Carpathian Math. Publ. 2024, **16** (1), 320–327 doi:10.15330/cmp.16.1.320-327

Expanding the function $ln(1+e^x)$ into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind

Wen-Hui Li¹, Dongkyu Lim^{2,⊠}, Feng Qi^{3,4,5}

In the paper, using several approaches, the authors expand the composite function $\ln(1 + e^x)$ into power series around x = 0, whose coefficients are expressed in terms of the Dirichlet eta function $\eta(1-n)$ and the Stirling numbers of the second kind S(n,k).

Key words and phrases: Dirichlet eta function, composite function, power series expansion, Stirling number of the second kind, Riemann zeta function, partial Bell polynomial.

E-mail: wen.hui.li@foxmail.com(Wen-Hui Li), dklim@anu.ac.kr(Dongkyu Lim), qifeng618@gmail.com(Feng Qi)

1 Preliminaries

For fluently and smoothly proceeding, we prepare some notions and notations.

The Stirling numbers of the second kind S(n,k) for $n \ge k \ge 0$ can be analytically generated [18, pp. 131–132] by

$$\frac{(e^{x}-1)^{k}}{k!} = \sum_{n=k}^{\infty} S(n,k) \frac{x^{n}}{n!}.$$
 (1)

The equation (1) can be rearranged as power series expansions

$$\left(\frac{\mathrm{e}^x - 1}{x}\right)^k = \sum_{n=0}^{\infty} \frac{S(n+k,k)}{\binom{n+k}{k}} \frac{x^n}{n!}, \quad k \ge 0.$$

Let $\zeta(z)$ denotes the Riemann zeta function (see [20, pp. 57–61, Section 3.5]). In [1, p. 807, Entries 23.2.14 and 23.2.15], the identity

$$\zeta(1-2n) = -\frac{B_{2n}}{2n}, \quad n \in \mathbb{N},\tag{2}$$

УДК 517.58, 511.33

2020 Mathematics Subject Classification: 41A58, 11B73, 11M06, 11M41.

The second and corresponding author, Dr. Lim, was partially supported by the National Research Foundation of Korea under Grant NRF-2021R1C1C1010902, Republic of Korea.

¹ School of Economics, Henan Kaifeng College of Science Technology and Communication, Kaifeng 475001, Henan, China

² Department of Mathematics Education, Andong National University, Andong 36729, Republic of Korea

³ School of Mathematics and Physics, Hulunbuir University, Inner Mongolia, China

⁴ Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China

⁵ Independent researcher, Dallas, TX 75252-8024, USA

[☐] Corresponding author

is collected, where B_n denotes the Bernoulli numbers which can be generated by

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!} = 1 - \frac{z}{2} + \sum_{n=1}^{\infty} B_{2n} \frac{z^{2n}}{(2n)!}, \quad |z| < 2\pi.$$

For recent results on the Bernoulli numbers B_n , please refer to the papers [4,6,13,14,19]. The Dirichlet eta function $\eta(s)$ and the Riemann zeta function $\zeta(s)$ have the relation

$$\eta(s) = (1 - 2^{1-s})\zeta(s). \tag{3}$$

For new results on the Dirichlet eta function $\eta(s)$, please read the papers [9, 10, 12, 16, 17].

The Faà di Bruno formula (see [3, Theorem 11.4] and [5, p. 139, Theorem C]) can be described in terms of partial Bell polynomials $B_{n,k}(x_1, x_2, ..., x_{n-k+1})$ for $n \ge k \ge 0$ by

$$\frac{d^n}{d x^n} f \circ h(x) = \sum_{k=0}^n f^{(k)}(h(x)) B_{n,k}(h'(x), h''(x), \dots, h^{(n-k+1)}(x)). \tag{4}$$

The partial Bell polynomials $B_{n,k}(x_1, x_2, \dots, x_{n-k+1})$ for $n \ge k \ge 0$ satisfy the identities

$$B_{n,k}(abx_1, ab^2x_2, \dots, ab^{n-k+1}x_{n-k+1}) = a^k b^n B_{n,k}(x_1, x_2, \dots, x_{n-k+1})$$
(5)

and

$$B_{n,k}(\underbrace{1,1,\ldots,1}_{n-k+1 \text{ times}}) = S(n,k).$$
(6)

Last two identities can be found in [3, p. 412] and [5, p. 135].

