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Wick multiplication and its relationship with integration and
stochastic differentiation on spaces of nonregular test
functions in the Lévy white noise analysis

Kachanovsky N.A.

We deal with spaces of nonregular test functions in the Lévy white noise analysis, which are
constructed using Lytvynov’s generalization of a chaotic representation property. Our goal is to
study properties of a natural multiplication — a Wick multiplication on these spaces, and to describe
the relationship of this multiplication with integration and stochastic differentiation. More exactly,
we establish that the Wick product of nonregular test functions is a nonregular test function; show
that when employing the Wick multiplication, it is possible to take a time-independent multiplier
out of the sign of a generalized stochastic integral; establish an analog of this result for a Pettis
integral (a weak integral); obtain a representation of the generalized stochastic integral via formal
Pettis integral from the Wick product of the original integrand by a Lévy white noise; and prove
that the operator of stochastic differentiation of first order on the spaces of nonregular test functions
satisfies the Leibnitz rule with respect to the Wick multiplication.

Key words and phrases: Lévy process, Wick product, stochastic integral, Pettis integral, operator
of stochastic differentiation.
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Introduction

Many problems in modern mathematics and physics require a theory of test and gene-
ralized functions depending on infinitely many variables, i.e. with arguments belonging to
infinite-dimensional spaces. Such a theory can be constructed by different ways. One of the
most successful of them consists in introducing of spaces of test and generalized functions such
that the pairing between elements of these spaces is generated by integration with respect
to a probability measure on some dual nuclear space. At first, it was the Gaussian measure
(see, e.g., [2,17,30, 31]), the corresponding theory is called the Gaussian white noise analysis,
afterwards it were realized numerous generalizations. In particular, important results were
obtained using the generalized Meixner measure [35], and the Lévy white noise measure (see,
e.g., [7,8,32]), the corresponding theories are called the Miexner and Lévy white noise analysis,
respectively.

An important role in the Gaussian analysis belongs to a so-called chaotic representation prop-
erty (CRP): roughly speaking, any square integrable with respect to the Gaussian measure ran-
dom variable can be presented as a series of repeated Itd’s stochastic integrals with nonrandom
integrands (see, e.g., [33]). Using CRP, one can construct spaces of test and generalized func-
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tions, introduce and study different operators and operations on these spaces, in particular,
stochastic integrals and derivatives, a Wick multiplication etc. Unfortunately, in the Meixner
and Lévy analysis there is no CRP, generally speaking [39]; nevertheless, there are various
generalizations of this property. Specifically, in the Meixner analysis a square integrable ran-
dom variable can be decomposed in series of generalized Meixner polynomials [35]; in the
Lévy analysis there are decompositions connected with a Lévy-Khintchine representation of
a Lévy process (Ito’s approach [19], see also [6]), decompositions by repeated stochastic in-
tegrals from nonrandom integrands with respect to so-called orthogonalized centered power
jump processes (Nualart-Schoutens’ approach [34], see also [36]), decompositions by special
orthogonal functions (Lytvynov’s approach [32], see also [5]), special orthogonal decomposi-
tions with numeric coefficients (Jksendal’s approach [8], see also [7]) etc. The relationships
between these generalizations of CRP are described in, e.g., [1,7,8,23,32,38,40].

In this paper, we deal with one of the most useful generalizations of CRP in the Lévy
analysis, which is proposed by E.-W. Lytvynov [32]. The idea of this generalization is to de-
compose square integrable random variables in series of special orthogonal functions with
nonrandom kernels, by analogy with decompositions of square integrable random variables
by Hermite polynomials in the Gaussian analysis (remind that the last decompositions are
equivalent to the decompositions by repeated It6’s stochastic integrals). As in the Gaussian
analysis, it is possible to use Lytvynov’s generalization of CRP, in particular, in order to con-
struct and study spaces of regular and nonregular test and generalized functions [20], intro-
duce and investigate various operators and operations on these spaces etc. It should be noted
that the extended stochastic integral and the Hida stochastic derivative on the spaces of reqular
test and generalized functions are introduced and studied in [11, 20], operators of stochastic
differentiation — in [9, 10, 14], elements of a Wick calculus and its relationship with opera-
tors of stochastic differentiation and integration on the spaces of regular generalized functions
— in [12,13], on the spaces of reqular test functions — in [25]. As for the spaces of nonregular
test and generalized functions, the corresponding results are presented in [20,26-29]. The pa-
per [24] is a survey of some author’s results related to the development of the Lévy white noise
analysis in terms of Lytvynov’s generalization of CRP.

In order to build a meaningful and applicable theory of test and generalized functions it
is necessary to introduce a natural multiplication on spaces of the mentioned functions. As is
known, in various versions of the white noise analysis such a multiplication is a so-called Wick
multiplication. In particular, using the Wick multiplication, one can take a time-independent
multiplier out of the sign of an extended stochastic integral and of a Pettis integral (a weak
integral). In addition, an extended stochastic integral can be presented as a Pettis integral (or a
formal Pettis integral, depending on the concrete situation) from the Wick product of the origi-
nal integrand by the corresponding white noise. Also an operator of stochastic differentiation
is a differentiation (i.e. satisfies the Leibnitz rule) with respect to the Wick multiplication. On
the above-mentioned spaces of nonregular generalized functions in the Lévy analysis such re-
sults were obtained in [26,29], on the spaces of regular generalized functions — in [12,13], on the
spaces of reqular test functions — in [25].

The aim of the present paper is to introduce and to study by analogy with [21,25] the Wick
product on the spaces of nonregular test functions in the Lévy analysis; to transfer some results
of [13,25] to these spaces; and to consider certain related topics, in particular, the relationship
between Wick multiplication and stochastic differentiation.
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The paper is organized in the following manner. In the first section, we consider a Lévy pro-
cess L and recall the construction of a required probability triplet connected with L; afterwards
we describe Lytvynov’s generalization of CRP and recall the construction of a nonregular rig-
ging of the space of square integrable random variables (the positive and negative spaces of
this rigging are the spaces of nonregular test and generalized functions respectively). In the
second section, we introduce the Wick product on the spaces of nonregular test functions and
study its main properties. In the third section, we recall the definition of a generalized stochas-
tic integral (a natural analog of the extended stochastic integral on the spaces of nonregular test
functions); show that when employing the Wick multiplication, it is possible to take a time-
independent multiplier out of the sign of this integral; obtain an analog of this result for the
Pettis integral; and prove a theorem about a representation of the generalized stochastic in-
tegral via a formal Pettis integral. In the fourth section, we recall the definition of operators
of stochastic differentiation on the spaces of nonregular test functions and establish that the
operator of stochastic differentiation of first order is a differentiation with respect to the Wick
multiplication.

