Carpathian Math. Publ. 2024, **16** (2), 539–547 doi:10.15330/cmp.16.2.539-547

Карпатські матем. публ. 2024, Т.16, №2, С.539-547

Certain solitons on α -cosymplectic manifolds

Sardar A., Sarkar A.

In the present paper, we characterize some solitons such as η -Einstein soliton, η -Yamabe soliton and Ricci-Yamabe soliton on α -cosymplectic manifolds. Furthermore, we characterize 3-dimensional α -cosymplectic manifolds with gradient Ricci-Yamabe soliton. Finally, we construct an example.

Key words and phrases: Einstein soliton, η-Einstein soliton, η-Ricci soliton, gradient η-Ricci soliton, η-Yamabe soliton, α-cosymplectic manifold.

Department of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India E-mail: arpansardar51@gmail.com(Sardar A.), avjaj@yahoo.co.in(Sarkar A.)

Introduction

A Ricci soliton in a Riemannian manifold (M, g) is given by

$$\pounds_X g + 2S + 2\lambda g = 0,$$

where \pounds is the Lie-derivative, λ is a constant, S is the Ricci tensor and the vector field X is called the potential vector field. Ricci solitons are the self similar solutions of the Ricci flow equation

$$\frac{\partial}{\partial t}g_{ij}=-2R_{ij},$$

which was introduced by R.S. Hamilton [15]. Ricci solitons have also been studied by various authors such as [25–27] and many others.

As a generalization of Ricci solitons, the notion of η -Ricci solitons was introduced in the paper [11]. An η -Ricci soliton is given by

$$\pounds_X g + 2S + 2\lambda g + 2\mu \eta \otimes \eta = 0$$

where μ is a constant. If $\mu=0$, then η -Ricci soliton reduces to Ricci soliton and if $\mu\neq 0$, then the η -Ricci soliton is called proper. η -Ricci solitons have been studied by various authors such as [3–6, 12, 17, 19, 22, 24] and many others. Like a Ricci soliton, an η -Ricci soliton is also called shrinking, steady or expanding according as $\lambda<0$, $\lambda=0$ or $\lambda>0$, respectively. Recently, the second named author studied Ricci solitons on generalized Sasakian space forms [23].

Let (M, g) be a Riemannian manifold of dimension 2n + 1. Then M is called an Einstein soliton [9] if there is a vector field X such that

$$\pounds_X g + 2S + (2\lambda - r)g = 0,$$

УΔК 514.7

2020 Mathematics Subject Classification: 53C15, 53D25.

Arpan Sardar is financially supported by UGC (India), Ref. ID. 4603/(CSIR-UGCNETJUNE2019)

where r is the scalar curvature of the Riemannian metric g. If the scalar curvature r is constant, then the Einstein soliton becomes a Ricci soliton.

As a generalization of Einstein soliton, the η -Einstein soliton is given by

$$\pounds_X g + 2S + (2\lambda - r)g + 2\mu\eta \otimes \eta = 0. \tag{1}$$

If the scalar curvature r is constant, then the η -Einstein soliton reduces to an η -Ricci soliton.

A Yamabe soliton [2] on a Riemannian or pseudo-Riemannian manifold (M, g) is defined by

$$\frac{1}{2}\pounds_X g = (r - \lambda)g.$$

A Yamabe soliton is said to be expanding, steady or shrinking if $\lambda < 0, \lambda = 0$ or $\lambda > 0$, respectively.

We define the notion of η -Yamabe soliton as

$$\frac{1}{2}\mathcal{L}_X g = (r - \lambda)g - \mu\eta \otimes \eta, \tag{2}$$

where λ and μ are constants. If $\mu = 0$, then the η -Yamabe soliton becomes a Yamabe soliton.

