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Expanding the function In(1 4 e*) into power series in terms of
the Dirichlet eta function and the Stirling numbers of the
second kind

Wen-Hui Li!, Dongkyu Lim*>>, Feng Qi%*>

In the paper, using several approaches, the authors expand the composite function In(1 + e*)
into power series around x = 0, whose coefficients are expressed in terms of the Dirichlet eta
function #(1 — n) and the Stirling numbers of the second kind S(#, k).
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1 Preliminaries

For fluently and smoothly proceeding, we prepare some notions and notations.
The Stirling numbers of the second kind S(#n,k) for n > k > 0 can be analytically gene-
rated [18, pp. 131-132] by
(ex _1)k 00 n

= ZS(n,k)%. (1)

n=k

The equation (1) can be rearranged as power series expansions

Let {(z) denotes the Riemann zeta function (see [20, pp. 57-61, Section 3.5]). In [1, p. 807,
Entries 23.2.14 and 23.2.15], the identity

¢(1—2n) :—%, n e N, (2)
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is collected, where B;, denotes the Bernoulli numbers which can be generated by

0 n 2n

z z z = z
~ Y B, =1--+Y B 27
a1 &b 2t L By [l <27

n=0

For recent results on the Bernoulli numbers B, please refer to the papers [4,6,13,14,19]. The
Dirichlet eta function 7(s) and the Riemann zeta function {(s) have the relation

n(s) = (1-217°)C(s). 3)

For new results on the Dirichlet eta function 7(s), please read the papers [9,10,12,16,17].

The Faa di Bruno formula (see [3, Theorem 11.4] and [5, p. 139, Theorem C]) can be de-
scribed in terms of partial Bell polynomials By,  (x1,X2,...,X,_k+1) forn >k > 0 by

dd; foh(x) = Z F® (h(x)) By <h’(x),h”(x), . .,h<"—k+1>(x)) : (4)

k=0

The partial Bell polynomials By, x (x1,X2,...,X,_+1) for n > k > 0 satisfy the identities

B, x(abxy, ab?xy, ..., ab" " x, 1 01) = a"0" B,k (x1, %2, .., X0 gi1) (5)
and
Bui(1,1,...,1) = S(n,k). 6)
n—k+1 times

Last two identities can be found in [3, p. 412] and [5, p. 135].

2 Motivations

In 2013, at the site https://math.stackexchange.com/q/307274,G. Helms, whose
profile is at the site ht tps: //stackexchange.com/users/314145,posed the conjecture

tHx) =In(1+e") = i @x”. )
n=0 :

The motivation of this conjecture can be seen from the file at https://go.helms—-net.de/
math/musings/UncompletingGamma.pdf. There have been two answers to the con-
jecture (7) at the web sites https://math.stackexchange.com/a/308100 and
https://math.stackexchange.com/a/308319.

In this paper, we will provide several simple and alternative proofs of the above conjec-
ture (7).
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3 Power series expansions
We now start out to provide several proofs of the above conjecture (7).

3.1 First proof

Here, we recite the proof at the site https://math.stackexchange.com/a/308319.
In this proof, the convergent radius of the power series expansion (7) is not discussed.

Theorem 1. The power series expansion
xi’l
n(1+e* Z (1—n) (8)

is valid.

Proof. This proof is extracted from https://math.stackexchange.com/a/308319.
The Dirichlet eta function 7(s) is given by 77(s) = Y5, (—1)""1n~%, but this converges only
for s with positive real part. A globally convergent series for 7(s) can be derived from the

relation
1) = (1=27)26) = L g BV e ©)

Using the expansion (9), we write 17(1 — k) as

1008 = ¥ s L () 6+

The power series expansion (8) is then

00 —kxk 00 0 n . In . 7xk
ZEWL=ZZﬁJ%WOVW“g

n=0 =0
1 & (- X1 j
Lk (;) - L /
© 1 0 © 1q (1_|_y)n+10
ngxﬂnyg@HnH -

© 1 1—(1-—e)"t! 1 1—¢*
=) 5or (n—l—l) :f<§>_f< 2 )

n=0

where
00 Zn+1
f<z):2n+1 In(1-—2z)

Putting this together, we find

00 o k X
y w — In (%) +1n <1J;e ) = In(1 +&%).
k=0 :

Thus, the power series expansion (8) is proved. O
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3.2 Second proof

In this subsection, we provide a simple, direct, and elementary proof of the conjecture (7)
with a convergent range of the power series expansion (7).

Theorem 2. For x < 0, we have

In(1+¢*) = i}n(l—n)i—?. (10)
= !
Proof. It is well known that
In(1+x) = il(—l)"“%n, x| < 1.
n—
Hence, it follows that
t(x) =In(1+e") i ”+1 x, le*] < 1.

From e* = Y5 &, for |x| < oo, it follows that

o ( q\n+l o nxk
t(x)zz( Dl Z(k!)' x < 0.

ko
Interchanging the order of summations leads to
00 00 (_1)n+1 x
t(x) = —— (1—k)— .
(x) kg)[ng % 211 K, x<0
The series expansion (10) is proved. 0

3.3 Third proof

In this subsection, we provide a proof of the conjecture (7) with a convergent radius of the
power series expansion (7).