1 Preliminaries

We denote by || - || or | - | the norm in a space H; by (-, -)y the real, i.e. bilinear, scalar
product in H; by ((-, -)) g the dual pairing generated by the scalar product in H; by B the Borel
o-algebra and by 1, the indicator of a set A. Further, we use a designation pr lim (respectively,
ind lim) for a projective (respectively, inductive) limit of a family of spaces, this designation im-
plies that the limit space is endowed with the projective (respectively, inductive) limit topology
(see, e.g., [3] for the detailed description).

1.1 A Lévy process and its probability space

Denote R := [0, +00). Let L = (Ly)uecRr, be a real-valued locally square integrable Lévy
process (i.e. a continuous in probability random process on R with stationary independent
increments and such that Ly = 0, see, e.g., [4] for the detailed description) without Gaussian
part and drift. As is known (e.g., [8]), the characteristic function of L is

E {eieL”] = exp [u/IR (eigx -1- ti) v(dx)] , (1)

where v is the Lévy measure of L, which is a measure on (IR, B (]R)), E denotes the expecta-
tion. We assume that v is a Radon measure, whose support contains an infinite number of points,
v({0}) = 0, there exists e > 0 such that [, x?ef*lv(dx) < oo, and [ x*v(dx) = 1.

Let us define a measure of the white noise of L. Denote by D the set of all real-valued
infinite-differentiable functions on R with compact supports. As is well known, D can be
endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [3], see
also Subsection 1.3). Let D’ be the set of linear continuous functionals on D. Note that D and
D' are the positive and negative spaces of a chain

D' > L?(Ry) DD, )

where L? (R} ) is the space of (classes of) real-valued functions on IR, square integrable with
respect to the Lebesgue measure (e.g., [3]). Denote by (-, ) the dual pairing between elements
of D’ and D, generated by the scalar product in L? (R ).
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Definition 1. A probability measure u on (D’,C (D’)), where C denotes the cylindrical
o-algebra, with the Fourier transform

/ ei<“”‘P>y(dw) = exp /]R R <€i¢(u)x —-1- iqo(u)x> duv(dx)] ’ ¢eD, (3)
/ + X

is called the measure of the Lévy white noise.

The existence of y follows from the Bochner-Minlos theorem (e.g., [18]), see [32]. Below we
assume that the o-algebra C (D') is completed with respect to y.

Consider a probability space (probability triplet) (D’,C (D’), u). Let us denote by (L?) :=
L?(D',C(D’), u) the space of square integrable random variables, i.e. the space of (classes of)
complex-valued functions on D’, square integrable with respect to . Let f € L? (R;) and a
sequence (¢ € D)ien converges to f in L2 (R) as k — oo (remind that D is a dense set in
L? (R4)). One can show [7,8,23,32] that (o, f) := (LZ)—kli_{r;o (o, gr) is a well-defined element
of (L?).

Put 11 ) = 0. It follows from (1) and (3) that ({0, 1())), €R.
process on the probability space (D’,C(D’), u) (see, e.g., [7,8]). So, for each u € Ry we have
Ly = (0, 19,4)) € (L?).

Note that the derivative in the sense of generalized functions of a Lévy process (the Lévy
white noise) is L.(w) = (w,6.) = w(-), where 6 is the Dirac delta-function. Therefore L is a
generalized random process in the sense of [15] with trajectories from D’, and y is the measure
of L in the classical sense of this notion [16].

can be identified with a Lévy

1.2 Lytvynov’s generalization of the chaotic representation property

In what follows, we denote by a subscript C complexifications of spaces; by a symbol &
the symmetric tensor multiplication; and preserve the above-introduced notation (-, -) for the
dual pairings in symmetric tensor powers of the complexification of chain (2) (actually, of more
general chain (7), i.e. for the dual pairings between elements of negative and positive spaces
from chains (40)). Designate Z := IN U {0}. Let P be the set of complex-valued polynomials
on D’ that consists of zero and elements of the form

Ny -
flw)y=Y <w®", f(">>, weD, f"eDI", Nyezy, fN) £0,
n=0
here Ny is called the power of a polynomial f; <w®0, f (0)> = 0 ¢ Dgo := C. The measure
u of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3)
and properties of the measure v, see also [32]), therefore P is a dense set in (LZ) [37]. Let P,
n € Z., be the set of polynomials of power smaller than or equal to 1, by P, we denote the
closure of Py in (L?). Let P, := P, © P,_1 for all n € N be the orthogonal difference in (L?);
put Py := Py. It is clear that
<L2) — 3 P, @)
R n=0
Let fW € DZ", n € Z.. Denote by :<o®”,f(”)>: € (L?) the orthogonal projection of

a monomial <o®”, f (”)> onto P,. We define real (bilinear) scalar products (-, )ext On D®”,
n € Z, by setting

<f("),g(")> - 1 :<w®”,f(”)> 5 <w®”,g(")> u(dw), f(”),g(") S D%". (5)

ext ) n! D!
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The well-posedness of this definition is proved (up to obvious modifications) in [32].
Denote by | - |.xt the norms corresponding to scalar products (5), i.e. | - |ext 1= v/ (*,)ext-
Let 1™ (n)

ext’ ext

we define a Wick monomial : <o®”,F(”)>: def (L?)-lim :<o®”,fk(”)> :, where D%" > fk(") — Fn)

k—oco0
as k — oo in ngt) It is easy to prove by the method of “mixed sequences” that this definition
is well-posed, and to show that : <o®0,F(0)>: = <o®O,F(O)> =0 and : <o,F(1)>: = <o,F(1)>
(cf. [32]).
In the next statement, which follows from (4) and the fact that for each n € Z_. the set
{: <o®”,f(”)> : } f(”) € Dg"} is dense in P, and therefore P,, = {: <o®”,F(”)> : ‘ ) ¢ H(") },

n € Z,be the completions of D%" with respect to these norms. For each F(") € H

ext
Lytvynov’s generalization of the chaotic representation property (CRP) is described.