A Ricci-Yamabe soliton on Riemannian manifold (M, g) is the structure (g, X, λ, a, b) , defined [14] by

$$\pounds_V g + 2aS + (2\lambda - br)g = 0, (3)$$

where £ is the Lie-derivative, S is the Ricci tensor, r is the scalar curvature and λ , a, $b \in \mathbb{R}$. If X is gradient of a smooth function f on M, then above notion is called gradient Ricci-Yamabe soliton and equation (3) reduces to

$$\nabla^2 f + aS = \left(\lambda - \frac{1}{2}br\right)g,\tag{4}$$

where $\nabla^2 f$ is the Hessian of f.

The Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is said to be expanding, steady or shrinking according as λ is negative, zero or positive, respectively. A Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is called an almost Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) if a, b and λ are smooth functions on M. A Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is said to be a

- Ricci soliton (or gradient Ricci soliton) if a = 1, b = 0 (see [15]);
- Yamabe soliton (or gradient Yamabe soliton) if a = 0, b = 1 (see [16]);
- Einstein soliton (or gradient Einstein soliton) if a = 1, b = -1 (see [9]);
- ρ -Einstein soliton (or gradient ρ -Einstein soliton) if $a=1, b=-2\rho$ (see [10]).

When $a \neq 0, 1$, Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is proper.

We organize the paper as follows. In Section 2, we consider some solitons on α -cosymplectic manifolds. Next, in Section 3 we study gradient Ricci-Yamabe solitons on α -cosymplectic manifolds. Finally, in Section 4 we construct an example of a 5-dimensional α -cosymplectic manifold to verify our results.

1 Preliminaries

A (2n + 1)-dimensional Riemannian manifold (M, g) is called an almost contact metric manifold if it admits a (1, 1)-type tensor field ϕ , a vector field ξ , a 1-form η and a Riemannian metric g such that [8]

$$\phi^2 U = -U + \eta(U)\xi, \quad \eta(\xi) = 1,$$

$$g(\phi U, \phi V) = g(U, V) - \eta(U)\eta(V), \quad g(\phi U, V) = -g(U, \phi V)$$

for any vector fields U, V of the manifold. The vector field ξ is called the Reeb or characteristic vector field.

An almost contact metric manifold is said to be normal if the Nijenhuis tensor of ϕ [8] vanishes. An almost Kenmotsu manifold is an almost contact metric manifold if $d\eta = 0$ and $d\Phi = 2\eta \wedge \Phi$, $\Phi(U, V) = g(U, \phi V)$.

A normal contact metric manifold (M, g) is said to be cosymplectic if the following relations

$$d\eta = 0$$
, $d\Phi = 0$

hold. Similarly,

$$(\nabla_U \phi)V = 0, \quad \nabla_U \xi = 0$$

for any U, V and ∇ is the Levi-Civita connection on M. Also, if

$$d\eta = 0$$
, $d\Phi = 2\alpha\eta \wedge \Phi$

are satisfied, then M is called an α -cosymplectic manifold [1,20], α is a real number. Equivalently,

$$(\nabla_{U}\phi)V = \alpha \left[g(\phi U, V)\xi - \eta(V)\phi U \right],$$

$$\nabla_{U}\xi = \alpha \left[U - \eta(U)\xi \right].$$
(5)

In α -cosymplectic manifolds, it is well known [13,21] that

$$R(U,V)\xi = \alpha^2 [\eta(U)V - \eta(V)U], \quad R(U,\xi)V = \alpha^2 [g(U,V)\xi - \eta(V)U],$$

$$R(U,\xi)\xi = \alpha^2 [\eta(U)\xi - U], \quad S(U,\xi) = -2n\alpha^2 \eta(U),$$

where *S* is the Ricci tensor.

Proposition 1. In a 3-dimensional α -cosymplectic manifold the Ricci tensor is defined [7] by

$$S(U,V) = \left(\alpha^2 + \frac{r}{2}\right)g(U,V) - \left(3\alpha^2 + \frac{r}{2}\right)\eta(U)\eta(V). \tag{6}$$

Proposition 2. In a 3-dimensional α -cosymplectic manifold the following relation

$$\xi r = -2\alpha \left(6\alpha^2 + r \right) \tag{7}$$

holds.

