the bar are kept at zero temperature. The bar is made of a material with mem-
ory and therefore the diffusion is not a “normal” one. According to the theory developed in
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[11,26,30] this model is derived by assuming that the temperature 6(¢, x), the internal energy
€(t,x) and the heat flux g(¢, x) satisfy the relations

e(t,x) = 0(tx),  q(t x) = —bobx(t, x) +b/0t<,b(t —5)0x(s, x) ds,

where ¢ is heat flux relaxation function. When augmented by the balance of heat equation
€t = —(x + ag,

where o denotes possibly the external heat supply, we obtain

)

t
S0(t,x) = boba(t,x) — b /0 bt — 5)Bxx (s, %) ds + o (t, x).

An important class of heat flux relaxation functions ¢ in applications is finite linear combina-
tions of decaying exponentials (see [9,10])

m
P(t) = Z dee ™, d,Ae>0,k=1,...,m,
k=1

or even just one of them (m = 1). These functions are in line with the concept of fading
memory. They have been extended to the class of completely monotone functions and other
classes. This problem has been studied extensively since the sixties (see [8-13, 15, 23-26, 28—
30,33] and references therein). The well-posedness (see [4] and references therein), asymptotic
behavior and stability issues have been discussed in the abstract setting

(1) = AB(t) + /Ot ®(t — 5)0(s) ds

and also generalized to the multi-dimensional case. Here A : D(A) C X — X is a linear
operator satisfying certain conditions ensuring that it generates an analytic semigroup et
in X. The operator kernel ®(-) belongs to L(0, +00; L(D(A), X)) with a certain condition on
its Laplace transform ®(-). A forcing term h(t) can also be added. In [12,13,24,25], it is proved
that there exists a resolvent operator R(t), f > 0, such that t — R(t) is analytic in (0, +oc0) with
values in L(X, D(A)) and

R'(f) = AR(t) —l—/OtCI)(t—s)R(s)ds, £>0,

limR(t)x = x forall x € D(A).
t—0

The resolvent operator R(f) is given by

_L My A& -1 _
—2m,/ce (A—A-®) A, t>0,  R(0) =1,

R(t)

where C is an appropriate curve ensuring the existence of (A — A — CTD()\)) forrec.

When studying transport of fluids in a porous media, the above model come to light
through the use of Darcy’s law. However, it has been observed that the movement of the
fluid may cause reduction of the size of the pores thus affecting the permeability of the me-
dia. In [6,7], the author modified Darcy’s law by introducing a memory term. This resulted
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in a fractional derivative, which is able to better describe the decrease in the permeability.
The above considerations have motivated the study of problem (1). We also refer the reader
to [3,18,27].

In general, for complex media it has been observed that the mean square displacement is
not linear. It is proportional to t*, > 0. The case 0 < a < 1 corresponds to the subdiffusion
case, where particles move slower than in the normal case. An interesting derivation of the
model (for a special kernel) from the Rayleigh-Stokes problem, which describes the flow of
some non-Newtonian fluids

atw—(1+')/8’t3)Aw:g€Q, 0<t<T
w=0ond, 0<t<T 3)
w(-,0) =h in Q,

can be found in [19], see also [16,32].

The well-posedness in suitable spaces, for more general and abstract problems, has been
already treated in some papers [5, 14, 19-22]. The results will be discussed briefly below. We
shall rather investigate the asymptotic behavior of solutions for a class of kernels. We recall
that, in the integer case (x = 1), kernels of the form e~ ", v > 0, (or a finite sum of such
functions) have been first considered and then generalized to the class of functions satisfying
the differential inequality

¢'(t) < —y¢(t), t>0,7>0.