2 Motivations

In 2013, at the site https://math.stackexchange.com/q/307274, G. Helms, whose profile is at the site https://stackexchange.com/users/314145, posed the conjecture

$$t(x) = \ln(1 + e^x) = \sum_{n=0}^{\infty} \frac{\eta(1-n)}{n!} x^n.$$
 (7)

The motivation of this conjecture can be seen from the file at https://go.helms-net.de/math/musings/UncompletingGamma.pdf. There have been two answers to the conjecture (7) at the web sites https://math.stackexchange.com/a/308100 and https://math.stackexchange.com/a/308319.

In this paper, we will provide several simple and alternative proofs of the above conjecture (7).

3 Power series expansions

We now start out to provide several proofs of the above conjecture (7).

3.1 First proof

Here, we recite the proof at the site https://math.stackexchange.com/a/308319. In this proof, the convergent radius of the power series expansion (7) is not discussed.

Theorem 1. The power series expansion

$$\ln(1 + e^{x}) = \sum_{n=0}^{\infty} \eta(1 - n) \frac{x^{n}}{n!}$$
(8)

is valid.

Proof. This proof is extracted from https://math.stackexchange.com/a/308319.

The Dirichlet eta function $\eta(s)$ is given by $\eta(s) = \sum_{n=1}^{\infty} (-1)^{n-1} n^{-s}$, but this converges only for s with positive real part. A globally convergent series for $\eta(s)$ can be derived from the relation

$$\eta(s) = \left(1 - 2^{1-s}\right)\zeta(s) = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{(k+1)^s}.$$
 (9)

Using the expansion (9), we write $\eta(1-k)$ as

$$\eta(1-k) = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (j+1)^{k-1}.$$

The power series expansion (8) is then

$$\sum_{k=0}^{\infty} \frac{\eta(1-k)x^k}{k!} = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{j=0}^{n} (-1)^j \binom{n}{j} (j+1)^{k-1} \frac{x^k}{k!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{j=0}^{n} \frac{(-1)^j}{j+1} \binom{n}{j} \sum_{k=0}^{\infty} \frac{\left[x(j+1)\right]^k}{k!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{j=0}^{n} \frac{(-1)^j}{j+1} \binom{n}{j} (e^x)^{j+1} = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \int_{-e^x}^{0} dy \sum_{j=0}^{n} \binom{n}{j} y^j$$

$$= \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \int_{-e^x}^{0} (1+y)^n dy = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \frac{(1+y)^{n+1}}{n+1} \Big|_{-e^x}^{0}$$

$$= \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \frac{1 - (1-e^x)^{n+1}}{n+1} = f\left(\frac{1}{2}\right) - f\left(\frac{1-e^x}{2}\right),$$

where

$$f(z) = \sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1} = -\ln(1-z).$$

Putting this together, we find

$$\sum_{k=0}^{\infty} \frac{\eta(1-k)x^k}{k!} = -\ln\left(\frac{1}{2}\right) + \ln\left(\frac{1+e^x}{2}\right) = \ln(1+e^x).$$

Thus, the power series expansion (8) is proved.

3.2 Second proof

In this subsection, we provide a simple, direct, and elementary proof of the conjecture (7) with a convergent range of the power series expansion (7).

Theorem 2. For x < 0, we have

$$\ln(1 + e^x) = \sum_{n=0}^{\infty} \eta(1 - n) \frac{x^n}{n!}.$$
 (10)

Proof. It is well known that

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \quad |x| < 1.$$

Hence, it follows that

$$t(x) = \ln(1 + e^x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{e^{nx}}{n}, \quad |e^x| < 1.$$

From $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for $|x| < \infty$, it follows that

$$t(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!}, \quad x < 0.$$

Interchanging the order of summations leads to

$$t(x) = \sum_{k=0}^{\infty} \left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{1-k}} \right] \frac{x^k}{k!} = \sum_{k=0}^{\infty} \eta (1-k) \frac{x^k}{k!}, \quad x < 0.$$

The series expansion (10) is proved.