Proof. Equation (6) implies

$$QU = \left(\alpha^2 + \frac{r}{2}\right)U - \left(3\alpha^2 + \frac{r}{2}\right)\eta(U)\xi.$$

Differentiating (7), after some calculations we obtain

$$(\nabla_V Q) U = \frac{1}{2} \left[(Vr)U - (Vr)\eta(U)\xi \right] - \alpha \left(3\alpha^2 + \frac{r}{2} \right) \left[g(U,V)\xi + \eta(U)V - 2\eta(U)\eta(V)\xi \right]. \tag{8}$$

Contracting V in the foregoing equation we have $\xi r = -2\alpha(6\alpha^2 + r)$. This completes the proof.

2 Solitons on α -cosymplectic manifolds

Let us suppose that the α -cosymplectic manifold admits an η -Einstein soliton (g, ξ) . Then (1) implies

$$(\pounds_{\xi}g)(U,V) + 2S(U,V) + (2\lambda - r)g(U,V) + \mu\eta(U)\eta(V) = 0.$$
(9)

Now,

$$(\pounds_{\xi}g)(U,V) = g(\nabla_{U}\xi,V) + g(U,\nabla_{V}\xi).$$

Using (5) in the above equation, we get

$$(\pounds_{\xi}g)(U,V) = 2\alpha \left[g(U,V) - \eta(U)\eta(V)\right]. \tag{10}$$

Using (10) in (9), we obtain

$$S(U,V) = \left(\frac{r}{2} - \alpha - \lambda\right) g(U,V) + (\alpha - \mu)\eta(U)\eta(V). \tag{11}$$

Contracting the above equation, we infer

$$r = \frac{2[2n\alpha + (2n+1)\lambda + \mu]}{2n-1},\tag{12}$$

which implies r is a constant. Then from (9), it reduces to an η -Ricci soliton. Hence we have the following result.

Theorem 1. If an α -cosymplectic manifold admits an η -Einstein soliton (g, ξ) , then it is an η -Einstein manifold and hence it reduces to an η -Ricci soliton.

If we take $\alpha = 0$ or 1, then from (12) we obtain r is a constant. Thus we get the next assertion.

Corollary 1. If a cosymplectic or Kenmotsu manifold admits an η -Einstein soliton (g, ξ) , then it is an η -Einstein manifold and hence it reduces to an η -Ricci soliton.

If an α -cosymplectic manifold admits an η -Yamabe soliton (g, ξ) , then (2) implies

$$\frac{1}{2}(\pounds_{\xi}g)(U,V) = (r-\lambda)g(U,V) - \mu\eta(U)\eta(V). \tag{13}$$

Using (10) in (13) we infer

$$\alpha \big[g(U,V) - \eta(U)\eta(V) \big] = (r - \lambda)g(U,V) - \mu \eta(U)\eta(V).$$

Contracting the above equation, we get

$$r = \lambda + \frac{2n\alpha + \mu}{2n + 1},$$

which is a constant. Hence we conclude the following result.

Theorem 2. If an α -cosymplectic manifold admits an η -Yamabe soliton, then the scalar curvature is constant.

If we take $\alpha = 0$ or 1, then results are similar to the above theorem. Hence we have the next assertion.

Corollary 2. If a cosymplectic or Kenmotsu manifold admits an η -Yamabe soliton, then the scalar curvature is constant.

If an α -cosymplectic manifold admits a proper Ricci-Yamabe soliton (g, ξ, λ, a, b) , then equation (3) implies

$$(\pounds_{\xi}g)(U,V) + 2aS(U,V) + (2\lambda - br)g(U,V) = 0.$$

Using (10) in the above equation, we get

$$S(U,V) = \frac{1}{a} \left[\left(\frac{b}{2} r - \lambda - \alpha \right) g(U,V) + \alpha \eta(U) \eta(V) \right]. \tag{14}$$

Hence we conclude the following result.