Theorem 1 ([32]). A random variable F belongs to (L?) if and only if there exists a unique

sequence of kernels F(") € 1" ne Z., such that

ext”

(e 9]

F = Z :<o®",F(")>: (6)

n=0

(the series converges in (L?)) and

> 2
”F”%Lz) = /D/ \F(w)\zy(dw) =E[F?=)_n! )F(”) < oo.

=0 ext

Remark 1. In this paper, we do not use directly an explicit (calculation-friendly) formula for
scalar products (5) and therefore we prefer not to write it down. The interested reader can find
this formula in [32]; in another record form it is given, e.g., in [12, 14,20, 23, 24].

Denote # := L?(Ry), then He = L?(Ry)e. It follows from the explicit formula for

(4, *)ext that HSC% = Hc, and for n € IN\{1} one can identify H%“ with the proper sub-
space of H gjt) that consists of “vanishing on diagonals” elements (roughly speaking, such that
() (ug,...,uy) = 0if there existk,j € {1,...,n}, k # j, but up = u]-). In this sense the space
Hg;t) is an extension of 7—[%’”, this explains why we use the subscript “ext” in our designations.

Also we note that for each n € IN\ {1} the space H EZZ is the symmetric subspace of the space of
(classes of) complex-valued functions on IR}, square integrable with respect to a certain Radon

measure.

1.3 A nonregular rigging of the space of square integrable random variables

Let T be the set of indexes T = (71, 2), where 77 € N, T, is an infinite differentiable
function on R4 such that for all u € R4 12(u) > 1. Denote by 7 the real Sobolev space on
R of order 11 weighted by the function 1, i.e. H. is the completion of D with respect to the
norm generated by the scalar product

(@ P)n, = /

Ry

o +ki Py W) ) (),
=1

here ¢l and gl are derivatives of order k of functions ¢ and v, respectively. As is known

(see, e.g., [3]), D = pr lim H; (moreover, for any n € IN we have D" = pr lim H%"), and for
g P y P T
TeT TeT
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each T € T the space H is densely and continuously embedded into H = L? (R ). Therefore
one can consider a chain (cf. (2))

D>H DOHDH:DD, (7)

where H_., T € T, are the spaces dual of H. with respect to . Note that by the Schwartz

theorem [3], we have D’ = ind lTim”H_T (in what follows we will consider D’ as a topological
TE

space with the inductive limit topology).
Denote the norms in H; ¢ and its symmetric tensor powers by | - |, i.e. for f (n) ¢ H?E ,
f, = (f<”),f<">)H®n (note that HZ2 := Cand || = |f©]).

7,C
It follows from results of [20] that one can modify T (it is necessary to remove from T some

“bad” indexes; and we further assume that T is modified) in order to obtain the following
statement.

HGZ+,

=

Proposition1. 1) For each T € T the measure u of a Lévy white noise is concentrated on
H—T, ie. ]/l (H—T) =1.

2) Foreacht € T and eachn € Z the space H?E is densely and continuously embedded
into the space #") and there exists ¢(t) > 0 such that for all f") € H%g we have

ext’

[F02 < mle(o) £

ext

Lett € Tand g € Z. Denote
Ny -
Py = {f: Y ;<o®",f(">>: | f € D", Ny eZ+} c (L?).
n=0

For f = ijio : <o®”,f(”)> g = nNiO : <o®”,g(”)>: € Pw, we define real (bilinear) scalar
products (-, -)r,4 on P by setting

min( N, N )

(f8)ug:= Y, ()20 (f(m,g(n))

n=0

(8)

The well-posedness of this definition is proved in [26].

Remark 2. One can introduce more general scalar products on Py, writting in (8) K" with
arbitrary K > 1 instead of 27". But such a generalization is not essential for our considerations,
so, for simplification of presentation we will restrict ourselves to the case K = 2.

Denote by || - ||7,4 the norms corresponding to scalar products (8), i.e. || - [|<,4 := 1/(*,7)74-
Let (H+), be the completions of Py with respect to these norms. Set (H<) := prlim (),

q—> 0
(D) = p; lim (Hr) g As is easy to see, f belongs to (H+) g if and only if it can be uniquely
TeT,g—00
presented in the form (cf. (6))
f= Yot fY s e g ©)

n=0
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(the series converges in (), ), with

(e 9]

£, = X5 (2 |1

2
< o0 (10)

T

(since by Proposition 1 for each n € Z.; we have 7-[®” C Hext, for f() ¢ H?E :<O®",f(")> 1is
a well defined Wick monomial, see Subsection 1.2). Further, f € (H.) (f € (D)) if and only if

f can be uniquely presented in form (9) and norm (10) is finite for each g € Z (foreacht € T
and eachg € Z.).

Proposition 2 ([20, 26]) For each T € T there exists qo(T) € Z4 such that for each
q € Ngy(r) := {90(7),q0(7) +1,... } the space (H<), is densely and continuously embedded

into (LZ).
In view of this proposition one can consider a chain
(D') D (H-x) D (H-x)_y D (LZ) S5 (He), D (He) D (D), TET, € Nyy), (1)
where (H_1)_,, (H-7) =ind lim (H_¢)_, and (D’) = ind lim (H_z)_,, are the spaces dual

q'—o00 TeT,g' =00

of (Hr),, (H+) and (D) with respect to (L?).
In what follows, we assume that T € T, q € ]N%(T).

Definition 2. Chain (11) is called a nonregular rigging of the space (L?). The positive spaces
of this rigging (H+),, (H:) and (D) are called (Kondratiev-type) spaces of nonregular test
functions. The negative spaces of this rigging (H ) _,, (") and (D’) are called (Kondratiev-
type) spaces of nonregular generalized functions.

