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Certain solitons on a-cosymplectic manifolds
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In the present paper, we characterize some solitons such as #-Einstein soliton, #-Yamabe soliton
and Ricci-Yamabe soliton on a-cosymplectic manifolds. Furthermore, we characterize 3-dimensional
x-cosymplectic manifolds with gradient Ricci-Yamabe soliton. Finally, we construct an example.
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Introduction

A Ricci soliton in a Riemannian manifold (M, g) is given by
£xg+2S +2Ag =0,

where £ is the Lie-derivative, A is a constant, S is the Ricci tensor and the vector field X is called
the potential vector field. Ricci solitons are the self similar solutions of the Ricci flow equation

0

58 = ~2R

1]s
which was introduced by R.S. Hamilton [15]. Ricci solitons have also been studied by various
authors such as [25-27] and many others.

As a generalization of Ricci solitons, the notion of #7-Ricci solitons was introduced in the
paper [11]. An #-Ricci soliton is given by

£xg+25+2Ag+2un ®@n =0,

where y is a constant. If y = 0, then #-Ricci soliton reduces to Ricci soliton and if y # 0, then
the #-Ricci soliton is called proper. 77-Ricci solitons have been studied by various authors such
as [3-6,12,17,19,22,24] and many others. Like a Ricci soliton, an #-Ricci soliton is also called
shrinking, steady or expanding according as A < 0, A = 0 or A > 0, respectively. Recently, the
second named author studied Ricci solitons on generalized Sasakian space forms [23].

Let (M, g) be a Riemannian manifold of dimension 2n + 1. Then M is called an Einstein
soliton [9] if there is a vector field X such that

£xg+25+ (21 —r)g =0,
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where r is the scalar curvature of the Riemannian metric g. If the scalar curvature r is constant,
then the Einstein soliton becomes a Ricci soliton.
As a generalization of Einstein soliton, the #-Einstein soliton is given by

£xg+2S+ (2A —r)g+ 2un @7 = 0. (1)

If the scalar curvature r is constant, then the 7-Einstein soliton reduces to an #-Ricci soliton.
A Yamabe soliton [2] on a Riemannian or pseudo-Riemannian manifold (M, g) is defined
by

1
Eﬁxg = (r—A)g.

A Yamabe soliton is said to be expanding, steady or shrinking if A < 0,A = 0or A > O,
respectively.
We define the notion of 77-Yamabe soliton as

1
FExg = (r—A)g —pun @1, )

where A and y are constants. If 4 = 0, then the 77-Yamabe soliton becomes a Yamabe soliton.
A Ricci-Yamabe soliton on Riemannian manifold (M, g) is the structure (g, X, A, a,b), de-
fined [14] by
£yg+2aS+ (2A —br)g =0, (3)

where £ is the Lie-derivative, S is the Ricci tensor, 7 is the scalar curvature and A,a,b € R. If
X is gradient of a smooth function f on M, then above notion is called gradient Ricci-Yamabe
soliton and equation (3) reduces to

V2f +aS = ()\ — %br) <, 4)

where V2f is the Hessian of f.

The Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is said to be expanding, steady
or shrinking according as A is negative, zero or positive, respectively. A Ricci-Yamabe soliton
(or gradient Ricci-Yamabe soliton) is called an almost Ricci-Yamabe soliton (or gradient Ricci-
Yamabe soliton) if 4, b and A are smooth functions on M. A Ricci-Yamabe soliton (or gradient
Ricci-Yamabe soliton) is said to be a

* Ricci soliton (or gradient Ricci soliton) if a = 1,b = 0 (see [15]);

* Yamabe soliton (or gradient Yamabe soliton) if 2 = 0,b = 1 (see [16]);

¢ Einstein soliton (or gradient Einstein soliton) if a = 1,b = —1 (see [9]);

¢ p-Einstein soliton (or gradient p-Einstein soliton) if a = 1,b = —2p (see [10]).

When a # 0, 1, Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is proper.

We organize the paper as follows. In Section 2, we consider some solitons on a-cosymplectic
manifolds. Next, in Section 3 we study gradient Ricci-Yamabe solitons on x-cosymplectic mani-
folds. Finally, in Section 4 we construct an example of a 5-dimensional a-cosymplectic manifold
to verify our results.
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1 Preliminaries

A (2n + 1)-dimensional Riemannian manifold (M, g) is called an almost contact metric
manifold if it admits a (1, 1)-type tensor field ¢, a vector field ¢, a 1-form 7 and a Riemannian
metric g such that [8]

PPU = —U+nU)s, @) =1,
g(pU, ¢V) = g(U, V) —n(U)y(V), g(pU V) =—g(U, V)
for any vector fields U, V of the manifold. The vector field ¢ is called the Reeb or characteristic
vector field.

