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On a generalization of some Shah equation

Sheremeta M.M., Trukhan Yu.S.

A Dirichlet series F(s) = e/ + Y2, freM with the exponents 0 < i < A 1 +o0 and the abscissa
of absolute convergence 0, [F] > 0 is said to be pseudostarlike of order « € [0, k) and type B € (0, 1]

inTly = {s: Res < 0} if PG _ h) <B )F/(s> — (20— h)) for all s € T1y. Similarly, the function F is

F(s) F(s)

F”(S) FII(S)

Pt | < Bl - (2=t
for all s € Iy, and F is said to be close-to-pseudoconvex if there exists a pseudoconvex (with & = 0
and § = 1) function ¥ such that Re{F'(s)/¥'(s)} > 0in II.

Conditions on parameters aj, a3, by, by, ¢1, ¢, under which the differential equation
d"w
ds"
or pseudoconvex of order « € [0, h) and type B € (0, 1], or close-to-pseudoconvex in ITj are

said to be pseudoconvex of order « € [0, k) and type § € (0, 1] if

d
+ (arehs + az)d—f + (b€ +by)w = c1e 4¢3, n > 2, has an entire solution pseudostarlike

found. It is proved that for such solution In M(c, F) = (1 + 0(1))%“91'6’“7/" as 0 — +o0, where
M(o, F) = sup{|F(c +it)| : t € R}.

Key words and phrases: differential equation, Dirichlet series, pseudostarlikeness, pseudoconvex-
ity, close-to-pseudoconvexity.
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Introduction

Let S be a class of functions

fz) =2+ fz fur" &

analytic univalent inID = {z : |z| < 1}. The function f € S is said to be convex if f(ID) is a
convex domain and is said to be starlike if f(ID) is starlike domain regarding the origin. It is
well known [2] that the conditionRe {1+zf"(z)/f'(z)} > 0,z € D, is necessary and sufficient
for the convexity of f, and that the condition Re {zf'(z)/f(z)} > 0, z € DD, is necessary
and sufficient for the starlikeness of f € S. By W. Kaplan [7] the function f € S is said to
be close-to-convex (see also [2, p. 583]) if there exists a convex in ID function ® such that
Re (f'(z)/®'(z)) >0,z € D.

The concept of the starlikeness of a function f € S got the series of generalizations.
LS. Jack [6] studied starlike functions of order a € [0, 1), i.e. such functions f € S, for which
Re {zf'(z)/f(z)} > a, z € D. Itis proved (see [6], [11, p. 13]) thatif } 5> ,(n — a)[fu] < 1—a,
then function f € S is starlike of order a. V.P. Gupta [4] introduced the concept of starlike
function of order « € [0, 1) and type § € (0, 1]. A function f € S is said to be starlike of order
x € [0,1) and type B € (0, 1] if |zf'(2)/f(z) — 1| < Blzf'(z)/f(z) +1—2a] for all z € D.
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It is proved [4] that if Y575 {(1 + p)n — B(2a — 1) — 1}|fu| < 2B(1 — «), then function f € S
is starlike of order « and type B. According to the Alexander criterion [1, 3], a function (1) is
close-to-convexin D if1 > 2f, > -+« > kfpy > (k+1)fre1 > ... .

Studying the properties of the solutions of the differential equation

2
ZZ% + (ﬁlzz + ,322> ill—z; +(nmz+72)w=0, 2)

S.M. Shah proved [8] that if B > 0, —1 < B; < 0 and either 7 = 0, =2 < 71 < Oor
B2+ 72 =0, —B2 < 2791 < 0, then differential equation (2) has an entire solution such that
all derivatives f), j € Z, are close-to-convex functions in D and In M (r) = (1+o(1))|B1]r
as r — +oo, where M¢(r) := max {|f(z)| : |z| = r}. The convexity of solutions of the
Shah equation has been studied in [14, 15].