Remark 3. Lett € T, q € Z, and p € [0,1]. By analogy with the regular case one can
introduce on Py scalar products (-, )4 p by setting

nﬁn(h@;k@)

(f,8)eqp:= Y. (n)iFPam (f(n>,g<n)>

n=0

H—%Er frgEPW/

(cf. (8)), and define “parametrized spaces of nonregular test functions” (’HT)g as completions
of Py with respect to the norms generated by these scalar products. It is possible to study
properties of the spaces (’HT)g and their projective limits, to introduce and to study different
operators and operations on them; such considerations are interesting by itself and can be

useful for applications. But (’;’-[T)’3 ¢ (L?) if B < 1 (except for the Gaussian and Poissonian

special cases, which we do not consider in this paper), so we cannot consider (HT) with <1
as spaces of test functions in the framework of the Lévy white noise analysis.

Finally, for completeness and to introduce some necessary concepts we describe natural
orthogonal bases in the spaces (). Let us consider chains

D™ > H™ S HY SHEL S DE, neN, (12)

where 7-[(_"T) c and D&(”) ind l%m”;‘-[( )C are the spaces dual of 7-[®" and D®" = prlim 7-[®"
’ TE TeT

(1) gt D®O Hf??z -1 = ’H@IC = D,f:( ) .— C. In what follows we

ext:* ext

with respect to H
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denote by (-, -)ext the real (bilinear) dual pairings between elements of negative and positive

(n)

spaces from chains (12), these pairings are generated by the scalar products in H,,;.
The next statement follows from the definition of the spaces (H_+) g and the general du-
ality theory (cf. [20,22]).

Proposition 3. There exists a system of generalized functions
(o™ iy ie o) ) |ER en) o nez,}
such that

1) fOI' ext ext
Subsection 1.2;

e 5 7-[(_’2),@, :<o®”,Fe(ft)>: is a Wick monomial that is defined in

2) any generalized function F € (H_.)__ can be uniquely presented as a series

—-q
F= Z%) < ®n’Fe(xt)> Fe(;lt) € H(fr),o:' (13)
n=

that converges in (H <) _,, ie.

IFIIG, ZZ* ™

and, vice versa, any series (13) with finite norm (14) is a generalized function from
(H—r),q, i.e. such a series converges in (H_+)

< o0; (14)

ext

n)

—q
3) the dual pairing between F € (H_<)_, and f € (H«),, that is generated by the scalar
product in (L?), has the form

= L ()

where F") ¢ ’H( ") ¢ and f € ’H%g are the kernels from decompositions (13) and (9)

4
ext

ext

for F and f, respectwe]y

It is clear that F belongs to (H_.) (respectevely, to (D’) ) if and only if it can be uniquely
presented in form (13) and norm (14) is finite for some q € Nyo (o) (respectevely, forsomet €T
and some g € Ny (7))

2 Wick product on the spaces of nonregular test functions

It is known that the development of a meaningful and applicable theory of test and gen-
eralized functions depending on infinitely many variables requires a natural multiplication
on spaces of the mentioned functions. Unfortunately, the classical pointwise multiplication is
not suitable for this role: the pointwise product of test functions may not belong to the corre-
sponding space, and the pointwise product of generalized functions is undefined, in general.
However, this is not a serious problem, since on the spaces of test and generalized functions it
is possible to introduce a natural multiplication, called a Wick multiplication.

Recall that the Wick multiplication on the spaces of reqular generalized functions in the Lévy
white noise analysis is introduced and studied in [12] (see also [13]), on the spaces of reqular test
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functions — in [25], on the spaces of nonregular generalized functions — in [26] (see also [29]).
Now our goal is to introduce and study the Wick multiplication on the spaces of nonregular
test functions. It is worth noting that an important feature of the regular case is the fact that the
Wick multiplication on the spaces of test functions is a restriction to these spaces of the Wick
multiplication, defined on the spaces of generalized functions. In the nonregular case there is
no such a property, which complicates the theory somewhat.

Remark 4. Unfortunately, the spaces from nonregular rigging (11) of (L?), in particular, the
spaces of nonregular test and generalized functions in the Lévy analysis (except of the Gaus-
sian and Poissonian special cases, which, as mentioned above, we do not consider in this pa-
per), have the following unpleasant feature: not all operators and operations can be naturally
continued (respectively, restricted) from a narrower to a wider (respectively, from a wider to a
narrower) space. Specifically, a stochastic derivative and operators of stochastic differentiation
cannot be naturally continued from (LZ) to (H—xr)_ g7 an extended stochastic integral cannot
be naturally restricted from (L?) to (H+) o for elements of (H) C (H-+) the Wick product,
introduced on (H_+), does not belong to (H.), in general; etc. However, this problem has a
solution: one can introduce natural analogs of the stochastic derivative and of the operators of
stochastic differentiation on (H_<)_,, (H-<) and (D’) [27]; a natural analog of the extended
stochastic integral on (H<),, (H<) and (D) [27]; a natural Wick multiplication on (H) and
(D) (see below); etc.

The classical definition of a Wick product is based on a so-called S-transform. In particular,
for F,G € (H_r) we can define the Wick product FOG € (H_+) as FOG := S™Y(SF - SG),

where (SF)(A) := Y, 0< ") A®”> ,A € D¢ EW eyl T)C are the kernels from decomposi-

ext s Cr Lext
tion (13) for F (see [26]). But, as noted above such a definition is not appropriate for the spaces
(H+). Indeed, as established in [26], the Wick product on (7 _+) can be presented as

FOG: é < oM Z ext ext >:’ (15)

where a multiplication ¢ is a natural analog of the symmetric tensor multiplication on the
negative spaces from chains (12) (this multiplication will be introduced in Subection 4.1, see
42)), FY) € H% - and G Y
and G, respectively. But for fK) ¢ H®é‘: C 7-[( )C and g(" k) ¢ 7-[®” kc 7-[( C) we have
) o gn=k) o 7-[® , generally speaking, therefore fOg & (H+) for f,g € (H¢) C (H—¢) in the
general case. Nevertheless, a natural Wick product on (H.) can be defined using a suitable
analog of the S-transform. Namely, for f € (1) we set formally

€ 7-[( C) are the kernels from decompositions (13) for F

BHN) = ¥ (5,25, 6)

n=0

where A € D¢ and f € ’H@)g are the kernels from decomposition (9) for f. Note that, as in
the classical case, (5f)(0) = f©,51 =1.