3.3 Third proof

In this subsection, we provide a proof of the conjecture (7) with a convergent radius of the power series expansion (7).

Theorem 3. For $|x| < \pi$, we have

$$\ln\left(1 + e^{x}\right) = \ln 2 + \frac{x}{2} + \sum_{n=1}^{\infty} \eta(1 - 2n) \frac{x^{2n}}{(2n)!}.$$
 (11)

Proof. Since the Euler polynomials $E_n(x)$ has the generating function

$$\frac{2e^{xy}}{e^y+1}=\sum_{n=0}^\infty E_n(x)\frac{y^n}{n!},\quad |y|<\pi,$$

we easily see that

$$t'(x) = \left[\ln\left(1 + e^x\right)\right]' = 1 - \frac{1}{1 + e^x} = \frac{1}{2} - \frac{1}{2}\sum_{n=1}^{\infty} \frac{E_n(0)}{n!}x^n, \quad |x| < \pi.$$

Integrating on both sides with respect to $x \in (0, y) \subseteq (-\pi, \pi)$ yields

$$t(y) - t(0) = \frac{y}{2} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{E_n(0)}{(n+1)!} y^{n+1}, \quad |y| < \pi.$$

Since

$$E_n(0) = -2\left(2^{n+1}-1\right)\frac{B_{n+1}}{n+1}, \quad n \ge 1,$$

which can be found in [1, p. 805], we acquire

$$t(x) = \ln 2 + \frac{x}{2} + \sum_{n=1}^{\infty} \left(2^{n+1} - 1 \right) \frac{B_{n+1}}{n+1} \frac{x^{n+1}}{(n+1)!}, \quad |x| < \pi.$$

Since $B_{2n+1} = 0$ for $n \ge 1$, we deduce

$$t(x) = \ln 2 + \frac{x}{2} + \sum_{n=1}^{\infty} \left(2^{2n} - 1\right) \frac{B_{2n}}{2n} \frac{x^{2n}}{(2n)!}, \quad |x| < \pi.$$

Making use of the equality (2) and the relation (3), we have

$$\frac{B_{2n}}{2n} = -\zeta(1-2n) = \frac{\eta(1-2n)}{2^{2n}-1}, \quad n \ge 1.$$

Consequently, we derive the series expansion (11).

Remark 1. Since

$$\eta(1) = \ln 2, \quad \eta(0) = \frac{1}{2}, \quad \eta(-2n) = 0$$

for $n \ge 1$, the series expansion (11) is equivalent to the conjecture (7).

3.4 Forth proof

By virtue of the Faà di Bruno formula (4) and the identities (5) and (6), we now provide an alternative and direct proof of the conjecture (7).

Theorem 4. For $|x| < \pi$, we have

$$\ln\left(1 + e^{x}\right) = \ln 2 + \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} (-1)^{k-1} \frac{(k-1)!}{2^{k}} S(n,k)\right] \frac{x^{n}}{n!}.$$
 (12)

Proof. For $n \ge 0$, by virtue of the Faà di Bruno formula (4) and the identities (5) and (6), we obtain

$$t^{(n)}(x) = \sum_{k=0}^{n} (\ln u)^{(k)} B_{n,k} \left(u'(x), u''(x), \dots, u^{(n-k+1)}(x) \right)$$

$$= (\ln u) B_{n,0} \left(e^{x}, e^{x}, \dots, e^{x} \right) + \sum_{k=1}^{n} (\ln u)^{(k)} B_{n,k} \left(e^{x}, e^{x}, \dots, e^{x} \right)$$

$$= \begin{cases} \ln u, & n = 0, \\ \sum_{k=1}^{n} (\ln u)^{(k)} B_{n,k} \left(e^{x}, e^{x}, \dots, e^{x} \right), & n > 0, \end{cases}$$

$$= \begin{cases} \ln (1 + e^{x}), & n = 0, \\ \sum_{k=1}^{n} \frac{(-1)^{k-1} (k-1)!}{(1 + e^{x})^{k}} e^{kx} B_{n,k} (1, 1, \dots, 1), & n > 0, \end{cases}$$

$$= \begin{cases} \ln (1 + e^{x}), & n = 0, \\ \sum_{k=1}^{n} \frac{(-1)^{k-1} (k-1)!}{(1 + e^{x})^{k}} e^{kx} S(n, k), & n > 0, \end{cases}$$

$$\rightarrow \begin{cases} \ln 2, & n = 0, \\ \sum_{k=1}^{n} (-1)^{k-1} \frac{(k-1)!}{2^{k}} S(n, k), & n > 0, \end{cases}$$
as $x \to 0$,

where $u = u(x) = 1 + e^x$. Consequently, we derive the power series expansion (12).