Theorem 3. A proper Ricci-Yamabe soliton on an α -cosymplectic manifold is an η -Einstein manifold.

If we take $\alpha = 0$, then (14) implies

$$S(U,V) = \frac{1}{a} \left(\frac{b}{2} r - \lambda \right) g(U,V).$$

Contracting the above equation, we get

$$[b(2n+1)-2a]r = 2\lambda(2n+1),$$

which implies the scalar curvature is constant. Hence we have the next assertion.

Corollary 3. If a cosymplectic manifold admits a proper Ricci-Yamabe soliton, then its scalar curvature is constant.

Again, if $\alpha = 1$, then (14) implies

$$S(U,V) = \frac{1}{a} \left[\left(\frac{b}{2} r - \lambda - 1 \right) g(U,V) + \eta(U) \eta(V) \right].$$

Thus we have the next result.

Corollary 4. A proper Ricci-Yamabe soliton on a Kenmotsu manifold is an η -Einstein manifold.

3 Gradient Ricci-Yamabe solitons on 3-dimensional α -cosymplectic manifolds

We assume that an α -cosymplectic manifold admits a gradient Ricci-Yamabe soliton (g, λ, ξ, a, b) . Then from (4), we get

$$\nabla_{U}Df = \left(\lambda - \frac{b}{2}r\right)U - aQU. \tag{15}$$

Differentiating (15) along the vector field V, we get

$$\nabla_V \nabla_U Df = -\frac{b}{2} (Vr) U + \left(\lambda - \frac{b}{2}r\right) \nabla_V U - a \nabla_V QU. \tag{16}$$

Interchanging *U* and *V* in the above equation, we infer

$$\nabla_{U}\nabla_{V}Df = -\frac{b}{2}(Ur)V + \left(\lambda - \frac{b}{2}r\right)\nabla_{U}V - a\nabla_{U}QV. \tag{17}$$

From (15), we get

$$\nabla_{[U,V]}Df = \left(\lambda - \frac{b}{2}r\right)[U,V] - aQ([U,V]). \tag{18}$$

With the help of (16) – (18), we obtain

$$R(U,V)Df = \frac{b}{2} [(Vr)U - (Ur)V] - a [(\nabla_U Q) V - (\nabla_V Q) U].$$

Using (8) in the above equation, we get

$$R(U,V)Df = \frac{1}{2}(b-a)\left[(Vr)U - (Ur)V\right]$$

$$+ a\alpha \left(3\alpha^2 + \frac{r}{2}\right)\left[\eta(V)U - \eta(U)V\right]$$

$$+ \frac{a}{2}\left[(Ur)\eta(V)\xi - (Vr)\eta(U)\xi\right].$$

$$(19)$$

Contracting (19), we obtain

$$S(V, Df) = \left(b - \frac{3a}{2}\right)(Vr) + a\alpha\left(6\alpha^2 + r\right)\eta(V) + \frac{a}{2}(\xi r)\eta(V). \tag{20}$$

Using (7) in (20), gives

$$S(V, Df) = \left(b - \frac{3a}{2}\right)(Vr). \tag{21}$$

Replacing U by Df in (6) and comparing with (21), we get

$$\left(\alpha^2 + \frac{r}{2}\right)(Vf) - \left(3\alpha^2 + \frac{r}{2}\right)(\xi f)\eta(V) = \frac{1}{2}(2b - 3a)(Vr). \tag{22}$$

Putting $V = \xi$ in (22) and using (7), we infer that

$$\alpha(\xi f) = \frac{1}{2}(2b - 3a)\left(6\alpha^2 + r\right). \tag{23}$$

Using (23) in (22), we get

$$\alpha \left(\alpha^2 + \frac{r}{2}\right) (Vf) - \frac{1}{2} (2b - 3a) \left[\left(3\alpha^2 + \frac{r}{2}\right) \left(6\alpha^2 + r\right) \eta(V) + \alpha(Vr) \right] = 0.$$

If we take 2b - 3a = 0. Then the above equation implies

$$\alpha \left(\alpha^2 + \frac{r}{2}\right)(Vf) = 0.$$

The above equation implies either $\alpha = 0$ or $r = -2\alpha^2$ or Vf = 0.

