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Conformal Ricci Soliton on 3-dimensional trans-Sasakian
manifolds with respect to SVK connection
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In this study, we adapt the Schouten-van Kampen (SVK) connection on trans-Sasakian 3-
manifolds. Then we consider semi-symmetric conditions on trans-Sasakian 3-manifolds with re-
spect to the SVK connection admitting conformal Ricci soliton.
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1 Introduction

In 1982, the concept of Ricci flow was introduced by R.S. Hamilton [12]. This concept was
developed to answer Thurston’s geometric conjecture, which says that each closed three mani-
fold admits a geometric decomposition. Also, R.S. Hamilton classiffied all compact manifolds
with positive curvature operator in dimension four [12]. The Ricci flow equation is given by

9g
i —-2S,
on a compact Riemannian manifold M with Riemannian metric g.

A self-similar soliton to the Ricci flow [12,28] is known a Ricci soliton [13], if it moves only
by a one parameter family of diffeomorphism and scaling. The Ricci soliton equation is given
by

£vg+2S =2Ag,

where £y is the Lie derivative, S is Ricci tensor, ¢ is a Riemannian metric, V is a vector field
and A is a scalar. The Ricci soliton is said to be shrinking if A is positive, steady if A is zero
and expanding if A is negative. Many studies on Ricci solitons have been reported by many
geometers in different structure (see [3,4,7,8, 14,29, 30]).

The concept of conformal Ricci flow was studied by A.E. Fischer [10]. The conformal Ricci
flow on M is defined by the equation

9g 8\ _
54—2(5‘1‘;) = —p8
and r(g) = —1, where p is a scalar non-dynamical field (time dependent scalar field), r(g) is

the scalar curvature of the manifold and # is the dimension of manifold [10].

YAK 514.7, 514.764.226
2020 Mathematics Subject Classification: 53C15, 53A30, 53C25.

© Akgiin M.A., Acet B.E., 2024



Conformal Ricci Soliton on 3-dimensional trans-Sasakian manifolds with respect to SVK connection 247

Also, the notion of conformal Ricci soliton equation is given by

£yg+2S = {2}»— <p+%>]g, (1)

where A is constant [1]. The equation is the generalization of the Ricci soliton equation and
it also satisfies the conformal Ricci flow equation. In [21], on a 3-dimensional trans-Sasakian
manifold conformal Ricci soliton was studied.

Moreover, the Schouten-van Kampen (SVK) connection defined as adapted to a linear con-
nection for studying non holonomic manifolds and it is one of the most natural connections
on a differentiable manifold [2, 15,22]. A.F. Solov’ev studied hyperdistributions in Rieman-
nian manifolds using the SVK connection [23,25-27]. Then Z. Olszak studied SVK connec-
tion to almost (para) contact metric structures [17]. In recent times, S.Y. Perktas and A. Yildiz
studied some symmetry conditions and some soliton types of quasi-Sasakian manifolds and
f-Kenmotsu manifolds with respect to SVK connection [19,20].

In this study, we consider some curvature conditions on a 3-dimensional trans-Sasakian
manifolds with respect to the SVK connection admitting conformal Ricci soliton and give an
example of a 3-dimensional trans-Sasakian manifold with respect to SVK connection.

2 Preliminaries

Let M be an almost contact metric manifold with an almost contact metric structure
(¢,¢,1,8), where ¢ is a (1,1) tensor field, ¢ is a vector field, # is a 1-form and g is the com-
patible Riemannian metric such that

P*(X) = =X+7(X)&, 7@ =1 nop=0, ¢Z=0, (2)
g(PX, pY) = g(X,Y) —n(X)n(Y), 3)
(X, pY) = —g(¢X,Y), (4)

8(X,¢) = n(X)

for all vector fields X, Y € x(M).
An almost contact metric structure (¢, ¢, 77, g) on M is called a trans-Sasakian structure [18]
if (M x R, ], G) belongs to the class Wy [11], where ] is the almost complex structure on M x R

defined by | <X,f%) = <¢X — f¢, 17(X)d—dt> for smooth functions f on M x R.
It can be expressed [5] by the condition

(Vx9)Y = a(8(X, V)¢ —n(Y)X) + B(8(9X, V)& —1(Y)$X) )

for some smooth functions a, 3 on M and we say that the trans-Sasakian structure is of

type («, ).
From the above expression, we have

Vi = —apX + B(X —(X)Z), (6)