This motivated us to look at kernels satisfying the fractional differential inequality
RLDp(t) < —y¢(t), >0, 7> 0. 4

The cases of regular and singular kernels will be treated separately. We prove Mittag-Leffler
stability of solutions. We mention here that some power-type decays of solutions in some
Sobolev spaces have been shown in [5]. Namely, solutions of (3) behave like 1/t at infinity in a
certain Sobolev space. In [22], the author proved an asymptotic stability result for locally Lip-
schitz nonlinearities g(w) and a stability result of order t*~!, when g(w) satisfies a condition
of the form

lim sup
[[u] =0

The rest of the paper is organized as follows. After some preliminaries presented in the
next section, we present the available results on existence and uniqueness of different kinds
of solutions in Section 2. Section 3 is devoted to the stability in case of regular kernels satisfy-
ing (4). A singular special case is discussed in the last section under a regularity assumption
of solutions.

1 Preliminaries

In this section, we prepare some material which we shall use to prove our results in the
next section. Namely, few definitions and propositions are in order. For material on fractional
calculus we refer, for instance, to [17,31].
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Definition 1. The Riemann-Liouville fractional integral of order « > 0 of a function w is de-

fined by

Iw(t) = ﬁ /0 (= s w(s)ds, a0,

where T'(«) is the usual Gamma function. Here w is any measurable function, provided that
the right hand side exists.

Definition 2. The fractional derivative of order &, n — 1 < « < n, n € Z™, in the sense of
Caputo is defined by
1

t
D (t) = O /0 (t— )~ =1 (5) ds, > 0.

Clearly

1 t
“D*w(t) = m/o (t—s)*w'(s)ds, 0<a<1,t>0.

The Riemann-Liouville fractional derivative of order « in the sense of Riemann-Liouville is

defined by

1 da
RLya — —g) &
D w(t)_l"(l—rx)dt/o(t s)*w(s)ds, 0<a<1,t>0,

as long as the integral makes sense.
The passage from one derivative to the other obeys the relationship

w(0)t*

Dt(r) = T(1—a)

+D*w(t), 0<a<1,t>0. (5)
We shall need this relationship in particular to use Proposition 3 below on the differentiation
under the integral sign.

We recall the one-parametric and two-parametric Mittag-Leffler functions

Eu(z) := ém Re(a) > 0,
and
(e} Zn
E.p(z) := Ez)m Re(a) > 0, Re(B) > 0,

respectively. It is useful to notice that E, 1 (z) = Ex(z).

Proposition 1 ([34]). In case the relation
CD*w(t) < —yw(t), 0<a <1,
holds true for a differentiable function w(t) for some y > 0, then
w(t) <w(0)Ey (—t*), t>0.

The decay takes the form t*~'E,, (—yt*), when the derivative is rather of Riemann-
Liouville type.
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Proposition 2 ([17, p. 61]). For u,«, B > 0, we have

L
I'(p)

The following proposition is about the fractional differentiation under the integral sign.

z
jg(Z«—t)”_lEmﬁ(Afa)tﬁ_ldt::z”+5_1E%H+5(Az“), z>0.

Proposition 3 ([31, p. 99]). The permutation of the Riemann-Liouville fractional derivative and
the integral sign

KDt [ (s = 5)p(s)ds = [ @) DYl — ) ds +9(0) lim I a(t), >0

=0+
is valid provided ¢(t) is a continuous function and I'"*w(t) € C!([0,00)), 0 < a < 1.
We end this section with the Caputo fractional derivative of the product of two functions.

Proposition 4 ([2]). Letu(t) and v(t) be absolutely continuous functions on [0, T|, T > 0. Then,
for 0 < o < 1, we have

u(t)CDaU(t)—l—v(t)CD“u(t)
_Cpn (uo(t)) + « /t ¢ /C u' ()dy /5 o/ (s)ds e o
].—‘(1—0() 0 (t—g)l—zx 0 (t_n)lx 0 (t—S)lx, , .

In particular

t u' 2
D& (u2(+)) = 2u(H)CDu(t) — -2 )/0 (t_dg (/06 (’7)”1’7> < 2u(t)SDu(t).