Dirichlet series are a direct generalization of power series. For & > 0, let (Ax) be an increas-
ing to +o0 sequence of positive numbers such that A, > h. Let Dirichlet series

F(s) = e+ ka exp {sAx}, s=oc+it, (3)
k=2

be absolutely convergent in a half-plane ITy = {s : Res < 0}. It is known (see [5] and
[11, p. 135]) that each function F of such type is non-univalent in ITy, but if Y ;2 , Ax [fx| < A,
then function F is conformal in I.

A conformal in Iy function F is said to be pseudostarlike if Re{F'(s)/F(s)} > 0,s € Ily. If
in the definition of the pseudostarlikeness instead of F'/F we put F”/F/, then we get (see [5]
and [11, p. 139]) the definition of the pseudoconvexity of F. In [5] (see also [11, p. 139]) it is
proved that if ) > , Ak |fx| <k, then function (3) is pseudostarlike.

A conformal function (3) is said to be [13] pseudostarlike of the order « € [0, h) if
Re{F'(s)/F(s)} > aforalls € ITy. Asin [13], we call a conformal function (3) in Iy pseu-
dostarlike of the order a € [0, /) and the type B € (0, 1] if

|F'(s)/F(s) —h| < B|F'(s)/F(s) — (2a — h)|

for s € Ily. Finally, the function (3) is said [11, p. 140] to be close-to-pseudoconvex if there
exists a pseudoconvex function ¥ such that Re{F'(s)/¥'(s)} > 0 in II.
Let z = ¢°. Then equation (2) will be written in the form

d*w d_w

+ (,3165 + B2 — 1) + (’)’165 + ’)’2) w =0,

ds? ds
and a generalization of this equation is a differential equation
da" d
@ + (alehs +a2) 7w + <blehs + bz) w=c1e®+cy, n>2, h>D0. 4)
ds" ds

The purpose of this article is to study the properties of solutions of the equation (4).

1 Recurrent formulas

We will search the solution of the equation (4) in the form

w = F(s) = kaeS)‘k, s=0+it,
k=0
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where 0 = Ay < Ay T +o0 as k — oo. Then

(e 9]

Z (Az + ar Ay + bz) kaSAk + bzfo + Z (alAk + bl) fkes(/\k+h) + blehsfo = Clehs + 0o,
k=1 k=1

whence as ¢ — —oo we get by fo +0(1) = ¢ +0(1), i.e. fo = c2/bp and

()\T +arA + bz)flesAl + Z ()\Z + ar A + bz)kaSAk + Z(alAk + bl)fkes()‘k+h) = (Cl — blf())ehs.
k=2 k=1

If AT +aAq + by # 0 and ¢1 — by fo # 0, then we obtain
(1 + 0(1)) ()\T + a1 + bz) fles}Ll = (Cl — blfO) e

as ¢ — —oo, therefore

M =nh f — c1 — blfO _ 1 — blf()
! o Al +aA +by W' +ayh + by
and . N
Y. (Al +ad+by) fie™ + Y (@A + by) fie S =0, (5)
k=2 k=1

Writing the identity (5) in the form

(A3 + a2As + b2) foe™2 + Y (A} + @A + ba) fie™ + (a1A + by) fre2"
k=3

+ Z (al)\k —+ bl) fkes(’\k”‘) = 0,
k=2

as above, by condition A} 4 axA + by # 0 and a1Aq + by # 0, we get

_ _ mA + by . arh + by
fam A ke A+ ady+ by’ (2h)" + 2hay + 51
and . .
Z (Alrcl + a2 A + b2>fkeSAk + Z (@ Ak + bl)fkes()‘ﬁh) =0.
k=3 k=2

Continuing this process, we obtain for k > 3

(k — 1)ha1 + bl f
ki)™ + khay + by ¥V

provided (kh)" + khay + by # 0 and (k — 1)hay + by # 0.
Thus, the following statement is true.

Ap = kh, sz—(

Lemma 1. If by # 0, c1by — coby # 0, (kh)" + khay + by # 0 and khay + by # 0 for allk > 1,
then differential equation (4) has a solution

_ G ciby—cbi o v f sk
FO) = 5 R+ 1 50)° +k§2fke / )
where fy = — (k —1)har + by fr—1 fork > 2.