An almost contact metric manifold is said to be normal if the Nijenhuis tensor of ¢ [8]
vanishes. An almost Kenmotsu manifold is an almost contact metric manifold if 4y = 0 and
AP =2n AND, ®(U, V) = g(U, $V).

A normal contact metric manifold (M, g) is said to be cosymplectic if the following relations

dp =0, d®=0
hold. Similarly,
(Vup)Vv=0, Vyuc=0
for any U, V and V is the Levi-Civita connection on M. Also, if
dp =0, d® =2an NP

are satisfied, then M is called an a-cosymplectic manifold [1,20], « is a real number. Equiva-
lently,

(Vup)V = afg(pU, V)G —n(V)pU],
Vué = a[U - p(U)e). (5)
In a-cosymplectic manifolds, it is well known [13,21] that
R(U,V)E =a?[p(U)V —n(V)U], R(U, &)V =a?[g(U, V)E —y(V)U],
R(U,§)¢ = a*[n(U)g — U], S(U,§) = —2na’y(U),
where § is the Ricci tensor.

Proposition 1. In a 3-dimensional a-cosymplectic manifold the Ricci tensor is defined [7] by

— (22T —(3a2+ 1
SU,V) = (4 +3) (U, V) = (362 + 2 ) n(y(v). ©)
Proposition 2. In a 3-dimensional a-cosymplectic manifold the following relation
{r = —2u <6a2 + r) (7)

holds.
Proof. Equation (6) implies
(2D u— (3241
QU = (a2 + 2) U~ (3% + 2) 7(U)E.
Differentiating (7), after some calculations we obtain

(VvQ)U = 3 (V) — (Vr)g(U)E] —a (3 + 1) [s(U, V)E + (L)Y — 29 (W)p(V)E]. ®)

Contracting V in the foregoing equation we have & = —2a(6a® + r). This completes the
proof. O
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2 Solitons on a-cosymplectic manifolds

Let us suppose that the a-cosymplectic manifold admits an 7-Einstein soliton (g, ¢). Then
(1) implies
(£28) (U, V) +2S(U, V) + (24 — 1)g(U, V) + uy(U)y(V) = 0. )

Now,
(£28) (U, V) =g (Vui, V) +g (U, VvE).
Using (5) in the above equation, we get

(£e8) (U, V) = 2a[g(U, V) = n(U)n(V)]. (10)

Using (10) in (9), we obtain

SU,V) = (5 —a—=2) g(U V) + (@ = w(Wn(V). (11)

Contracting the above equation, we infer

_ 2[2na 4 (2n+1)A + ]
r= P , (12)

which implies 7 is a constant. Then from (9), it reduces to an #-Ricci soliton. Hence we have
the following result.

Theorem 1. If an a-cosymplectic manifold admits an n-Einstein soliton (g,¢), then it is an
n-Einstein manifold and hence it reduces to an 17-Ricci soliton.

If we take & = 0 or 1, then from (12) we obtain r is a constant. Thus we get the next assertion.

Corollary 1. If a cosymplectic or Kenmotsu manifold admits an ij-Einstein soliton (g, ), then
it is an 17-Einstein manifold and hence it reduces to an #-Ricci soliton.

If an a-cosymplectic manifold admits an #-Yamabe soliton (g, ¢), then (2) implies

1
5 (Ee8) (U V) = (r = A)g(U V) — puy () (V). (13)
Using (10) in (13) we infer
w[g(U, V) =y (U)n(V)] = (r = A)g(U, V) = () (V).
Contracting the above equation, we get

2nu + p

— A
rEAT T

which is a constant. Hence we conclude the following result.

Theorem 2. If an x-cosymplectic manifold admits an 17-Yamabe soliton, then the scalar curva-
ture is constant.

If we take « = 0 or 1, then results are similar to the above theorem. Hence we have the next
assertion.
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Corollary 2. If a cosymplectic or Kenmotsu manifold admits an n-Yamabe soliton, then the
scalar curvature is constant.