Case I. If $\alpha = 0$, then it becomes a cosymplectic manifold.

Case II. If $r = -2\alpha^2$, then scalar curvature is a constant.

Case III. If Vf = 0, then f is a constant.

Thus we conclude the following result.

Theorem 4. If a 3-dimensional α -cosymplectic manifold admits a gradient Ricci-Yamabe soliton, then either it is a cosymplectic manifold or the scalar curvature is constant or the potential function f is constant, provided 2b - 3a = 0.

4 Example

Consider the 5-dimensional manifold $M = \{(x_1, x_2, y_1, y_2, z) \in \mathbb{R}^5\}$, where (x_1, x_2, y_1, y_2, z) are the standard coordinates in \mathbb{R}^5 . Let e_1, e_2, e_3, e_4 and e_5 be the vector fields on M given by

$$e_1 = e^{\alpha z} \frac{\partial}{\partial x_1}$$
, $e_2 = e^{\alpha z} \frac{\partial}{\partial x_2}$, $e_3 = e^{\alpha z} \frac{\partial}{\partial y_1}$, $e_4 = e^{\alpha z} \frac{\partial}{\partial y_2}$, $e_5 = -\frac{\partial}{\partial z} = \xi$.

Let *g* be the Riemannian metric defined by

$$g(e_i, e_j) = \begin{cases} 0, & i \neq j, \\ 1, & i = j, \end{cases}$$
 $i, j = 1, 2, 3, 4, 5.$

Let η be the 1-form on M defined by $\eta(U) = g(U, e_5) = g(U, \xi)$ for all $U \in \chi(M)$. Let ϕ be the (1,1) tensor field on M defined by

$$\phi e_1 = -e_2$$
, $\phi e_2 = e_1$, $\phi e_3 = -e_4$, $\phi e_4 = e_3$, $\phi e_5 = 0$.

By applying the linearity of ϕ and g, we have

$$\eta(\xi) = 1$$
, $\phi^2 U = -U + \eta(U)\xi$, $\eta(\phi U) = 0$, $g(U,\xi) = \eta(U)$, $g(\phi U,\phi V) = g(U,V) - \eta(U)\eta(V)$

for all $U, V \in \chi(M)$. Then we have

$$[e_1, e_2] = [e_1, e_3] = [e_1, e_4] = [e_2, e_3] = [e_2, e_4] = [e_3, e_4] = 0,$$

 $[e_1, e_5] = \alpha e_1, \quad [e_2, e_5] = \alpha e_2, \quad [e_3, e_5] = \alpha e_3, \quad [e_4, e_5] = \alpha e_4.$

The Riemannian connection ∇ of the metric g is given by

It can be easily verified that the manifold satisfies

$$\nabla_U \xi = \alpha [U - \eta(U)\xi]$$
 and $(\nabla_U \phi) V = \alpha [g(\phi U, V) \xi - \eta(V)\phi U]$

for $\xi = e_5$. Hence the manifold is an α -cosymplectic manifold.