(kh)" + khay + by
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2 Growth

For k > 2 we have

Dh|ay| + |b B hlay|+ |b
|fk| H’]hn ‘1’ ’1’ <H‘ B = max ‘1‘ ’1’]

)"+ jhay +bo| g Y 22 [W"+ 1 hay + boj "
whence we have In |fy] <klnB—(n—1) Z;-‘Zzlnj = —(14+0o(1))(n —1kln kask — oo, i.e.
1 1 1
lim — = lim — In — = 400 and, as is well known (see, e.g., [9, p. 10]), function (6)
k=00 Ak |fk| T, " A &P
is entire.

To study the growth of entire function (6) we use the Wiman-Valiron method. Let
M(c,F) = sup {|F(c +it)| : t € R}, u(o,F) = max{|fk|exp{(7)\k} : k > 0} be the max-
imal term and v(c, F) = max {k : |fi| exp{ocAx} = u(c, F)} be the central index.

lnn

Suppose that the exponents of Dirichlet series (6) satisfy the condition f Jit < too,
° 1 1
where n(t) = Y 1, and put 5(x) = t2In n(t)dt, 1(x) = In~2 and
T e N e R TES
1
k(x) = x . Then (see [12]) for every m € IN and all s, Res = 7, |T — 0| < ==~ the

I(x)
following equality holds

30k(Ay (o))

F(s) = Ak, ) (F(s) +0(M(e, F)) ) )
as 0 < ¢ — +oo outside of some set E C [0, +00) of finite measure and E is contained in the
union of intervals [R, + 7,_1, Ry, + 7,), where 7, — 7,1 — 0 as v — oo.

Let 6(0) be an arbitrary positive function on [0, +0c0), which tends to zero as ¢ — +o0, and
A(o) = {s:Res =0, |F(s)| > 1—6(c)M(c,F)}. Then choosing T = ¢, from (7) we get
FI"(s) = A%l pE(s) (1 +¢(0)), s € A(0), (8)
where e¢(0) — 0 as v — oo. Substituting (8) in (4), by the condition b; # 0 we obtain
AE(U’F) = |b1|e" (1 +&1(0)), where e1(0) — 0 as o — 400, 0 ¢ E. Therefore,

Ayiopy = (1+0(1)) {/ b1]e"/", ¢ — 400,00 ¢ E. 9)

IfceEieo,_1:=R,+17_-1<0<0,:=R,+ 7 for some v, then o, —0,_1 — 0 and,
thus, e"v-1 = (14 0(1))e" = (14 0(1))e"" as v — oco. Therefore,

(1 +o(1))eh‘7 = (1+ 0(1))@”1‘71/71 = Mooy oF) < Mo,F) < Aoy, )
= (1+0(1))e" = (1+0(1))e", o — +oo,

g

i.e. (9) is valid if ¢ — +oo. Since In p(c, F) = In u(0,F) + [ Ay pdt for all o € R (see,
0

e.g., [9, p. 17]), by L'Hopital’s rule we get

In u(o, F) = (1+ 0(1))”7weho/n’ o — +o0.

Then, since A, = nh for all integers n > 0, we have In M(c,F) = (14 0(1)) In p(c,F) as
o — 400 (see, e.g., [9, p. 22] and [10]). Therefore, the following theorem is proved.