(Vxn)Y = —ag(¢X,Y) + Bg(¢X, ¢Y). )
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For a 3-dimensional trans-Sasakian manifold the following relations hold [9]:
20+ ¢a =0,
S(X,Y) = (5+EB— (a2 = ) )2(X,Y) = (5+EB—3(a> = ) ) n(X)y(Y)
— (YB+ (¢Y)a)n(X) — (XB+ (¢X)a) 5 (Y),
5(X,8) = (2(e® — B2) — 8B) X — XB — (¢pX)u,

where S denotes the Ricci tensor of type (0,2), r is the scalar curvature of the manifold M.
For constant «, 8, the following relations hold [9]:

S(X,Y) = (5 — (a2 = B2))2(X,¥) = (5= 3(e® = B) )y (X)n(Y),

5(X,8) =2 (a2 = B) n(X),
R(X,Y)E = (* = B7) [n(V)X — n(X)Y],
R(G, X)Y = (o — B7) [8(X, Y)E —n(V)X], (8)
1(R(X,Y)Z) = (o = B7) [8(Y, Z)y(X) — (X, Z)n(Y)].

From (5) it follows that if « and p are constants, then the manifold is either a-Sasakian or
B-Kenmotsu or cosymplectic, respectively.
Also, we have two naturally defined distributions in the tangent bundle TM of M as follows

H = kery, V = span¢,

which implies TM = H&V, HNV = 0and H L V. This decomposition allows one to
define the Schouten-van Kampen connection V over an almost contact metric structure. The
Schouten-van Kampen connection V on an almost contact metric manifold with respect to
Levi-Civita connection V is defined [24] by

VxY = VxY —1(Y)Vx¢ + (Vxn)(Y)E. )

Moreover

(£eg) (X,Y) = (Veg) (X, Y) —ag(¢pX,Y) +2Bg(X,Y) =287 (X)n(Y) — ag(¢X,Y)
= 2Bg(X,Y) —2Bn(X)n(Y).

Let M be a 3-dimensional trans-Sasakian manifold with constant « and B with respect to
SVK connection. Then using (6) and (7) in (9), we get

VxY = VxY +a{n(Y)¢X — g(¢X,Y)¢} + B{g(X,Y)¢ — n(Y)X}. (10)

Let R and R be the curvature tensors of the Levi-Civita connection V and SVK connection
R are given by

R(X, Y) = [Vx, Vy] — V[X,y}, R(X, Y) = [er vY} - ?[X,Y]'
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Using (10), we obtain

5 Y, Z)pX — g(¢X, Z)pY + n(X)n(Z)Y
R(X,Y)Z = R(X,Y z+a2{ 8(¢
(X X)Z=RX.Y) I N2)X — (¥, Z(X)E + (X, 2n(0E |
+B{g(Y, 2)X —g(X, Z)Y}.
We will also consider the Riemannian curvature tensors R, R, the Ricci tensors S, S, the
Ricci operators Q, Q and the scalar curvatures %, T of the connections V and V are given by

i 8(PY, W)g(9X, Z) — g(¢X, W)g(¢Y, Z)
R(X,Y,W,Z) = R(X,Y,W,Z) +a* +g(Y, Z)n(X)n(W) = g(X, Z)y(Y)n(W)

—8(Y, W)n(X)n(Z) + g(X, W)n(Y)n(Z)
+ B {g(Y, W)g(X,Z2) — g(X,W)g(Y, Z)},
S(X,Y) = S(X,Y) +2B°¢(X,Y) = 2a%n(X)5(Y), (12)
OX = QX + 282X — 2a%y(X)E,
%=1 —2a%+ 682

In a 3-dimensional trans-Sasakian manifold M endowed with respect to the SVK connection
bearing a conformal Ricci soliton, we can write

ng+2§—{22\—<p+§> }g:O. (13)
From (9) and (13), since Vg = 0 and T # 0, we have
Evg(X,Y) = g(VxV,Y) +8(X, VyV) = (£vg)(X,Y),

that is

g(VxV,Y)+g(X,VyV) +25(X,Y) — {2}\ — <p + %) }g(X,Y) =0. (14)
Putting V' = ¢ in (14), we obtain

¢(Vx&Y) +g(X,Vy&) +25(X,Y) — {2)\ — <p + %) }g(X, Y) =0. (15)

Now using (6) with (4) in (15), we get

23X, Y) - 2p(X)y() + 2505, 1) — {21 (p+ 3 ) Jsx 1 =0,
which yields
s00v) = {a- 5 (p+3) ~ B ) + pr00m. (16)

Thus M is an #-Einstein manifold with respect to SVK connection.
Also using (12) in (16), we have

S0V = {25 (4 3) — B 28 feCom) + (B 28) 00, @)

Hence M is an 7-Einstein manifold with respect to the Levi-Civita connection. Thus we
have the following assertion.
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Theorem 1. Let M be a 3-dimensional trans-Sasakian manifold admitting a conformal Ricci
soliton (g, &, A) with respect to SVK connection. Then M is an nj-Einstein manifold both with
respect to the SVK connection and Levi-Civita connection.