I(1-a g (£ —=n)*
For notation convenience we shall drop the superscript “C” from ¢ D*. Moreover we denote
a boodg ¢ u/()dy \?
L) = [ ] < / ) d 6
(1) F(1—a)JaJo (t=3)* \Jo (t—n)* : ©)
and )
o f_dg ¢ o()dy
o= [l ;
T o T b T 7

for vectors.

2 Existence and uniqueness

Let (X, ||-||) be a Banach space and P, (S(t)),~ be closed linear operators defined on do-
mains D(P) and D(S(t)) 2 D(P) dense in X, respectively. We denote by |-||; the graph norm
in D(P), R(v,P) := (vI — P)~! and p(P) the resolvent set of P.

In [14], the author proved the existence and uniqueness of a mild solution for the abstract
problem

(8)

CDTU(t,x) = PU(t, x) + /OtS(t —s)U(s,x)ds+ f(t,U(t)), 0<vy<1,
U(0,x) = Up(x) € X,

(see [1] for the case 1 < 7y < 2) under the above assumptions and the following three.
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(A1) For some 71/2 < @ < 7, there exists a constant C = C(®@) > 0 such that
Y00 = {1/ € C:|arg(v)| < w} C p(P)

and ||[R(v,P)|| < C/ |v|, v € Zp.

(A2) For each ¢ € D(P), S(-)? is strongly measurable on (0, ). There exists a locally
integrable function f(t) with Laplace transform f(v), Re(v) > 0, and |S®H| < £ 1195,
t > 0,9 € D(P). In addition, S* : ¥y /o — L(D(P); X), where L(D(P); X) is the space
of bounded linear operators from D(P) into X, has an analytic extension S to X s verifying
|1SW)8]| < |S@)| II8]l,, ¢ € D(P) and ||S(v)|| = O <l) as |v| — oo.

vl
(A3) There exist a subspace F dense in (D(P),|-||;) and a constant C > 0 such that
P(F) C D(P), S*(v)(F) C D(P), ||[PS*(v)8|| < C||8||, 8 € Fand v € Z5.

The author used the resolvent operator notion.

Definition. The family of bounded linear operators (R(t)),., determines a 7-resolvent
for (8) if -

(a) the mapping R, (t) : [0,00) — L(X) := L(X; X) is strongly continuous and R, (0) = I;
(b) foralld € D(P), R,(-)8 € C([0,00); D(P)) NC((0,00); X), where C7((0,0); X) is the
space of continuous functions ¢ for which D¢ exists and is continuous, and
CDYR, (1) = PR, (£)0 + /OtS(t — )R, (s)0ds = R, ()P + /Ot Ry (t —5)S(s)0 ds
fort > 0.
Then he showed that the family

1 _ - -1
— Y=l ut(.v1 _ D _ < >
Ry(t) i= 5= [l (=P =S (2)) dp, >0,
is a y-resolvent for (8) for an appropriate path
I:= {tei“’:tZr}U{reigz—wgggw}u{te’iw:tZr}

oriented counterclockwise, where 71/2 < w < @ and r > rq (a positive number determined in
the proofs).
Theorem. For Uy € D(P) and f(t,U(t)) = 0, the function

U(t) := R, (t)Uy € C([0,00); D(P)) N C7((0,0); X)
is a mild solution.

The existence and uniqueness of a global classical solution in fractional Holder spaces for
the equation

D% = Liv + /Otgb(t —s)Lyv(s, ) ds + f(t,x,v) + g(t, x)

with different boundary conditions, has been established in [19] for sub-power type kernels.
We refer the reader also to [20,21]. For the problem (3), the existence, uniqueness and regularity
of a solution is proved in Sobolev spaces in [5]. More recently, it was proved in [22], that in
case of Lipschitzian nonlinearities ¢(w), mild solutions are in fact classical.