Since the equation $1 + e^x = 0$ has infinitely many complex roots $(2k + 1)\pi$ i for $k \in \mathbb{Z}$, by some knowledge in the theory of complex functions, we can determine that the convergent radius of the power series expansion (12) is π . The required proof is complete.

Remark 2. Comparing the above four theorems, we can conclude the identities

$$\sum_{k=1}^{n} (-1)^k \frac{(k-1)!}{2^k} S(n,k) = \eta(1-n),$$

$$\sum_{k=1}^{n} (-1)^k \frac{(k-1)!}{2^k} S(n,k) = (1-2^n) \zeta(1-n),$$

$$\sum_{k=1}^{2n} (-1)^k \frac{(k-1)!}{2^k} S(2n,k) = \eta(1-2n),$$

$$\sum_{k=1}^{2n} (-1)^k \frac{(k-1)!}{2^k} S(2n,k) = (1-2^{2n}) \zeta(1-2n),$$

$$\sum_{k=1}^{2n+1} (-1)^k \frac{(k-1)!}{2^k} S(2n+1,k) = 0$$

for $n \geq 1$.

Remark 3. In general and in practice, it is not always easy to expand a composite function into power series. For example, in the papers [2,7,8,15], the functions

$$x^x$$
, $\left(\frac{\arcsin x}{x}\right)^{\alpha}$, $\left[\frac{(\arccos x)^2}{2(1-x)}\right]^{\alpha}$

for $\alpha \in \mathbb{R}$ are expanded into power series around x = 0 and x = 1.

Remark 4. After publishing [2], the third author of this paper found the preprint [11], in which the *n*th derivative of the power-exponential function x^{ax} was presented as

$$[x^{ax}]^{(n)} = x^{ax} \sum_{k=1}^{n} \frac{n!}{k!} a^k x^{k-n} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \sum_{i=0}^{n} {j \choose i} \sum_{m=0}^{j} \frac{m!}{(n-i)!} {j \choose m} {n-i \choose m} (\ln x)^{k-m}, \quad (13)$$

where $\binom{n-i}{m}$ is an alternative notation of the first kind Stirling numbers s(n-i,m). In [2, Theorem 3], it was obtained that

$$\frac{d^{n}}{d x^{n}} \left[(1+x)^{t(1+x)} \right] = n!(1+x)^{t(1+x)-n} \\
\times \sum_{k=0}^{n} t^{k} (1+x)^{k} \sum_{j=0}^{k} \left[\sum_{q=0}^{n-k} \frac{s(q+j,j)}{(q+j)!} \binom{j}{n-k-q} \right] \frac{\left[\ln(1+x) \right]^{k-j}}{(k-j)!}. \tag{14}$$

Replacing 1 + x by x in (14) yields

$$\frac{\mathrm{d}^n}{\mathrm{d}\,x^n}(x^{tx}) = n! x^{tx-n} \sum_{k=0}^n t^k x^k \sum_{j=0}^k \left[\sum_{q=0}^{n-k} \frac{s(q+j,j)}{(q+j)!} \binom{j}{n-k-q} \right] \frac{(\ln x)^{k-j}}{(k-j)!}.$$
 (15)

It is clear that the formula (15) is better and simpler than the one in (13). See also related comments on the answer at https://mathoverflow.net/a/439188.

Acknowledgements

The authors are thankful to the anonymous referees for their careful reading and valuable comments on the original version of this paper.