Theorem 1. The solution (6) of differential equation (4) is an entire function and

In M(c, F) = (1 +0(1))nT|bl|eh‘7/”, o — +oo.
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3 Pseudostarlikeness

Using Lemma 1, we can find the conditions under which solution (6) of equation (4) will be
pseudostarlike. First of all, we note that in order for this solution to look like (3), it is necessary
that c; = 0 and ¢; = I" + hay + by. In [13], it is proved that if

§2H1+ﬁMk—%M—hﬂ—+ﬁHﬂJsth—aL (10)

then function (3) is pseudostarlike of the order « € [0, /) and the type B € (0, 1].
For function (6) with fy = 0 and f; = 1 by the condition (kh)" + khap + b, > 0 we have

;i{“ )M — 2Ba — h(1— B)} fi

= (k = Dhlay| + |by|
< L AQ+ )k —2pa (1= B)} T, Vil
_yv oRy (1 — kh |a1| + [b1]
_k;{(lJrﬁ)(kJrl)h 2Ba — h(1 /3)}((k+1>h>”+(k+1)lmz+b2 | fi .
h b
— {1+ B2~ 20— (1 = )} it
3 o8 h(1— K |ay| + [y
+£“Hmwﬂm2m}mfmm+mﬁﬂmnm+wm
:i{(1+ﬁ)Ak_2ﬁ“_h(1_IB)}Ak’ka'B/
k=2
where
A = (1+B)(k+1)h—2pa —h(1—B) kh|ay| + |by ]|
(1+B)kh —2pa—h(1—B)  ((k+1)h)" + (k+ 1)has + by
and

B={(1+p)2h—2Bx —h(1—B)} (2;)1”'?5,;51 -

Suppose that a, > 0 and b, > 0. Then, since & < h, for all k > 2 we have

(1+ﬁ)(k+1)h—25«x—h(1—ﬁ):1+ (1+B)h <>
(1+ B)kh —2Ba — k(1 — B) (1+ B)kh —2Ba —h(1 —B) —
and for all k > 1 we have
kh |aq| + |b1] o Khjam|+ba]  _ [ba]
((k+1)h)" + (k+1)hay + by — (kh)" +khay +by = by’

provided |a1| by < |b1|ay. Therefore, Ay < 2|b1| /by.
Also (14 B)2h —2Ba —h(1 — B) < (364 1)h and B < (3B + 1)h|by| /by. Therefore, (11)
implies
Y, {1+ B)A —2Ba —h(1—B)} |fil

- o (38 + 1)l |by| 12
<2 {0 A2 n1 - g}l + AL

Using (12), now we prove the following theorem.
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Theorem 2. Leta, > 0,by > 0,cp =0, ¢; = h" + 2hay + by and |a1| by < |by|ay. If
(BB +Dh|br| <2B(by—2|b1|) (h —w), (13)

then differential equation (4) has solution (6) pseudostarlike of the order « € [0,h) and the
type B € (0, 1.

Proof. Conditions (13) and |a1| by < |b1| ap imply by — 2 |b1| > 0, i.e. 2|Z—;‘ < 1. Therefore, from
(12) we obtain

» 1] (38 + Dh|by|

(1-250) & 1 pn—2pe—na = pyy 15 < CEE

whence in view of (13) we get

> 38+ 1)h|b

3 {1+ o — 20— - g} 1Al < SEEER < o),

= by —2|by|
i.e. the inequality (10) holds, and function (6) is pseudostarlike of the order « € [0,/) and the
type B € (0, 1]. O
4 Pseudoconvexity

In [13], it is proved that if
2 M (U4 B)A =280 — h(1 = B)} | fil < 2Bh(h —a), (14)
k=2
then function (3) is pseudoconvex of the order « € [0, ) and the type € (0, 1].

Theorem 3. Leta, > 0,by > 0,cp =0, ¢; = h" + 2hay + by and |a1| by < |by|ay. If
(3B + 1)k |br| < B(b2 — 4|b1]) (h —a), (15)

then differential equation (4) has solution (6) pseudoconvex of the order « € [0,h) and the
type B € (0, 1.