Putting Y = ¢ and using (12) in (16), we get

~ 1 2
s0x,8) = {23 (r+3) freo. ()
So we discuss the following conditions:

i) assume thatp > % and therefore the equation (18) shows that A > 0, thus the Ricci soliton
(g,¢, M) is expanding;

ii) assume that p < % and therefore the equation (18) reveals that A < 0, thus the Ricci

soliton (g, ¢, A) is shrinking;

iii) assume that p = % and therefore the equation (18) allows that A = 0, thus the Ricci
soliton (g, ¢, A) is steady.

Thus we state our results in the form of theorem as follows.

Theorem 2. A conformal Ricci soliton (g,{,A) on a 3-dimensional trans-Sasakian manifold
with respect to SVK connection is said to be expanding, shrinking and steady if p > %, p < %
and p = %, respectively.

3 Conformal Ricci soliton on a 3-dimensional trans-Sasakian manifold
satisfying R(&, X).B = 0
The C-Bochner curvature tensor B in M is defined [16] (see also [6]) by

(83X, Z2)QY —g(Y,Z2)QX
-S(Y,2)X+S(X,Z2)Y
_ i 1| 180X, 2)Q9Y —g(9Y, Z) QX
BX.VZ=RX,Y)Z+21 -S(¢Y,2)pX +5(¢X, Z)¢
+25(0X, Y)9Z 4 28(¢X, Y) O
+n(V)n(Z)QX —n(X)y(Z )Q
—1(Y)S(X, 2)¢ +n(X)S(Y, Z)¢ )
z

_%{ S(¢X, Z)pY — g(¢pY, Z)pX }

6 +2¢(pX, Y)pZ

4D { n(Y)g(X,Z2)¢ —n(Y)n(Z)X }
6 | +1(X)n(2)Y —n(X)g(Y,Z)¢

-2 s 2y -5, 2%},

where D = =
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Using (11) with (12) in the above equation, we get

B(X,Y)Z =R(X,Y)Z + &> { +1(X)y

(
(
+B{g(Y,2)X - g(x,2)Y}

S(X,Z)Y —S(Y,Z)X )
+8(X,2)QY —¢(Y,Z2)QX
+8(¢X, Z)QpY — g(¢Y, Z)QpX
+S(¢pX, Z)pY — S(¢Y, Z)pX
=S(X, Z)n(Y)¢ +S(Y, Z)n(X)¢
+25(¢X, Y)PZ +2g(pX, Y)QopZ
1 +n(Y)n(Z2)QX —n(X)n(Z)QY
6 +482¢(X, Z)Y — 4B%¢(Y, Z)X (19)
+4B23(9X, Z)pY — 4B%g(9Y, Z)pX
—2B2¢(X, Z)n(Y)& +2p%g(Y, Z)n(X)&
+8B%8(¢X, Y)pZ
+2B2n(Y)n(Z)X — 2% (
+2u g(Y Z)n(X)& — 2a%g(
+202(Y)n(Z)X — 2025 (

D+2 [ g(¢X,Z)pY —g(pY,Z)
6 { +2¢(¢X, Y)¢Z

B{ s(X, Z)n(Y)¢ — n()()X}
6 | +n(X)n(2)Y —g(Y,Z)n(X)¢
D

Pt 2y (v, 2)x).