In this paper, we shall assume the existence and uniqueness of a classical solution

6 € L2((0, +00); W¥2(Q) NW,7(Q0)),  €D"0 € L2((0, +o0); L2(Q)))

to our problem for which all the computation below are justified.
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3 Stability: the case RED*¢ (t) < —v¢ (1)

In this section, we consider continuous relaxation functions ¢(t) on [0, c0), which satisfy the
fractional differential inequality RED*¢(t) < —v¢(t). This is in analogy with the differential
inequality ¢'(t) < —y¢(t) used in the integer case.

We shall assume that our initial data satisfies 6y € H(Q) N H*(Q) and

é ::/0 (s)ds < 1/b. )
The last assumption (9) is justified in [10]. Roughly, it guarantees the negativity of the equi-
librium flux and consequently the “forward” heat flow at equilibrium as well as the “for-

ward” heat flow for all + > 0. More precisely, by Proposition 2, it is clear that such kernels
are summable and

t t
/o ¢(s)ds = 430/0 s T Eqa(—7s") ds = pot"Ep g1 (—7t*) < o/, ¢o>0,t>0. (10)

A multiplication of the equation in (1) by 6 followed by an integration over () gives

t
D0 d :—vez—b/(;/ £ —s)AB(s) ds dx.
[ ep0dx = —V6I* =b [ 0 [ (t —s)a0(s) dsdx

By Proposition 4 (and (6)), we have

/9D“9dx—;D”‘H€|| TR // (/0g ?;(17);;1)2%

1 1
= 2D ]2 + EL(e), e [0,T], T > 0.
Therefore
t
SD* 6+ 2L(6) = —||ve||2+b/0ve./0 Pt — 5)VO(s) ds dx.

Young inequality implies

/QVG./Otgb(t—s) VoO(s)dsdx

1 t t
<& HV9H2+4—51</0 (j)(s)ds)/n/o (j)(t—s)}Ve(s)}zdsdx, o > 0.
Hence
1, b t
5D 16]]2 < (b6 — 1) || V62 +45 (/ ¢(s)ds>/0 (t—s)||V6(s H ds ——L(e) (11)
We introduce the functional

H(t) := /O (t—s)||VO(s)||*ds, t>0.
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Lemma 1. The functional H(t) satisfies the following inequality
D*H(t) < —yH(t), t>0.

Proof. In view of our hypotheses on the kernel ¢(t), notice that both derivatives below exist.
Therefore, by the relation (5) and Proposition 3, we infer

D*H(t) = RLm/ (t—5)||VO(s)||*ds
_/ RLD® (¢ — 5)||V6(s)]| ds+(tl£%n+ '=g(t)) | Vel

and therefore the claim is proved. O

We shall examine the functional
1
Ei(t) = 5 16]]> + xH(t), x> 0.

Theorem 1. The problem (1) under the above hypotheses on the kernel ¢(t), is Mittag-Leffler
stable. That is, there exist positive constants B and v such that

16]|* < BE, (—vt*), t>0.

Proof. The fractional derivative of Eq(t) may be deduced from Lemma 1 and (11) as follows
DE1) < (66— ) [T+ g5 ([ @(e)ds) [ ot =5)|Vo(s) P ds = 3206) ~ et
< (b6, — 1) || V0> + [41; </t ¢(s) ds) - m] H(H), teloT).
Picking 61 = 1/2b, x = b?>¢/~ and using Poincaré inequality, we obtain

D“El(t) < —CEl(t), t e [O, T]

for some positive constant C, independent on T. The conclusion follows from Propo-
sition 1. [

4 Stability: singular kernel but regular solution

In this section, we consider the special (singular) kernel ¢(t) = ¢ot* *Eqq (—t%), ¢o > 0.
In this case, we request a minimum regularity on the solution (see [22] for the Rayleigh-Stokes
problem). In particular, we need D*V6 and D* < fO s)VO(t —s) ds) to make sense. Here, we
find from the previous argument