Theorem 3. For |x| < 71, we have

In(1+e") :1n2+%+ Y n(1—2n)

P 20 (11)

Proof. Since the Euler polynomials E,(x) has the generating function

2e"Y d y"
o1~ LB W<
n=0
we easily see that
/ 1 1 1 & Eq(0)
t/(x):[ln(l—}—ex)] :1—1+ex:§—52 ! xi’l, |x|<7‘(
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Integrating on both sides with respect to x € (0,y) C (—, 1) yields

) 0= -1y B0y <

Since

which can be found in [1, p. 805], we acquire

Hx) =In2+ 2 + i (2"“ - 1) Buiy 2" x| < 7
B 2 = n+1(n+1) '
Since By, +1 = 0 for n > 1, we deduce
t(x)—ln2+f+i<22”—1) @X—ZH x| <
B 2 =~ 2n (2n)V '
Making use of the equality (2) and the relation (3), we have
Bon n(1—2n)
e L— — = 7/ > 1.
o ¢(1—2n) TR n>1
Consequently, we derive the series expansion (11). O

Remark 1. Since

g1 =In2, 4(0) =5, §(-2n)=0

forn > 1, the series expansion (11) is equivalent to the conjecture (7).
3.4 Forth proof

By virtue of the Faa di Bruno formula (4) and the identities (5) and (6), we now provide an
alternative and direct proof of the conjecture (7).

Theorem 4. For |x| < 71, we have

In(1+e*)=In2+ f} f(—l)“usm,k)

(12)
n=1 | k=1 2k

x}’l
!.
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Proof. For n > 0, by virtue of the Faa di Bruno formula (4) and the identities (5) and (6), we

obtain
n

{00 (x) = Y () OB, i (' (), 0" (x), ..., u D (x) )

k=0
n
= (Inu)B, o (e*,e*,...,e") + Z(lnu)(k)Bn,k (e¥, e, ..., e")
k=1
lnu, nZO/
— n
Z(lnu)(k)Bn,k (e¥,e*,...,e"), n>0,
\ k=1
ln(l +eY), n=0,
— n k 1 !
Z (k— 1)'e"’an,k(1,1,...,1), n>0,
\ k=1 1+ex)
In ( e’), n=0,
=4 & (D) Hk=1)!
Z ( ) ¥ S(n,k), n>0,
k=1 1+ex)
1n2, n:O/
= <& 4 (k—=1)! asx — 0,
Z(—l)k 1(27]()5(”,](), n>0

k=1
where 1 = u(x) = 1+ e*. Consequently, we derive the power series expansion (12).
Since the equation 1 + e* = 0 has infinitely many complex roots (2k + 1)7i for k € Z, by
some knowledge in the theory of complex functions, we can determine that the convergent
radius of the power series expansion (12) is 7t. The required proof is complete. O

Remark 2. Comparing the above four theorems, we can conclude the identities
n —1)!
2(—1)“" LSk =y - ),
k=1 2
n

1) E= D k) = (1 - 27)¢(1 = n),
k=1

1) S@n,k) = n(1 —2n),

2n

Lt

2n o

Z(—l)kuS(Zn k)= (1-27)7(1—2m),
k=1

2k
2n+1 —_ 1\t
y (—1)"%5(211 +1,k) =0
k=1

forn > 1.

Remark 3. In general and in practice, it is not always easy to expand a composite function into
power series. For example, in the papers [2,7,8, 15], the functions

o arcsin x \ * (arccos x)?1"
’ X ’ 2(1 —x)

for « € R are expanded into power series around x = 0 and x = 1.
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Remark 4. After publishing [2], the third author of this paper found the preprint [11], in which
the nth derivative of the power-exponential function x** was presented as

k n . j . .
n! [k m! n—i
X — 0% k k n -1 k—]<'> (]) : <]> |: :| Inx k—m’ (13)
e = i o () £ ) £ 2 (1) oo
where {”n; i] is an alternative notation of the first kind Stirling numbers s(n — i, m).

In [2, Theorem 3], it was obtained that
dn

[(1 + x)t(”x)] =n!(1 4 x)1+x)—n

d x"
n k [n—=k ] : ln(l—i—x)}k*j (14)
k(11 o)k s(q +.J) ( j ) [ o]~
xk)z:o (1+2) ;L;o (@+))! \n—k—gq (k—j)!
Replacing 1 + x by x in (14) yields
N ‘1+]/])< j ) (Inx)*/ 5
dx”(x ) =nlx kX%J ]X(:)LX: g+t \n—k—q)| (k=)' (15)

It is clear that the formula (15) is better and simpler than the one in (13).
See also related comments on the answer at ht tps: //mathoverflow.net/a/439188.
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Ber-T'yi Ai, Aorrkio Aim, @enr Ki. Possunenna gymxyii In(1 + e*) y cmenenesuii pad uepes ema-gpyHk-
yito Aipixne ma wucaa Cmipainea dpyeoeo pody // Kapmarceki maTeMm. my6ba. — 2024. — T.16, Nel. — C.
320-327.

Y crarTi, BUKOPUCTOBYIOUM KiAbKa MIAXOAIB, aBTOPY pPO3BMBAIOTH CKAaAeHY (PyHKIIO In(1 + e*)
y CTelleHeBi psiAM B OKOAL Touky X = 0, KoedpillieHTH SIKMX BUpaXkaloThCsl yepes eTa-pyHKIi0 Aipi-
xae #(1 — n) i uncaa Cripainra apyroro poay S(#, k).

Kontouosi cnosa i ¢ppasu: era-dpyHKIIist Aipixae, ckaapeHa (PYHKIIISI, pO3BMHEHHS B CTeIIeHEBIIf
psa, uncao CripaiHra Apyroro poay, A3eTa-pyHkuist PimaHa, yacTKoBumii noaiHoM Beana.