—_~ N N TN

X)m(2)Y
X, Z)n(Y)¢
X)n(

¢

n
(Z2)Y
“

V

Taking Z = ¢ in (19), we get

B(X, V)G = {%(A—% (r+3)) +§}[vy<x>¥—n<¥>x], 0

which gives

isn) = {303 (+3)) + £} [ S5 |

Now, we assume that the condition R(¢, X ).B = 0 is satisfied, then we get
R(¢ X)B(Y,Z)W — B( ((_;",X)Y,Z) W — B’(Y,R((;",X)Z) W —B(Y,Z)R(E, X)W =0. (21)
Using (8) in (21), we obtain

1 (B(Y,Z)W,X) —g(B(Y,Z)W, X){ +g(X,Y)B(Z, Z)W — (Y)B(X, Z)W
+8(X, Z)B(Y,5)W—n(Z)B(Y, X)W+ g(X, W)B(Y, Z)g—(W)B(Y, Z)X=0.
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By taking inner product with ¢ and using (2), we have
1 (B(Y,Z)W)n(X) — g(B(Y,Z)W, X) & +g(X,Y)y(B(E, Z)W) — 1
+8(X, Z)n(B(Y,5)W) —n(Z
+8(X, W)y (B(Y,Z)Z) — (W) (B
By using (20) in (22), we arrive at

{% <?» - % <P + %) ) + %} { :gg(zfzvg\)gg(ng) ] —g(B(Y,Z)W,X) = 0. (23)

Now using (19) in (23), we get

1 1 2 4 g(Y,W)g(X,Z)
{E(A‘ :(r+3)) *6} Wi | s
g(¢Z, W)g(9Y, X) — g(¢Y, W)g(¢Z, X)
+8(X, Z)n(Y)n(W) — g(X,Y)n(Z)n(W)
—8(Z,W)n(Y)n(X) + g(Y, W)n(Z)n(X)
— B{(Z,W)g(X,Y) — g(Y,W)g(X,Z)}
S(X,Z)g(Y,W) —S(Z,W)g(Y, X)
+5(Y,W)g(X,Z) — S(Y, X)g(Z, W)
+5(¢Z, X)g(pY, W) — S(¢pZ, W)g(9Y, X)
($Z, W) + S(¢pY, W)g(¢pZ, X)

Z)
)
—S(¢Y, X)g )
+25(¢Y, Z)g(eW, X) + 2S(¢pW, X)g(¢pY, Z)
+S(Y, X)n(Z)n(W) = S(Y, W)n(Z)n(X)
1 +S(Z,W)n(Y)n(X) — S(Z, X)n(Y)n(W)
6 +482¢(Y,W)g(X,Z) — 4p*g(Z,W)g(Y, X)
—202g (Y, W)5(X)y ( ) +2a2g(X, Y )y (Z)n(W)
+2028(Z, W)n(X)n(Y) — 202g(X, Z)n (Y)n (W)
+4B22(¢Y, W)g(¢Z, X) — 4B*¢(¢pZ, W)g(eY, X)
+4B22(pY, Z)g (W, X)

+2B%(Y, X)n(Z)n(W) —2828(Y, W)n(Z)y(X)
+2B%8(Z, W)n(Y)n(X) —2p%¢(Z, X)n(Y)n (W)

L D+2 { 8(pY, W)g(9Z, X) —g(pZ, W)g(9Y, X) }
6 +28(¢Y, Z)g(9W, X)

_B{ g, W)n(Z)n(X) —n(Z)n(W)g(X,Y) }
6 L =W, Z)n(X)n(Y) +n(YV)n(Z2)8(X, Z)
D

+T{g (Y, W)g(Z,X) —g(Z,W)g(Y,X)} =0.

Taking Y = X = ¢; and summing over i = 1,2, 3, where ¢; is an orthonormal basis of T, M
we obtain
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Taking Z = W = ¢ in the above equation with using (17), we arrive at

A—%(p—l—%) :2<0c2—/32).

Since a2 7+ [32, in this case we have the following.

i) Assume that a?> > B2, then (a — B)(a + B) > 0, which implies « greater than . So, A > 0
and Ricci soliton is shrinking.

ii) Assume that a?> < g% and p + % > 4 (a> — B?), then (x — B)(ax + B) < 0, which gives a
less than —B. So, A > 0 and Ricci soliton is shrinking.

iii) Assume that a> < BZand p+ 3 < 4 (a? — p?), then (« — B)(x + B) < 0, which gives a
less than —pB. So, A < 0 and Ricci soliton is expanding.

Theorem 3. A 3-dimensional trans-Sasakian manifold with respect to SVK connection satisties
R(¢, X).B = 0 and admits conformal Ricci soliton, then

i) for a > B, the Ricci soliton is shrinking;
i) fora < —B and p+ 3 > 4 (a? — p?), the Ricci soliton becomes shrinking;

iii) fora < —B and p+ % < 4 (a® — p2), the Ricci soliton becomes expanding.