Definition 3. For f1, ..., fu € (H) we define the Wick product f14 - - - # f,, by setting formally
Fi# =581 <§f1 ..... §fm) _
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It is easy to see that the Wick multiplication 4 is commutative, associative, distributive, and
for any & € C we have

(afi) 820 fu = f10(afo) - ®fyy =+
:fl“fmfl’ (fxfm) :‘X(fl”fm) E‘Xfl“fm

Remark 5. By the generalized and classical Cauchy-Bunyakovsky inequalities and (10) for each
A € D¢ and each q € Z, we have

EAMI L 1y W yen, = 1 (w27 2170 ) (02772 01 )

= 25gn | £(n)|? > |A|%"Zfr,c . |A|%"Z*T/C
<[ X P2 | f0 e | Y = £l | 2 <%
n=0 v n

= (n!)? 21" =6 ()% 2m

where H??C, n € IN, are the symmetric tensor powers of the complexifications of negative
spaces from chain (7) (these spaces are dual of H?E with respect to H% "), H@E’glc := C. Actu-
ally, Sf is a well-defined complex-valued function on D¢ foreach f € (H) (cf. [26]). Moreover,

it can be proved that for f1, ..., fm € (H+) the pointwise product of functions Sfi, ...,Sfm can
be decomposed in a pointwise convergent series of form (16).

Following the classical scheme of studying the Wick multiplication, let us write out a “coor-
dinate formula” for the Wick product on (), i.e. a representation of f,4 - - - 4 f;, via kernels
from decompositions (9) for f1, ..., fu. Direct calculation by analogy with the Meixner analy-
sis [22] gives the following result.

Proposition4. For fi,..., fm € (H:) we have

o0

fl“fm — Z:<o®n, Z f1(k1)®...®f’$1m)>:, (17)
n=0 kq,.km€Z
ki+-+km=n
in particular, for f,g € (H.) we get
[e°] n
fog= 0 :(o%, 3 fWEgnH). a8)
n=0 k=0

(cf. (15)). Here f].(kj) € Hfg,]’ € {1,...,mj}, are the kernels from decompositions (9) for f;;
JAlS Hgkz and g(”*k) € ’H?E’k are the kernels from the same decompositions for f and g,

respectively.

Note that formula (17) can be used as an alternative definition of the Wick product.

Further, it is clear that in order to give an informal sense to a notion “the Wick product”
(this is necessary for the construction of a meaningful theory), we have to study a question
about convergence of series (17) in the spaces (Hr).

Theorem 2. Let fi1,..., fu € (H:). Then f14--- &f, € (H<). Moreover, the Wick multiplica-
tion is continuous in the sense that for any q € Z. we have

I $fullgun, < \[max 27k D" WA, Wil (09

where q1 > q + 2log, m + 1.
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Proof. 1t is clear that it is sufficient to establish estimate (19). One can make this by direct

calculation by using (9), (17), (10) and the estimate | fl(kl)® e ® fr%km) }T <[k }T ----- | fr% )
which follows from the definition of the symmetric tensor multiplication, by analogy with the
proof of Theorem 2.1 in [21]. O

Remark 6. In the case m = 2 estimate (19) reduces to

/182020y, < Al gy, 12010y, o (20)
)g oy oy

q1 > q + 3. Using this result and the associativity of the Wick multiplication, one can prove by
the mathematical induction method that for fi, ..., fu € (H) and any q € Z we get
119 $fullgen, < Wil 12w, - Wnall, Wl

m—1

whereq; > q; 1 +3,1€{1,...,m—1},q0 := g (cf. [25, Remark 7]).

Finally, we note that by analogy with the regular case [25] (see also [21]) one can introduce
so-called Wick versions of holomorphic functions on (H.). Namely, let f € (H;)and h: C — C
be a holomorphic at (Sf)(0) function. We define a Wick version of 1 as

W (f) == §h(SF).

It is not difficult to verify that 1* can be presented in the form
= Y (= (5O, @
n=0

where f := f¢---#f, f% :=1, h, € C are the coefficients from the Taylor decomposition

n times

i (u— Sf )) (22)

(cf. [25]). It follows from Theorem 2 and (21), that for a polynomial h and a test function f € (H+)
we have h*(f) € (H.). But, unfortunately, in a general case for f € (#.) and a holomor-
phic at (§ £)(0) function & : C — C h*(f) may not belong to (H-) (however, one can prove
that h*(f) € (H.) if f € (H.) is a polynomial, i.e. decomposition (9) for f contains only a
finite number of nonzero terms, and coefficients h, from decomposition (22) for h tend to
zero quickly enough as n — ©0). Actually, properties of Wick versions of holomorphic func-
tions on the spaces of test functions are quite similar in the nonregular and regular cases. So,
the interested reader can find more information in [25] (see also [21]), here we only note that
the spaces (#.) correspond to the space of regular test functions with the parameter f = 1
(cf. Remark 3), in this case Wick versions of holomorphic functions, unfortunately, have, in a
sense, the worst properties.

3 The relationship between Wick multiplication and integration

3.1 Generalized stochastic integral

Denote by [ o 1)dL, the extended stochastic integral on (L?) ® Hc with respect to a Lévy
process L [23]. As it has been stated above (see Remark 4), this integral cannot be naturally
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restricted to the spaces of nonregular test functions: for f € (H:) ® H.c C (L?) ® Hc the
integral [ f(u u)dL, is not necessary a nonregular test function. One can show that for any
T € Tand g € Z; such that g > log, ¢(7), where ¢(7) > 0 is described in Proposition 1,
if f € (He)y ® Hee then [ f(w)dL, € (L?); and for g sufficiently large, in particular,
if f e (He) ® H. ¢, this integral is a reqular test function. Nevertheless, it is possible to in-
troduce on the spaces of nonregular test functions a linear operator that has properties quite
analogous to the properties of the extended stochastic integral. Now we recall the construction
of such an operator, which will be called a generalized stochastic integral, following [27].