If an a-cosymplectic manifold admits a proper Ricci-Yamabe soliton (g, {, A, 4, b), then equa-
tion (3) implies
(£§g)(u, V) +2aS(U,V)+ (2A —br)g(U, V) = 0.

Using (10) in the above equation, we get

S(U,v) = % {(gr—)t—(o U V) +anU)y(V)| . (14)

Hence we conclude the following result.

Theorem 3. A proper Ricci-Yamabe soliton on an a-cosymplectic manifold is an 1-Einstein
manifold.

If we take « = 0, then (14) implies

S(U,V) =

Q| =

<gr — A) g, v).
Contracting the above equation, we get
[b(2n+1) —2a]r =2A(2n + 1),
which implies the scalar curvature is constant. Hence we have the next assertion.

Corollary 3. If a cosymplectic manifold admits a proper Ricci-Yamabe soliton, then its scalar
curvature is constant.

Again, if & = 1, then (14) implies
1[/0b
SUY) = | (=2 =1) s V) +n(wn(v)

Thus we have the next result.

Corollary 4. A proper Ricci-Yamabe soliton on a Kenmotsu manifold is an 1-Einstein manifold.

3 Gradient Ricci-Yamabe solitons on 3-dimensional a-cosymplectic mani-
folds

We assume that an a-cosymplectic manifold admits a gradient Ricci-Yamabe soliton
(g,A,¢,a,b). Then from (4), we get

VuDf = <)\ — gr> u—aQu. (15)
Differentiating (15) along the vector field V, we get

VyVuDf = —g(Vr)u + <A - gr> Vvl — aVyQU. (16)
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Interchanging U and V in the above equation, we infer

VuVyDf = —g(llr)V + <A — gr> VuV —aVyQV. (17)
From (15), we get
b

With the help of (16) - (18), we obtain
R(U,V)Df = 2[(VA)U ~ (UNV] ~a[(VuQ) V ~ (VyQ) U]
Using (8) in the above equation, we get
R(U, V)Df :%(b —a)[(Vi)U — (un)V]

+au (302 + %) [p(V)U — 5 (U)V] (19)

Contracting (19), we obtain

S(V,Df) = (b - 3751) (Vr) + an <6rx2 + r) n(v)+ g(Cr)n(V). (20)
Using (7) in (20), gives
S(V,Df) = (b - %”) (V). 1)
Replacing U by Df in (6) and comparing with (21), we get
(@+2) (V) — (36 + 5) @ m(v) = 520~ 3a) (V). @)
Putting V' = ¢ in (22) and using (7), we infer that
a(Ef) = %(2&: — 3q) <6a2 + r) . (23)

Using (23) in (22), we get

« <rx2 + %) (Vf) — %(Zb — 3a) {(3042 + %) <6(x2 +r) n(v)+ rx(Vr)} =0.

If we take 2b — 3a = 0. Then the above equation implies
2, T _
w (a2 + 2) (Vf) = 0.
The above equation implies either & = 0 or r = —2a% or Vf = 0.

Case I. If « = 0, then it becomes a cosymplectic manifold.
Case II. 1f r = —2a2, then scalar curvature is a constant.

Caselll. If Vf = 0, then f is a constant.
Thus we conclude the following result.

Theorem 4. If a 3-dimensional x-cosymplectic manifold admits a gradient Ricci-Yamabe soli-
ton, then either it is a cosymplectic manifold or the scalar curvature is constant or the potential
function f is constant, provided 2b — 3a = 0.
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4 Example

Consider the 5-dimensional manifold M = {(xl, X2,Y1,Y2,2) € R® }, where (x1, X2, Y1, Y2, 2)
are the standard coordinates in R. Let ey, e, €3, e4 and e5 be the vector fields on M given by

0 0
ep=e"%—, ep=e%—, e3=e"%——, e4=2¢% e5= —5- = ¢
z

0x1 0x7 3 1 oyn’
Let ¢ be the Riemannian metric defined by
O/ ] ./ o .
g(ei,e]-) = l#] i,j=1,2,3,4,5.
1, i=j,

Let 7 be the 1-form on M defined by #(U) = g (U, e5) = g(U, ¢) forall U € x(M). Let ¢ be the
(1,1) tensor field on M defined by

per = —ey, Pex =e1, ¢Pez = —es, ey =e3, ¢Pes =0.
By applying the linearity of ¢ and g, we have
@) =1, ¢"U=—-Utn(W), n(el) =0,
g, ¢) =nU), glpU, V) =g(U, V) —n(U)y(V)
forall U,V € x(M). Then we have
le1, 2] = [e1, €3] = [e1, ea] = [e2, €3] = [e2, ea] = [e3,€4] =0,

[ell 65] = ueq, [62/ 65] = «ey, [63/ 65] = «es, [64/ 65] = neyq.