DYEy(£) < (b6; — 1) | V6| + [4? </t<p(s)ds> —m] H(t)+x(t1351+11*“¢(t)) |ve|?
< [e61+ ¢ Jim 1%0(0) = 1] V0 + [ - ['9)5) — o 1O, re o)

Having in mind Proposition 2 and

149(0) = gty (=) (<t =5)%) 57 ds = ok (=1,
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we may request
bgo.
4701
These conditions are fulfilled provided that ¢o/y < 1/b. This is a reasonable condition (see
(9), (10) and also the definition of E(t) below). Consequently, we reach a Mittag-Leffler decay
of E;(t) again.

Profiting from the assumed regularity of the solutions, it is possible to have in fact a Mittag-
Leffler decay in the H'-norm of the solution.

We denote by

by + ko < 1 and < K7.

($OV8)( ot —s)|VO(t) — VO(s)|*dsdx, t>0.
(¢

Next, we multiply the equation (1) by D*8 and integrate. We get over ()

t
D*9|> = — | V8.D*VOdx+b | D*Ve. t —5)VO(s)dsdx.
(@) (@] 0 (P

As
/ V6.D*V dx = —D"‘ Vo] + L(V6),
we see that
%D"‘ Vo) < — D% +b/QD"‘V9./Otgb(t —5)VO(s) dsdx — %L(Vé)). (12)
The term

t
/ D*V6. / p(t —s)VO(s)dsdx

@) 0

in (12) is estimated in the next proposition.

Proposition 5. For our kernel ¢(t), the following identity holds
t t
/ D”‘V@./ ¢(t — 5)V(s)dsdx = %{ (Rtp*g0Ive) + (/ ¢(s)ds> D* Hvenz}
Q 0 0

« t ac d17 [IV6(s) dS
_ZT(l—(X)/O(t—g)l“/O / t—s

. 4z [(V6) ()] 'dy
——D (V) (1) 1_a // (t—¢ 1“/0 (t—mn)"

X </0 (t—s)™" </Osgb(s —1)Vo(1) dT)lds> dax.

Proof. Using Proposition 4 and the identity

($OV0) (¢ // (t—5)|VO(t) — VO(s)|* ds dx
= [Ive|* /0 eb(f—s)ds+/0t4><t—s)HW(s)Hst

—Z/QVB./Otgb(t—s)VH(s)dsdx, teoT),
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we find
DR (p0IV0) (£) = (D'* [ ott-s) ds) Ve
n </Otgb(t—s) ds> D" | V)2

o ftdz s elpdy 2 [IIV6(s)]]) ds
‘r<1—a>/o<t—§> “/o (f—ﬁ)"‘/o (t—s)

+D"‘/<pt—s 1Vos)|? ds

(13)
—2/ D“V@./ p(t —s)VO(s)dsdx
t
—2/ ve. D”‘/ o(t — 5)V6(s) ds dx
/ / dg / [(V8) ()] dy
1 — ) (t =)= Jo (t—n)~
/
X </ (t—s)™® (/ $(s —T)VO(T)dT ) ds) dx, tel0,T].
0 0
Clearly, from the definition of the quadratic form (¢[1V0) (t) we get
t
(RED*grIve) (1) = Hveuz/ RL Dt ds+/ RLD (¢ — 5)|| VO(s)||* ds
’ (14)
—2/ VG./ RED%p(t —5) VO(s) ds dx
0 0
and in virtue of Proposition 3, we entail
t t
D"‘/ ¢(t —s)ds :/ RED%p(t —s)ds + lim I'™*¢(t), t > 0. (15)
0 0 t—0+
Again, by Proposition 3 and the summability of ¢, for t € [0, T| we have
D* / (t—s)||VO(s H ds = RLD“/ (t—s)||VO(s H ds
0 0
t o
—7“1_“) </ (t—1s)||VO(s)| ds) ) (16)
_ RL 1—a
/ Dp(t —s) [ Vo(s) | *ds + Vo) lim I'*(1).
Moreover,
/ Ve. D"‘/ (t —s)VO(s)dsdx —/ V@/ REDYp(t —5) VO(s) ds dx
(17)