Letl: (M), — EB (n!)*2 q”?—[®" be the generalized Wiener-It6-Sigal isometrical isomor-

phism, generated by decompos1t10n ) (see also (10)) 1: H,c — Hrc be the identity opera-
tor. For each f ’H®g ® Hrc,n € Z, we define a Wick monomial by

:<o®",f‘(”)> Y 1g1)! (0 ...,o,f‘(”),o,...) € (M), ® Hrc. (23)

n

By analogy with the regular case [14], it is easy to prove that such Wick monomials form
orthogonal bases in the spaces (#+) g @ Hrc in the sense that any f € (H) g ® M can be
uniquely presented as

fO =Y (o™ (s f e HTE @ M, (24)

n=0
where the series converges in () q ® H.c, with

(e 9]

) 2
”f”%m)q@m,c =) (n1)% 24" f‘( )|

, < ©0. 25
n=0 H‘?E@HEC ( )

Definition 4. We define a generalized stochastic integral

/o(u)[fiVLu : (HT)q+1 ®HT,C — (HT)q

as a linear continuous operator given for f € (HT)q 11 ® Hec by the formula
/f dLu = < o®n+1 f(n > (26)

where f") := Pr f,(”) € ’H?EH are the orthoprojections onto ’H?EH, i.e. the symmetrizations

by all variables, of the kernels f,(n) € H?E ® H+ ¢ from decomposition (24) for f.

By (26), (10), the obvious estimate ‘f(") }H@%nﬂ < ‘ f.(n) and (25), we get
7,C

H/f(u)ézlu ;

}IH-?,‘%@,HT,C

(e 9]

Z 1’l—|—1 )zanrl )j’c\(n

H®n+1

(n)|?

Z 1’1' 22 q+1 |: n+1)22—n:|
n=0 HOLDH

_2 2
<9. 21 ||f”(HT)q+l®7'[T,C/

so this definition is well-posed. It is clear that the restriction of the operator [ o( u)dLy to the
space (Hr) ® Hrc is a linear continuous operator acting from (H.) ® H. ¢ to (H~ )
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3.2 Wick multiplication under the sign of the generalized stochastic integral

As is known, some properties of stochastic integrals are quite unusual. In particular, for
f € (L?) and h(Y) € Hc such that f @ h(1) is integrable with respect to a Lévy process L in the
extended sense we have

[ (For) wiL,= [ f-x0 L, # 7 [H0

generally speaking, although f does not depend on u. Moreover, in general, the product
f-[nt u)dL, is undefined. This property of the extended stochastic integral holds true if f
is a regular test or generalized function, or a nonregular generalized function. But if one uses
the Wick multiplication instead of the pointwise multiplication, it becomes possible to take a
time-independent, i.e. independent on u, multiplier out of the sign of the extended stochastic
integral, as in the Lebesgue integration theory. The same can be said about the generalized
stochastic integral, now we will explain this in detail.

Let us begin with a preparation. We need to introduce a Wick product for elements of ()

and (H:) @ H.c. Letn,m € Z, f") € H?E, g,(m) € ’H?g ® Hc. We put
fOEg™ = (Pra) (F) @ ™) € HiE™ @ Hee, @)

where Pr ® 1 is the orthoprojector acting from H®g ® ”H®g ® Hec to H§g+m ® H ¢ or, which
is the same, the operator of symmetrization by n + m variables, except for the variable “-”
(of course, this operator depends on n and m, but we simplify the nonation). Clearly that

B gy <1 il hugpon )
and for f") ¢ H?g,g(’“) € 7—[®C and h(V) € ;¢ we have
fng <g(m) ® h(1)> _ (f(n)@)g(m)) o hM ¢ 7‘£§E+m ® Hec. (29)

Now we can accept the following definition based on “coordinate formula” (18).

Definition 5. Let f € (H+), g € (H:) @ H,c. We define a Wick product f4g € (H:) @ H.c,
setting

(f?g)() = i :<o®”,éf(k)®g.(n_k)> : (30)

n=0
where f (k) ¢ 7—[%": and g.(nfk) € H%gfk ® Hc are the kernels from decompositions (9) and
(24) for f and g, respectively.

Using estimate (28), one can prove by analogy with [21], that this definition is well-posed
and the Wick multiplication ¢ is continuous in the sense that forall f € (H), g € (H+) @ Hc
and q,q; € Z4 such that q; > g + 3 we have

Hf‘gH(HT)q@HW < Ml ey, N8N 2, @2
(cf. (20)).
Remark 7. Let f,g € (H), hV) € H_¢. Using (30), (29) and (18), one can show that
fe(g@hl) = (fog) @b € (Hr) @ Hee (31)
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Theorem 3. Let f € (H.) and g € (H+) ® H,c. Then

[ (F8) (L, = 7 [ glu)dLy € (). )

Proof. First, we note that the expressions in the left hand side and in the right hand side of (32)
belong to (H+), this follows from the properties of the generalized stochastic integral and of the
Wick multiplications 4 and 4. Now, let us prove equality (32). We begin from the special case

f= :<o®”, f(”)> L e() = ;<O®M, g.(’”)> L f e 1, ¢ € HEW @ Hoe, n,m € Z.. By (30),
we have (£8g) () = : (0741, g™ ) hence [ (Fg) (W)L, = : (o+m41, firigg™).
(see (26)). On the other hand, by (26) we have [ g(u)dL, = ;<o®m+1, g m>>:, therefore
by (18) we obtain f# [ g(u)dL, = ;<o®n+m+1, Fn@g m>>:. So, we have to prove that

—

f W@g.(m) = (&g in H§E+m+1. But this follows from the properties of orthoprojectors
(it does not matter in which order to symmetrize functions). Thus, in our special case the
statement of the theorem is proved. In the general case, equality (32) follows from the just
proved result, continuity of the Wick multiplications ¢ and #, and continuity of the genera-
lized stochastic integral. O

Remark 8. One can interpret g as a function on R with values in (H.) and, taking into ac-
count the construction of the Wick multiplications 4 and #, rewrite equality (32) in a classical

form [ f#g(u)dL, = & [ g(u)dL,.