The Riemannian connection V of the metric g is given by

Vee1 = —aes, Ve =0, Vee3 =0, Vees =0, Ve, 65 = ey,
Ve,e1 =0, Ve,e0 = —aes, V,e3 =0, Ve,es =0, Ve, 65 = aey,
Ve,e1 =0, Veeo =0, Vee3 = —aes, Vees =0, Vese5 = ez,
Vee1 =0, Ve =0, Vee3 =0, Vees = —aes, Ve5 = ey,

Vese1 =0, Vesea =0, Vese3 =0, Veses =0, Veses = 0.
It can be easily verified that the manifold satisfies
Vug =alU—p(U)] and  (Vug)V =alg (9l V)¢ —n(V)gU]

for ¢ = e5. Hence the manifold is an a-cosymplectic manifold.
In [18] the authors obtained the expression of the curvature tensor and the Ricci tensor as
follows

R (e1,e2)ex = R(e1,e3)es = R(eq,eq) e = R(e1,65) €5 = —(xzel,
R (e1,e2)e1 = oczez,

R (e1,e3)e1 = R (e2,e3) e2 = R (es5,€2) €5 = a’e3,

R(ep,e3) e3 = R (e2,e4) e4 = R (3, €5) e5 = —a’es,

R (e3,e4) 4 = —06263,

R (e1,e5)ex = R(eq,e5)e1 = R(eg,e5)eq = R (e3,¢e5) e3 = a“es,
R (e1,e4)e1 = R(ep,e4)e0 = R(e3,e4) €3 = R(e5,e4) €5 = aey,
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and
S(e1,e1) = S(ep,e2) = S(e3,e3) = S (es,e4) = S(es,65) = —4n2.

Therefore,
r=25S(e1,e1)+S(ex,e2) + S(es e3) + S (e, eq) + S (e5,65) = —200a?,

which is a constant. From (11), we obtain
"

S(ej,e1) = S (e2,e2) = S(es, e3) = S (es,e4) = T a—A and S (e5,e5) = 5

A_
2 W

which implies A = —6a? — « and u = a. Therefore the data (g, A, 1) for A = —6a? — a and
u = a defines an #-Einstein soliton on 5-dimensional a-cosymplectic manifold and the scalar
curvature is constant.

Acknowledgment

The authors are thankful to the referee for his/her suggestions towards the improvement
of the paper.

References

[1] Akyol M.A. Conformal anti-invariant submersions from cosymplectic manifolds. Hacet. ]. Math. Stat. 2017, 46 (2),
177-192.

[2] Barbosa E., Ribeiro E.Jr. On conformal solutions of the Yamabe flow. Arch. Math. 2013, 101, 79-89. doi:
10.1007 /s00013-013-0533-0

[3] Blaga A.M. y-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl. 2015, 20, 1-13.

[4] Blaga A.M. n-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat 2016, 30 (2), 489-496.
doi:10.2298 /FIL1602489B

[5] Blaga A.M. On gradient y-Einstein solitons. Kragujevac J. Math. 2018, 42, 229-237.
d0i:10.5937 / KGJMATH1802229B

[6] Blaga A.M., PerktasS.Y., Acet B.E., Erdogan F.E. n-Ricci solitons in (e)-almost paracontact metric manifolds. Glas.
Mat. Ser. II1 2018, 53 (1), 205-220. doi:10.3336/gm.53.1.14

[7] Blaga AM., Dey C. The critical point equation on 3-dimensional a-cosymplectic manifolds. Kyungpook Math. J.
2020, 60, 177-183. doi:10.5666/KM].2020.60.1.177

[8] Blair D.E. Contact Manifolds in Riemannian Geometry. In: Morel ]J.-M., Teissier B. (Eds.) Lecture Notes in
Mathematics, 509. Springer-Verlag, Berlin, 1976.