+|[ve)|? 11r(1)n+11 “o(t), tel[o,T].
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Gathering the previous relations (16) and (17) in (13), we find

D*(¢p0IV6)(t) = || V6| M RLD®p(t — 5) ds + Jim 11—w¢(t)] + (/Otgb(t —s)ds) D" ||Vl

_F(l(x—a) /ot (t— ”‘/0 dﬂ / ”Vf—s

+/ RLD g ( Hve )| ds+HV€ )| im 101

—2/ D”‘V@/ (t — 5)VO(s) ds dx

—2/ ve/ RLDE 0(s)ds dx —2|[VO(t) || lim I'~*¢(t)

t—0+
1—a // t—dgl "‘/0 17)‘1

/

x </0 (t—s) (/0 ¢(s — T)VO(T)dt ) ds)dx,

D*(¢IV)(t) :Hveuz/ot RLD® ¢ (+ — s)ds + (/Otgb(t—s)ds> D* ||Vo|?

« t 2
_T(l—oc)/o(t— ”‘/0 dﬂ/ va_sn),x]

+/ RLD® (¢ — 5)||VO(s) | ds—Z/ D"‘V@/gb(t 0(s) ds dx
—2/ Vf)./ RED® ¢(t —5)VO(s) ds dx

1—(x // t—dél "‘/0 ﬂ)}‘dq

x (/f(t—s)”‘(/o ¢(S—T)V9(r)dr> /ds>dx.

Therefore, in view of the relations (14) and (15), we obtain

or

D*(¢01V6) (1) = (RLD* 9rIve) + (/Ot(p(s)ds> D* || Vo2

_r(la—a)/ot(t_ /O dn/ Hw:_s ds

—2/ D"‘VQ./ (t —s)VO(s)dsdx

/

1—oc // t—d(:1 "‘/g 15—17)’16117
x (/j(t—s)”‘(/o ([)(S—T)VO(r)dT) ds> dx

for t € [0, T]. This finishes the proof. O
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We deduce from this Proposition 5 and the inequality (12) that

1w 2 ag2 1 b (RL A b /t bt 2
Z < B e Z
5D [V6]]” < — [D*0]]* = 5L(V6) + 5 (*D ngVH) +5 (] ods) D |ve]

ab Eoode d17 [|V6(s)||?] ds b,
S 2r(1—a) /0 (t— &)= /0 / (f—s) > (¢OIVO)(t)
ab f_dg [(VB)(W)}’dW
i hh T ok o

X </Og(t—s)“</()S([)(S—T)V9(T)dl’> /ds> dx

for t € [0, T], which may be written as

(1_b/ ds)D"‘HV@H +ZD"‘(4>DV9)()

< —||D*0|)* - %L(V@) + g (RLD“¢DV9>

ab b4z d;y [1V6(s) ds

S 2(1—a) /0 (t—¢)l-« /0 / t_ ) (18)
ab bz [(Ve)(n)] dy

*m—a)/a/o <t—¢>1a/o (E— )"

X </Og(t—s)“(/Osgb(s—r)ve(r)ch) /ds>dx.

The relations (11) and (18) triggered the introduction of the “energy” functional

E(t) = %{ 16]1* + <1 - b/otgb(s)ds> V6> + b (pIV6) (t)}, t > 0.

We recall the assumption (9). The above considerations lead to the following assertion.

Lemma 2. The functional E(t) along solutions of (1) satisfies
D*E(t) < —||D*0* + [b&l - <1—b/ ) Dpia (t)] Ive|* — %L(G)
1 b
+ (882 3) L090)+ 3 (5~ ) wove o
b t
st (/ o(t — 7)V8(7) dr)

forédy,0, > 0,t > 0.