4 Conformal Ricci soliton on a 3-dimensional trans-Sasakian manifold
with respect to SVK connection satisfying B(&, X).S = 0
The condition B(¢, X).S = 0 implies that
S(B(é,X)Y,Z) +S(Y,B(§,X)Z) = 0. (24)
Using (17) in (24), we get

_1 2 B B
{ A_EEP;[;Z?,) } [ fg((BééBé)YX)ZZ)) }+{2{X2+5} [ n(Bgf,X)Y)n(z)) ] o

By using (20) in the above equation, we obtain

_1 2
(e eb M 23 ] o e ety | =

Taking Y = X = ¢; and summing over i = 1,2, 3, where ¢; is an orthonormal basis of T,M and
taking condition #(Z) # 0, we obtain

{2a2+;3}{%<2x—%<p+§>>+%} —0.

Thus we get the following result.

Theorem 4. A 3-dimensional trans-Sasakian manifold with respect to SVK connection satisties
B(¢, X).S = 0 and admits conformal Ricci soliton with 2a® # B, then

i) ifp = %, then A = 0 and Ricci soliton is steady;
i) if p < 2, then A < 0 and Ricci soliton is expanding;

iii) ifp > %, then A > 0 and Ricci soliton is shrinking.
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5 Conformal Ricci soliton on a 3-dimensional trans-Sasakian manifold
with respect to SVK connection satisfying S(&, X).R =0

If we consider the condition S(&, X).R = 0, then we have

(S(& X).R) (U, V)W =5 (& R(U, V)W) X — §(X, R(U, V)W) + VR(X, V)W
—8(8, UR(E, V)W + 32 VIR(U X)W < VRUOW  (25)
+S(&W)R(U, V)X — S(X,W)R(U, V)¢.

By using (16) in (25), we have

(-2 (p+2) )| 2R

JR(X, V)W
2 3 +n(V)R(U, X)W + 5 (W)R(U V) ]

1 2 VIW)¢ +g(X, U)R(E, V)W

G ) RO i i ¢3w+g< % WAL,V

_ﬁ" 1(X)n (R(U, VIW)E +1(X)y (U) (924 }

L +n(X)n(V)R(U, )W +5(X)n(W)R(U,

By taking inner product with ¢ and using (11), we get

[ g(X,R(U, V)W)
1 ’ 8oV, W)g(pU, X) — g(¢U, W)g(9V, X)

{r-3(r+3) +oc2(+g<x,v>n<u>n<v>g(X,u>n<X>n<w>) -0

—g(V,W)n(U)n(X) + U, W)n(V)n(X)
+B%(g(V, W)g(X, U) — g(U,W)g(X,V))

Taking X = U = ¢; and summing over i = 1,2, 3, where ¢; is an orthonormal basis of T, M,

we find
S(V, W)
{A— L (p+ 2) } [ a2 (g(V, W) — 4 (V) (W) ] 0.
+28°3(V, W)

Taking V = W = ¢ in the above equation, we arrive at

(-2 o-trD) ) -

which gives either A = % (p+ §) or A =a?+ 3 (P + §)-
So we can give the following result.

Theorem 5. A 3-dimensional trans-Sasakian manifold with respect to SVK connection satisties
S(&,X).R = 0 and admits conformal Ricci soliton, then
Case I: A depends only on p

i) ifp = —3%, then A = 0 and Ricci soliton is steady;
i) ifp > —%, then A > 0 and Ricci soliton is shrinking;
iii) ifp < —%, then A < 0 and Ricci soliton is expanding;
Case II: A depends on both p and a
i) ifp = —2 — 202, then A = 0 and Ricci soliton is steady;
i) if p > —% — 2a?, then A > 0 and Ricci soliton is shrinking;
2
3

iii) if p < —% — 242, then A < 0 and Ricci soliton is expanding.
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6 Conformal Ricci soliton on a 3-dimensional trans-Sasakian manifold
with respect to SVK connection satisfying B.¢p = 0

Now, we examine the curvature condition B.¢ = 0 on a 3-dimensional trans-Sasakian
manifold with respect to SVK connection admitting a conformal Ricci soliton.
We know that if B.¢ = 0, then we have

(B.p)(X,Y)Z =0,

which gives

B(X,Y)pZ — ¢pB(X,Y)Z = 0. (26)
If we take Z = ¢ in (26), we find
$B(X,Y)E =0. (27)
Using (20) in (27), we obtain
1 1 2 4
{E(A_E <P+§> > +g}[’7(x)¢Y—’7(Y)‘PX} =0. (28)

Replacing X by ¢X in (28) and using (2), we get

O I

Taking Y = ¢ and replacing X by ¢X in (29), we have

30 o

Finally, taking inner product with W, we obtain

{%(A—% <P+§>>+%}8(4)X/W) =0.
L0-3(6+3) ot

So we can state the following result.