3.3 Wick multiplication under the sign of a Pettis integral

As in the regular case [25], let us obtain an analog of property (32) for a Pettis integral (a
weak integral) on the spaces of nonregular test functions.
First, we consider the Pettis integral over a set of finite Lebesgue measure p.

Definition 6. ForallA € B (Ry) withp(A) < oo and g € (H:) ® Hc we define a Pettis integral
[\ g(u)du € (H.) as a unique element of (1) such that for each F € (1 _.) we have

(r /Ag<u>du>>(L2) — (F® Lo 8D yone 3)

By the generalized Cauchy-Bunyakovsky inequality, for any g € IN, () (see Proposition 2)

such that F € (H_)_, we have

(F 21080 2y0me| < 1Bl OB Igl ) e

therefore this definition is well-posed and a Pettis integral
/A o(u)du : (He) ® He — (He) (34)

is a linear continuous operator.
Let us show that

/A<f®h(1)) (u)du = /Af-h(l)(u)du :f'/Ah(l)(u)du (35)

for arbitrary f € (H) and h()) € Hc.
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Indeed, for each F € (H_+) by (33) we have
ALY _ (1)
<<F'/Af " (u)du>>(p.) - <<F ®lafoh >>(L2)®7‘lc
{(F, f) 12 s u)du = <<F f- s >> )
L / / (LZ)

Further, let f € (H:), § € (H:) ® He. One can show as in Subsection 3.1 that g can

be decomposed in series (24) with kernels g.(n) € H?E ® Hc and Wick monomials defined
by formula (23) with the identity operator 1 : 7‘[02 — Hc. Define a Wick product
f#g € (H:) ® Hc by formula (30) (it is clear that now in the definition of the tensor mul-
tiplication ® (27) an operator Pr ® 1 is the orthoprojector acting from 7-[ c® 7-[®E” ® Hc to

H§E+m ® Hc). Since, obviously, this multiplication is a natural extensmn of multiplication

(30) (so we keep for it the designation ¢), everything said above about multiplication (30)
holds true up to obvious modifications.
Letnow f,g € (H.) and 1)) € H¢. Using equalities (31) and (35) we obtain

[ (F8gon))(du = [ ((rog) 1) w)du = [ (r4g) -1 (w)du

= (f43) /h u)du = f4 (g-/Ah(l)(u)du>
ZfQ/Ag-h (u)du EfO/A (g @ nW) (u)du.

Hence, by virtue of continuity of the Wick multiplications ¢ and ¢, and continuity of Pettis
integral (34), we obtain the following statement (cf. Theorem 3).

Theorem 4. Let A € B (R4) be such that p(A) < oo, f € (Hr) and g € (Hr) ® H¢. Then

[ (788 (w)du = £o [ glwdu € (3:). (36)

Note that, as in the case of the generalized stochastic integral, one can interpret g as a func-
tion acting from Ry to (%), and rewrite (36) in a classical form [, f#g(u)du = f [, g(u)du
Now, we consider a Pettis integral over a set of infinite Lebesgue measure.

Definition 7 (cf. Definition 6). Let A € B (IR4) be such that p(A) = oo, and g € (H:) ® Hc¢
satisfy the condition

e Nyw [ 18] gy du < oo @)

(here we interpret g as a function acting from R to (H-)).
Define a Pettis integral [, g(u)du € (H.) as a unique element of () such that for each
F € (H_+) equality (33) is fulfilled.

The well-posedness of this definition follows from the estimate (see (33))
— | [ s gzt < [ [ g0 )
<Pl [, N800

(F ®1a,8) (12)2Hc
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(here we used the generalized Cauchy-Bunyakovsky inequality), where g € N () is such that
Fe(H ),

By approximation the Pettis integral over a set of infinite Lebesgue measure by Pettis inte-
grals over sets of finite Lebesgue measure, quite analogously to the regular case [25] one can
prove the following statement (cf. Theorem 4).

Theorem 5. Let A € B (IRy) be such that p(A) = oo, f € (Hr) and § € (Hr) ® Hc satisfy
condition (37). Then representation (36) is fulfilled.

Remark 9. Since H, ¢ C Hc, then, of course, it is possible to consider the Pettis integral on the
spaces (Hr) ® Hrc C (H+) ® Hc. It is clear that all the above statements hold true for this
integral.

3.4 Representation of the generalized stochastic integral via the Pettis integral

As is known, in different versions of the infinite-dimensional white noise analysis an ex-
tended stochastic integral can be presented as a Pettis integral from a Wick product of the
original integrand by the corresponding white noise. In particular, in the Lévy analysis this
representation has the form

/ Fu)dLy = / F(u)OLudu, (38)

where L is a Lévy white noise. Depending on spaces in which integration is considered,
equality (38) can be formal (e.g., on the spaces of regular test and generalized functions, see [25]
and [13], respectively) or can have a rigorous sense (e.g., on the spaces of nonregular gener-
alized functions, see [29]). In any case this equality is very useful for applications. Note that,
in a sense, representation (38) is an analog of a formula for replacement of a measure in the
Lebesgue integration theory (in particular, L is an analog of a Radon-Nikodym derivative).

Let us obtain a natural analog of representation (38) for the generalized stochastic integral.
As noted in Subsection 1.1, a Lévy white noise L can be presented as L, (o) = (o, 4,), where
6, is the Dirac delta-function, concentrated at u. Since for each u € R (and for each T € T)
0y € H_rc,foreachq € ]N%(T) (see Proposition 2) (o, d,) = :<o,5u>: € (H—r),q, i.e. the Lévy
white noise can be considered as a function on R} with values in a space of nonregular gen-
eralized functions (so, as noted above, in the analysis on the spaces of nonregular generalized
functions representation (38) has a rigorous sense). At the same time 6, € H. ¢, T € T, there-
fore L, is not a nonregular test function and, as in the regular case, the analog of representation
(38) in the analysis on the spaces of nonregular test functions turns out to be a formal.