Proof. Clearly, a direct fractional differentiation of E(t), using Proposition 4, yields

DUE(f) = %D”‘ {||9|;2+ (1 —b/t¢(s) ds> V6|2 + b (401V6) (t)}
- %D"‘ 1612 + = D"‘ <1—b/ ds) Vo2 + = <1—b/ ds> D" ||V

+72F(1—w)/0/0 0 _d(gm /0g f;(_),j)’i </0§(t— “(Ive)|) d )

+ gD"‘ (¢0IV) (t)
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or (see (7))

DUE(#) {b(sl (1—b/ )] HV@HZ—%L(B)
1 ([ o) @ave —g(m [ o6s)ds) 961 ~ Dol
_2r(?b— o) /ot (t—¢) "‘/0 / Wf—s>s,| le]/ds _%L(W)
+g (ktp2g0ve) (1 1_“ / / /g . 6)( ’37 (19)
X </0 (t—s)~ "‘(/O gb(s—T)VB(T)dT) ds)dx
1—a // t—dgllx/og(i—)q)

x (/f(t—s)‘"‘(HVf)HZ)lds)dx, 51 > 0.
_p~ /t - "‘D/ 1),

the last relation (19) is reduced to

Because

DE() < — Do+ [0~ (10 [ o905 ) = 31000 [vel?
- 31+ (- 3) (70 +§ (% =) wovers

+ 4—1(;2L</tcp(t - T)VQ(T)dT),

where we used

// f— &) a(/o v(f(_+,>7}>/:h7>(/Oé(t—S)_m(/osqb(s—T)Vf)(l’)ﬂlﬂf)/ds>z7lx

<o f [ [ S

(t—mn)*
dg 4 ; —a s - p /d Zd 5 .
v o g 6o ([ ot - ovemar ) a0
and the form of the kernel ¢. This ends the proof. .

Observe that the last term in the estimation of D*E(t) is positive and there is no clear way
to control it. To this end we introduce the functional

G(t) := /Q

2
dx, t>0.

/Otgb(t —5)V(s) ds
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Lemma 3. The fractional derivative of the functional G(t) is evaluated by

D*G(t) < —29G(t) + ¢ (63 +2¢) | VO]
+ M(4>DV9)(f) — L(/tqb(t — T)VO(1) dT), 53> 0,t>0.
03 0

Proof. First, we take the Caputo derivative of order a of G(f) and use Proposition 4, namely

2/ (/ (t—s)Vo(s )ds) D* (/th)(t = s)V(?(s)ds) dx

e N ( /0”4><n—r>ve<r>dr)/dn

for t € [0, T]. Second, the relation (5) gives

2/ (/ t—sV@()ds)
x [RLD"‘ (/O ¢t — 5)VO(s) ds) dx — ﬁ(/ot<p(t—s)v9(s) ds)
—L(/Otgb(t—r)ve(r)ah), teo,T].

Then, the summability of ¢ and Proposition 3 allows us to write

2/ </ (t— 5)V6(s )ds>
X [/0 REDp(t — 5)VO(s)ds + V(¢ >t1£(§1 11”‘<p(t)]dx

) </Ot<p(t _1)Ve(1) dr) ,

and by the nature of our kernel ¢ we get

DG() = = 2yG(t) +2 lim I'*¢(1) /Q vo(t). ( /0 "o(t — 5)V6(s) ds> dx
- L(/Otgb(t—r)ve(r) dr), t e [0, ).

Next, in virtue of Proposition 1 and Proposition 2 with 4 =1 — a and 8 = & we have

19(0) = gty (=90 (=t =5)%) 57 ds = ok (=1,

/ve (/ (t—5)V6(s )ds)dx—/ vo(t (/Otgb(t—s)[ve(s)—ve(t)]ds>dx
([ ptsras) 9ol
We end up with

D*G(t) < =29G(t) + o (35 +29) | VO|>
T %Mﬂve)m - L(/thb(f—T)V@(T) dT), 63> 0, t € [0,T].