[9] Catino G., Mazzieri L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66-94. d0i:10.1016/j.na.2015.10.021

[10] Catino G., Cremaschi L., Djadli Z., Mantegazza C., Mazzieri L. The Ricci-Bourguignon flow. Pacific ]J. Math.
2017, 287 (2), 337-370. doi:10.2140/PJM.2017.287.337

[11] Cho ]J.T., Kimura M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. (2) 2009, 61
(2), 205-212. d0i:10.2748 /tmj /1245849443

[12] De K., De U.C. -Ricci solitons on Kenmotsu 3-manifolds. An. Univ. Vest Timis. Ser. Mat.-Inform. 2018, 56 (1),
51-63. d0i:10.2478 / awutm-2018-0004

[13] Eisenhart L.P. Riemannian Geometry. Princeton University Press, Princeton, 1949.

[14] Guler S., Crasmareanu M. Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy.
Turkish J. Math. 2019, 43 (5), 2631-2641. d0i:10.3906 / mat-1902-38



Certain solitons on a-cosymplectic manifolds 547

[15]
(16]
(17]

(18]

[19]

[20]

(21]

[22]
(23]

[24]

[25]

[26]

[27]

Hamilton R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237-261. d0i:10.1090/conm /071/954419
Hamilton R.S. Lectures on geometric flows, 1989. (unpublished)

Haseeb A., De U.C. y-Ricci solitons in e-Kenmotsu manifolds. J. Geom. 2019, 10, article number 34. doi:
10.1007 /s00022-019-0490-2

Haseeb A., Prakasha D.G., Harish H. *-conformal n-Ricci solitons on a-cosymplectic manifolds. Int. J. Anal. Appl.
2021, 19 (2), 165-179.

Kar D., Majhi P., De U.C. y-Ricci solitons on 3-dimensional N (k)-contact metric manifolds. Acta Univ. Apulensis
2018, 54, 71-88. doi:10.17114/j.aua.2018.54.06

Kim T.W., Pak H.K. Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. 2005,
21 (4), 841-846. doi:10.1007 /s10114-004-0520-2

Ozturk H., Murathan C., Aktan N., Vanli A.T. Almost a-cosymplectic f-manifolds. An. Stiint. Univ. Al 1. Cuza
Tasi. Mat. (N.S.) 2014, 60 (1), 211-226. doi:10.2478/aicu-2013-0030

Sardar A., De U.C. y-Ricci solitons on para-Kenmotsu manifolds. Differ. Geom. Dyn. Syst. 2020, 22, 218-228.

Sarkar A., Biswas G.G. Ricci solitons on three dimensional generalized Sasakian space forms with quasi Sasakian
metric. Afr. Mat. 2020, 31 (3—4), 445-463. doi:10.1007 /s13370-019-00735-7

Sarkar A., Sardar A. 5-Ricci solitons on N(k)-Contact Metric Manifolds. Filomat 2021, 35 (11), 3879-3889.
doi:10.2298 /FIL2111879S

Wang Y. Ricci solitons on almost Co-Kihler Manifolds. Canad. Math. Bull. 2019, 62 (4), 912-922.
doi: 10.4153/50008439518000632

Wang Y. Ricci solitons on almost Kenmotsu 3-manifolds. Open Math. 2017, 15 (1), 1236-1243.
do0i:10.1515/math-2017-0103

Wang Y., Liu X. Ricci solitons on three-dimensional n-Einstein almost Kenmotsu manifolds. Taiwanese J. Math.
20158, 19 (1), 91-100. doi:10.11650/tjm.19.2015.4094

Received 14.02.2022
Revised 25.05.2024

Capaap A., Capkap A. Aeaki conimoHu Ha x-KocummnieKmuunux muoeosudax // KapmaTcexki MaTeM.
my6a. — 2024. — T.16, N2. — C. 539-547.

Y Wiji cTaTTi MM XapaKTepu3yeMO AesIKi COAITOHM, TaKi SIK 1-COAITOH AJHINTalHa, 1]-COAITOH
SIMabe Ta coaiToH Piuui-fIMabe Ha A-KOCMMITAeKTUIHMX MHOTOBMAAX. KpiM Toro, Mu xapakTepusye-
MO 3-BUMipHi #-KOCHMILAEKTUYHI MHOTOBMAM 3 I'paAieHTHMM coniToHOM Pivui-SImabe. Hacamkinens,
MU 6YAY€EMO TIPUKAAA.,

Kntouosi cnoea i ppasu: coAiToH AVHINITaNHA, §-COAITOH AVHINTAlHA, 7j-COAiITOH Piudi, rpaaies-
THWI #]-COAITOH Piudi, #7-coaiToH SIMabe, A-KOCHMIIAEKTVYHIIT MHOTOBYMA,