Proof. As above, we have

kiAk{(l ) —26a— k(1 — B)} Ifi

R e L

| fx|

i(k+1)h{(1+ﬁ)(k+1)h—2,Ba—h(1—/3)} Kitlay| + [bi]
= (16)

((k+1)h)" + (k+ 1)hay + by
hlay| + [bi]

=2h{(1+ B)2h — 2pa — (1_'8)}(2h)”+2ha2+bz

3 Kh|ay| + by
- iA {1+ B\ — 2 — (1~ B)} A |fi + B,

k=2
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where A; = (k+1)Ai/k < 2A; and B* = 2hB. Using the above estimates for Ay and B, we
obtain A} < 4|by| /b, and B* = 2(3B + 1)h? |by| /b,. Condition (15) implies 4 |by| /b, < 1.
Therefore, from (16) as above we get

= 2(3B + 1) |b1

and, thus, (15) implies (14), i.e. function (3) is pseudoconvex of the order « € [0,/) and the
type B € (0, 1]. O

5 Close-to-pseudoconvexity

It is known [11, p. 140] thatif Ay = Ay_; +hand fy > Oforallk > 2 and
h>Aafp > 2 Mafo1 2 Mefe = -, (17)

then function (3) is close-to-pseudoconvex.

Theorem 4. Letcy =0,c1 = h"+hay +by,ap > 0,by, >0, —by/2 < by <0and —ap; < a; <0.
Then differential equation (4) has close-to-pseudoconvex solution (6).

Proof. Sinceay >0, by > 0,b; < 0and a; <0, we have f; =1 and

fo = (k—1)h|ay] + |b]
* 7 "(kh)" + khay + b,

fx1>0 for k>2.

Ao lorl + b _ 20y + 2
ai| + |b1 ai| + 1
Aofr = 2h (21)" + 2hay + by — by 15, ="
and
Ak fx _ k (k—1)h|ay| + |by] < k(k —1)h|a1| + k|b1]
M—1fxe1 k=1 (kh)" +khay + by — k(k —1)hay + (k—1)by
k(k — 1)hay + kby /2
< <
S kk=Dhay + (k=1 =
for k > 3, i.e. (17) holds and function (6) is close-to-pseudoconvex. O
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Psia Aipixae F(s) = els + Y, fre*M 3 mokasamkamm 0 < h < Ay 1 400 i abermcoro abcoaro-
THOI 36ixHOCTi 0,[F] > 0 Ha3MBaeTbCs ICeBAO3IPKOBUM mOpsiaky & € [0, h) i imy B € (0, 1] B

Il = {s : Res < 0}, sxmo ‘1:((:)) —h) < /3‘1;((:)) — (2a — h)| aas Bcix s € ITy. Anaaoriuso,

dynkiiss F HasMBaeTbCsl IICEBAOOMYKAO HOpsIAKY « € [0, 1) i Tvmy type B € (0, 1], sxmio

1 1
1;,8 — h) < B 1;,8 — (20 — h)) AAst Bcix s € Ty, a F HasMBaeThCsT GAM3BKOIO AO IICEBAOOIIYKAOIL,

SIKIIO icHye Taka nceBaoonykaa (3a = 01 f = 1) dpynxuis ¥, o Re{F'(s)/¥'(s)} > 08 I1j.
3HaliAeHO YMOBM Ha TapaMeTpu aj, da, by, by, c1, ¢z, 3a sikmx AmdpepeHIiarbHe PiBHSHHS
d"w
ds"
BUIA, 260 TICeBAOOIYKAWI OpsiAKy & € [0, h) i tumy B € (0, 1], abo 6AM3BKITE AO IICEBAOOIIYKAOTO

dw . .
+ (ageh® + ﬂz)E + (e + b))w = ce + ¢y, n > 2, Mae miamL PO3B’sI30K, MICEBAO3IPKO-

B I1). AoBeAeHO, 110 AAST Takoro po3s’sisky In M(c, F) = (1+0(1))
M(o, F) = sup{|F(c +it)| : t € R}.

Kntouosi crosa i ppasu: amdpepeHniarbHe piBHSHHS, psia Aipixae, IICeBAO3IpPKOBICTb, IICEBAOOILY-
KAICTB, 6AU3BKICTD AO IICEBAOOITYKAOCTI.

ny |b1| ho/n
Te opu o — +09o, Ae