This completes the proof. O

2
dx

] dx
=0
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Now, we introduce the functional
Ex(t) = E(t) +pG(t), p >0,

and the number

. 1 . 0% 1
u:= meln{2+5b2¢0'1+2b¢o}'

Theorem 2. Under the above assumptions, problem (1) is Mittag-Leffler stable (in the
H'-norm). That is, there exist positive constants B and v such that

E(t) < BEq (—vt*), t>0,

provided that ¢ satisfies ¢ < U.

Proof. The fractional derivative of E;(t) verifies (see Lemma 2 and Lemma 3)
t
D'Ea) < - D012+ w6~ (10 [ 9915 ) = 31 %(0)| |78
0

_ @ n <b52 - %) L(V6) + g (2% - ) (pLIVO)(t)

b t _
+ 35 ([ otr= 019 ar) ~2016(0) + g0 (63 2) | V61

+ %@pmvem) oL (/Ot o(t — 7)V8(7) dr) .

Therefore

D*Ey(t) < — =) | (b(Sz _ %) L(V8) — | D%

2
3 (o5 =) +ot] overo) 2060 o0

+
+ [b61 — (1 — D) + peo (85 +2¢) ] | V8>
+

<% - ) L (/Otgb(t —1)Vo(7) dT) .

Now, we start selecting the parameters in such a way that all the coefficients in the right hand
side of (20) be negative. The strategy is to get —CE(t) in the right hand side or an equivalent
expression. By Poincaré inequality with constant Cp, if

1-b§
2 4

bd1 + pgo (93 +2¢) <

then

b6+ ppo (83 4+ 26) — (1— bf) < 2~

and L b
(661 + pgo (85 +2) — (1-b9) | |VO]* < —;T(P 6]
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Therefore, we need

_ 1— b
b51 + p(P() ((53 + Z(P) < T('b,
1
w e
e L PP Y
w, P S
b
1, F
1 v? . - 5
Letd, = P =7 and to fix ideas ¢b (1 + 2b¢y) < 3 then
b? 1— bp — 2¢pob?
b, + 353(}50 < > ,
P, bogo
26 oy 7
or 2
3
bé1 + 03¢0 < —,
_ 127_ 16 1)
¢ | 090 _ y
26, T 63 '

iy 1 1
Picking 6; = b’ J3 = 104’7,

dition ¢ < U, which in turn requires that either v is large or ¢y is small. It appears that

we see that these last relations (22) are verified under our con-

D*E,(t) < —CEy(t), t>0,

for some positive constant C. The conclusion follows from Proposition 3. O
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PosrasiaaeTnest ApoboBa AMdpepeHITiaabHa 3aAa4a HOPSIAKY, IO 3HAXOAUTHCS MiX HyAeM i OAM-
HiIeto. MoaeAb y3araAbHIOE iCHYI09y BiAOMY IIpobaemy Teopii TemaonposiaHOCTi 3 mam’stTTI0. CIio-
JaTKy MM OGTPYHTOBYEMO 3aMiHy IOXiAHOI ITepIIIoro mopsiAKy Ha Apobosy. Ilicast boro, mm BcTa-
HOBAIOEMO Pe3yAbTarT crilikocTi Mitrar-Aedpdaepa Arst kaacy pyHKIIN peaakcallii TeIAOBOTO II0-
TOKY. M} TIOEAHY€MO METOA €Hepril 3 AeSIKMMI BAACTMBOCTSIMI APOOGOBOTO UMCAEHHS.

Kntouosi croea i pasu: apobosa moxiaHa KaryTo, TenmaonposiaHiCTb, TepMiH mam’sTi, cTabinb-
HicTh MiTTar-Aeddparepa, MeTOA MHOXKHMKA.