It follows that

Theorem 6. A 3-dimensional trans-Sasakian manifold with respect to SVK connection satisties
B .¢ = 0 and admits conformal Ricci soliton, then

i) ifp = %, then A = 0 and Ricci soliton is steady;
ii) ifp < %, then A < 0 and Ricci soliton is expanding;

iii) ifp > %, then A > 0 and Ricci soliton is shrinking.
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Example 1. We consider a 3-dimensional manifold = {(xl,xz, x3) € R3: X3 # 0}, where
(x1, X2, x3) are standard coordinates in R3. Let {wy,w,, w3} be a linearly independent global

frame on M defined by
d d d d d
— —ws3 - - — —ws3 o _ -
w1 ¢ <8w1 + 8w2> ! w2 ¢ < 8w1 + aw2> ! ws aa)gl
Let g be the Riemannian metric defined by
g(wy, wr) = g(wz, W) = g(ws, ws)
g(wll wZ) - g(wll CU3) = g(wZI CU3) -
If ny is the 1-form defined by §(W) = g(W, w3) and if ¢ is the (
p(wr) =wy, Pplwz) = —wi, ¢(ws) = 0.
Also, we have
n(ws) =1,
8(@Y,¢V) =g(Y, V) +5(Y)n(V).

Now, we get
[wy,wp] =0, [wi,w3] =0, [wy,ws]=0.
From Koszul’s formula, we obtain
Vw1 = —ws3, Ve,w; =0, Vw1 =0,
lewz = 0, szwz = —wsj, Vw3w2 = 0, (30)
lecU3 = w1, szwg = Wy, Vw3w3 =0.

In view of the above eqations, (¢, ¢, 1,g) satisfy (2) and (3) witha = 0 and p = 1. So, M is
a trans-Sasakian manifold [31]. In view of (30), we find

R(Wl,(dz)(,dg = 0’ R((’UZ’ w3)w3 = —wy, R(wlr (,U3>CU3 = —wq,
R(wi, wr)wr = —w1, R(wy, w3)wy = ws, R(w1, w3)wr =0,
R(wq, w3)wy = ws.

R(wy, wp)wy = wsy,  R(wa,wz)wy =0,
If we consider SVK connection to this equation from (10) with (30), we obtain
?wlwl - (,B - 1)(")3/ ?wzwl = aws, ?w3w1 = 0/
Vi, wy = —aws, Vi,wr = (B~ 1)ws, Vw2 =0, (31)
Vows = (1—B)ws +awy, Ve,ws=(1-pB)wy+awi, Ve,ws=0.

We know that M is a trans-Sasakian manifold with respect to SVK connection. In view of

(31), we get
R (wy,wp) w3 =0, R(wy, w3)ws = (B> —a? —1) wy,
R(wy,wp) wy = (% — rx —1) wy, R(wy, w3)wy = (1+a? — p?) ws,
R (wl,wz w1 = (1 + lX — 52) wy, R (wz, a)3) w1 = 0,

13 (w1, w3) w1 = ws,
R (w1, w3) wp =0,
R(wy,ws) ws = (B> —a® — 1) wy.

From the above equation, we arrive at
2(82—1), S(wywy)=2(B—1), S(ws ws)=2(p>—a*-1).

§(w1,w1) =
B+2+5+ % and B = —24?, then M admits a conformal

Finally, in view of (1), if A = 2% —
Ricci soliton with respect to SVK connection.
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Y 1poMy AOCAiIAXEeHHI MM aAanTyeMo 3B s3HicTh CxayTeH-BaH Kamnena (SVK) Ao TpuBumipHmX
TpaHc-CacaksIHOBUX MHOTOBMAIB. TakoX, MM PO3rAsSIAAEMO HaMiBCUMETPUYHI YMOBYM Ha TPUBUMIp-
Hux TpaHc-CacaksTHOBIMX MHOTOBMAaX BiaHOCHO SVK 3B'SI3HOCTI, IO AOIycKae KOH(POPMHMIL COAi-
TOH Piguyi.

Kntouosi cnoea i ppasu: coaiTon Piuui, koHdOpMHNMI coniToH Piudi, 38”sa3HicTh CXayTeH-BaH Kam-
TeHa, TPUBMMIpHIIA Tpch-CacaKﬂHOBMﬁ MHOTOBMA.