References

- [1] Abramowitz M., Stegun I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York, 1992.
- [2] Cao J., Qi F., Du W.-S. Closed-form formulas for the nth derivative of the power-exponential function x^x . Symmetry 2023, **15** (2), 323. doi:10.3390/sym15020323
- [3] Charalambides C.A. Enumerative Combinatorics. CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
- [4] Chen X.-Y., Wu L., Lim D., Qi F. Two identities and closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind. Demonstr. Math. 2022, 55 (1), 822–830. doi:10.1515/dema-2022-0166
- [5] Comtet L. Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing Company, Dordrecht-Holland, Boston, USA, 1974. doi:10.1007/978-94-010-2196-8
- [6] Dağlı M.S. Closed formulas and determinantal expressions for higher-order Bernoulli and Euler polynomials in terms of Stirling numbers. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2021, 115 (1), 32. doi:10.1007/s13398-020-00970-9
- [7] Guo B.-N., Lim D., Qi F. Maclaurin's series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function. Appl. Anal. Discrete Math. 2022, 16 (2), 427–466. doi:10.2298/AADM210401017G
- [8] Guo B.-N., Lim D., Qi F. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Math. 2021, 6 (7), 7494–7517. doi:10.3934/math.2021438

- [9] Guo B.-N., Qi F. Increasing property and logarithmic convexity of two functions involving Riemann zeta function. arXiv:2201.06970 [math.NT]. doi:10.48550/arxiv.2201.06970
- [10] Hu S., Kim M.-S. *On Dirichlet's lambda function*. J. Math. Anal. Appl. 2019, **478** (2), 952–972. doi: 10.1016/j.jmaa.2019.05.061
- [11] Kruchinin V. Derivation of Bell polynomials of the second kind. arXiv:1104.5065 [math.CO]. doi:10.48550/arxiv.1104.5065
- [12] Lim D., Qi F. Increasing property and logarithmic convexity of two functions involving Dirichlet eta function. J. Math. Inequal. 2022, **16** (2), 463–469. doi:10.7153/jmi-2022-16-33
- [13] Qi F. *A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers*. J. Comput. Appl. Math. 2019, **351**, 1–5. doi:10.1016/j.cam.2018.10.049
- [14] Qi F. *On signs of certain Toeplitz-Hessenberg determinants whose elements involve Bernoulli numbers.* Contrib. Discrete Math. 2023, **18** (2), 48–59. doi:10.55016/ojs/cdm.v18i2.73022
- [15] Qi F. Taylor's series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi. Demonstr. Math. 2022, **55** (1), 710–736. doi:10.1515/dema-2022-0157
- [16] Qi F., Lim D. *Increasing property and logarithmic convexity of functions involving Dirichlet lambda function*. Demonstr. Math. 2023, **56** (1), 20220243. doi:10.1515/dema-2022-0243
- [17] Qi F., Yao Y.-H. *Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios.* Hacet. J. Math. Stat. 2023, **52** (1), 17–22. doi:10.15672/hujms.1099250
- [18] Quaintance J., Gould H.W. Combinatorial Identities for Stirling Numbers. The unpublished notes of H.W. Gould. World Scientific Publishing Company, Singapore, 2016.
- [19] Shuang Y., Guo B.-N., Qi F. Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2021, **115** (3), 135. doi:10.1007/s13398-021-01071-x
- [20] Temme N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics. A Wiley-Interscience Publ., John Wiley & Sons Inc., New York, 1996. doi:10.1002/9781118032572

Received 30.01.2023 Revised 15.03.2023

Вен-Гуї Λ і, Донгкю Λ ім, Фенг Кі. Розвинення функції $\ln(1+e^x)$ у степеневий ряд через ета-функцію Діріхле та числа Стірлінга другого роду // Карпатські матем. публ. — 2024. — Т.16, №1. — С. 320–327.

У статті, використовуючи кілька підходів, автори розвивають складену функцію $\ln(1+e^x)$ у степеневі ряди в околі точки x=0, коефіцієнти яких виражаються через ета-функцію Діріхле $\eta(1-n)$ і числа Стірлінга другого роду S(n,k).

Ключові слова і фрази: ета-функція Діріхле, складена функція, розвинення в степеневий ряд, число Стірлінга другого роду, дзета-функція Рімана, частковий поліном Белла.