In [18] the authors obtained the expression of the curvature tensor and the Ricci tensor as follows

$$R(e_1, e_2) e_2 = R(e_1, e_3) e_3 = R(e_1, e_4) e_4 = R(e_1, e_5) e_5 = -\alpha^2 e_1,$$
 $R(e_1, e_2) e_1 = \alpha^2 e_2,$
 $R(e_1, e_3) e_1 = R(e_2, e_3) e_2 = R(e_5, e_2) e_5 = \alpha^2 e_3,$
 $R(e_2, e_3) e_3 = R(e_2, e_4) e_4 = R(e_2, e_5) e_5 = -\alpha^2 e_2,$
 $R(e_3, e_4) e_4 = -\alpha^2 e_3,$
 $R(e_1, e_5) e_2 = R(e_1, e_5) e_1 = R(e_4, e_5) e_4 = R(e_3, e_5) e_3 = \alpha^2 e_5,$
 $R(e_1, e_4) e_1 = R(e_2, e_4) e_2 = R(e_3, e_4) e_3 = R(e_5, e_4) e_5 = \alpha^2 e_4,$

and

$$S(e_1, e_1) = S(e_2, e_2) = S(e_3, e_3) = S(e_4, e_4) = S(e_5, e_5) = -4\alpha^2.$$

Therefore,

$$r = S(e_1, e_1) + S(e_2, e_2) + S(e_3, e_3) + S(e_4, e_4) + S(e_5, e_5) = -20\alpha^2$$

which is a constant. From (11), we obtain

$$S(e_1, e_1) = S(e_2, e_2) = S(e_3, e_3) = S(e_4, e_4) = \frac{r}{2} - \alpha - \lambda$$
 and $S(e_5, e_5) = \frac{r}{2} - \lambda - \mu$,

which implies $\lambda = -6\alpha^2 - \alpha$ and $\mu = \alpha$. Therefore the data (g, ξ, λ, μ) for $\lambda = -6\alpha^2 - \alpha$ and $\mu = \alpha$ defines an η -Einstein soliton on 5-dimensional α -cosymplectic manifold and the scalar curvature is constant.

Acknowledgment

The authors are thankful to the referee for his/her suggestions towards the improvement of the paper.

References

- [1] Akyol M.A. Conformal anti-invariant submersions from cosymplectic manifolds. Hacet. J. Math. Stat. 2017, 46 (2), 177–192
- [2] Barbosa E., Ribeiro E.Jr. *On conformal solutions of the Yamabe flow*. Arch. Math. 2013, **101**, 79–89. doi: 10.1007/s00013-013-0533-0
- [3] Blaga A.M. η-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl. 2015, **20**, 1–13.
- [4] Blaga A.M. η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat 2016, **30** (2), 489–496. doi:10.2298/FIL1602489B
- [5] Blaga A.M. On gradient η-Einstein solitons. Kragujevac J. Math. 2018, **42**, 229–237. doi:10.5937/KGJMATH1802229B
- [6] Blaga A.M., Perktaş S.Y., Acet B.E., Erdoğan F.E. η-Ricci solitons in (ε)-almost paracontact metric manifolds. Glas. Mat. Ser. III 2018, **53** (1), 205–220. doi:10.3336/gm.53.1.14
- [7] Blaga A.M., Dey C. *The critical point equation on 3-dimensional α-cosymplectic manifolds*. Kyungpook Math. J. 2020, **60**, 177–183. doi:10.5666/KMJ.2020.60.1.177
- [8] Blair D.E. Contact Manifolds in Riemannian Geometry. In: Morel J.-M., Teissier B. (Eds.) Lecture Notes in Mathematics, 509. Springer-Verlag, Berlin, 1976.
- [9] Catino G., Mazzieri L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66-94. doi:10.1016/j.na.2015.10.021
- [10] Catino G., Cremaschi L., Djadli Z., Mantegazza C., Mazzieri L. *The Ricci-Bourguignon flow*. Pacific J. Math. 2017, **287** (2), 337–370. doi:10.2140/PJM.2017.287.337
- [11] Cho J.T., Kimura M. *Ricci solitons and real hypersurfaces in a complex space form*. Tohoku Math. J. (2) 2009, **61** (2), 205–212. doi:10.2748/tmj/1245849443
- [12] De K., De U.C. η -Ricci solitons on Kenmotsu 3-manifolds. An. Univ. Vest Timiş. Ser. Mat.-Inform. 2018, **56** (1), 51–63. doi:10.2478/awutm-2018-0004
- [13] Eisenhart L.P. Riemannian Geometry. Princeton University Press, Princeton, 1949.
- [14] Guler S., Crasmareanu M. *Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy*. Turkish J. Math. 2019, **43** (5), 2631–2641. doi:10.3906/mat-1902-38

- [15] Hamilton R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237-261. doi:10.1090/conm/071/954419
- [16] Hamilton R.S. Lectures on geometric flows, 1989. (unpublished)
- [17] Haseeb A., De U.C. η -Ricci solitons in ϵ -Kenmotsu manifolds. J. Geom. 2019, **10**, article number 34. doi: 10.1007/s00022-019-0490-2
- [18] Haseeb A., Prakasha D.G., Harish H. *-conformal η -Ricci solitons on α -cosymplectic manifolds. Int. J. Anal. Appl. 2021, **19** (2), 165–179.
- [19] Kar D., Majhi P., De U.C. η -Ricci solitons on 3-dimensional N(k)-contact metric manifolds. Acta Univ. Apulensis 2018, **54**, 71–88. doi:10.17114/j.aua.2018.54.06
- [20] Kim T.W., Pak H.K. *Canonical foliations of certain classes of almost contact metric structures*. Acta Math. Sin. 2005, **21** (4), 841–846. doi:10.1007/s10114-004-0520-2
- [21] Özturk H., Murathan C., Aktan N., Vanli A.T. *Almost \alpha-cosymplectic f-manifolds*. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2014, **60** (1), 211–226. doi:10.2478/aicu-2013-0030
- [22] Sardar A., De U.C. η-Ricci solitons on para-Kenmotsu manifolds. Differ. Geom. Dyn. Syst. 2020, 22, 218–228.
- [23] Sarkar A., Biswas G.G. Ricci solitons on three dimensional generalized Sasakian space forms with quasi Sasakian metric. Afr. Mat. 2020, 31 (3–4), 445–463. doi:10.1007/s13370-019-00735-7
- [24] Sarkar A., Sardar A. η -Ricci solitons on N(k)-Contact Metric Manifolds. Filomat 2021, **35** (11), 3879–3889. doi:10.2298/FIL2111879S
- [25] Wang Y. Ricci solitons on almost Co-Kähler Manifolds. Canad. Math. Bull. 2019, 62 (4), 912–922. doi: 10.4153/S0008439518000632
- [26] Wang Y. *Ricci solitons on almost Kenmotsu 3-manifolds*. Open Math. 2017, **15** (1), 1236–1243. doi:10.1515/math-2017-0103
- [27] Wang Y., Liu X. *Ricci solitons on three-dimensional η-Einstein almost Kenmotsu manifolds*. Taiwanese J. Math. 20158, **19** (1), 91–100. doi:10.11650/tjm.19.2015.4094

Received 14.02.2022 Revised 25.05.2024

Сардар А., Саркар А. Деякі солітони на α -косимплектичних многовидах // Карпатські матем. публ. — 2024. — Т.16, №2. — С. 539–547.

У цій статті ми характеризуємо деякі солітони, такі як η -солітон Айнштайна, η -солітон Ямабе та солітон Річчі-Ямабе на α -косимплектичних многовидах. Крім того, ми характеризуємо 3-вимірні α -косимплектичні многовиди з ґрадієнтним солітоном Річчі-Ямабе. Насамкінець, ми будуємо приклад.

Ключові слова і фрази: солітон Айнштайна, η -солітон Айнштайна, η -солітон Річчі, ґрадієнтний η -солітон Річчі, η -солітон Ямабе, α -косимплектичний многовид.