Theorem 6. For arbitrary f € (H.) @ H.c the generalized stochastic integral [ f (u)dNLu can
be formally presented as

/f(u)éz“Lu - /f(u)oLudu = /f(u)o<o,5u>du € (Hq), (39)

where the integral in the right hand side is a formal Pettis integral over the set R ;.

Remark 10. It is clear that in the right hand side of (39) f is interpreted as a function on R ¢
with valuses in (H.) (a similar remark is true for representation (38)).
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Proof. Let f € (H+) ® Hc. Using (formally) (18), we obtain
/f(u)OLuduE/f(u) (0,8y) du—/f o §u>:du
[y : o®”+1,fu" Ry Yidu =Y (@M fbg”)@éudu .
IR = 3 o(eon, | )

n=0
But
~ 1
e (£ SR L O R i CHRER LA COR TR i CRPRR LA CH)
hence

n)= 1 n n n
/fb(l )®5ud14:n—_{_1<f( )(1,,n)+f(1)(2,,n,)++f(n)(,1,,n,1)>
— P?’f.(n) :f(n)’

and therefore [ f(u)#Ly,du = Of; < o®ntl fln) > = [ f(u)dL, (see Definition 4). O
0

n=

4 The relationship between Wick multiplication and stochastic differenti-
ation

4.1 Operators of stochastic differentiation

In different versions of the white noise analysis one can introduce and study so-called oper-
ators of stochastic differentiation on spaces of test and generalized functions. These operators
are closely related with stochastic integrals and derivatives, and can be used, in particular, in
order to study properties of stochastic integrals and properties of solutions of certain stochas-
tic equations. In this subsection, we recall the definition of the mentioned operators on the
spaces of nonregular test functions, following [28].

Let us start with the necessary preparation. Consider a family of chains

DL 5 SHI O HI = IR DOHEL O DY, neZ. (40)

(as is known, H?ZC and Déj@” = ind lim 7-[®” are the spaces dual of 7-[®" and D®” with
’ TeT

respect to ’H% ", in the case n = 0 all spaces from chain (40) are equal to C). Since the spaces of
test functions in chains (40) and (12) coincide, there exists a family of natural isomorphisms

u, : D" — pLo"

such that for all F") € Do’:(") and ) ¢ D%" we have

ext
(Feid f0) = (Ul £). (41)
(n)

It is easy to verify that the restrictions of U, to H_ - are isometric isomorphisms between the
spaces 7-[( )C and 7-[®

Remark 11. Remind that?—[( ) —

oxt = Hc, therefore in the case n = 1 chains (40) and (12) coincide.

Hence U, is the identity operator on Dq’:(l) = D¢. In the case n = 0, Uy is, obviously, the
identity operator on C.
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Now we can define a natural analog of the symmetric tensor multiplication on the negative
()GH() LG eyl )C,nm€Z+ We put

ext ext

spaces of chains (12). Let F

F0) o gtm) . -1

ext ext n—+m

(r2) & (unGley) | e o @)

(recall (15)). It is easy to verify that a multiplication ¢ is commutative, associative and dis-
tributive; for any « € C we have

<“Fe(xt)) © Gegxt) - e(xt) <“G§xt)) =& < e(xt) © Ge(xt)> =& e(xt) © Ge(xt)’

and
G(m)

ext

E)) 6 )

ext ext

, (43)

ext

(0
<[k )’H“’c

(n+m) ,H(m)
. 7,C -7,C
see [28] for more details.

Let now F(xt) € 7-[( EC, f(m) € ’H?g, neZy,meN, m>n Wedefine a generalized
partial pairing < EW f(m)> , € H?g_” by setting
ex 4

ext”’
<G§Z§”)f <FE‘(;f)’f(m)>ext > - <Fe(xt) oGy n),f(m)>ext (44)
ext
for any Ge(xt " ¢ H(Ii;:"). By the generalized Cauchy-Bunyakovsky inequality and (43), we get
(Rl ol f) | < [l o Gy (7],
() (m—n)
S Fext H@C Gext H(jl}:”) f(m) ’H&’g s
which implies that this definition is well-posed and
(n) (n)
' <Fext 'f(M)>ext o < | Fext Ho )f(m) Hom” (45)
7,C ! !

ext ”

Remark 12. We recall that in the case m = n € Z the pairings < FW f (”)> , are defined in
ex

Subsection 1.3 as the real dual pairings between elements of negative and positive spaces from
chains (12), now estimate (45) holds true because it is nothing but the generalized Cauchy-
Bunyakovsky inequality.

ext

(D7) (F4/) : (Me), = (o), by setting

Definition 8. Let n € N and F") ¢ ’HS”T)C. Let us define a linear continuous operator

o]

(0"f) (B) = ¥ _m < oBm=n <p€<gt>,f(m>>ext>;, fe (M), (46)

m=n (Wl o 1’1)'
where f(") ¢ H%&” are the kernels from decomposition (9) for f.

Using estimate (45) one can show that this definition is well-posed. Clearly that the restric-

tion of the operator (D"o) (Fe(xt)) to the space (H+) is a linear continuous operator on (Hr).

The interested reader can find more information about operators of stochastic differentiation
on the spaces of nonregular test functions in [28].
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4.2 The Leibnitz rule

One of the important properties of the operators of stochastic differentiation in the Lévy
analysis (as well as in other versions of the white noise analysis) is that the operator of stochas-
tic differentiation of first order is a differentiation, i.e. satisfies the Leibnitz rule, with respect
to the Wick multiplication. For the above operator on the spaces of regular test and generalized
functions this fact is established in [25] and [12], respectively, on the spaces of nonregular gen-
eralized functions — in [26]. Now our goal is to obtain the corresponding result on the spaces
of nonregular test functions (H+).

Let F) = F) ¢ H(_lilc = H_,c. Denote (Do) <F(1)> := (D'o) <F(1)>. For arbitrary

ext

f e (He) according to (46) we obtain
o®m—1 (1) g(m) )
(Df) (FM) = §:m<® ,(FO, f >ext>., (47)

where (") ¢ Hf‘%’ are the kernels from decomposition (9) for f.

Theorem 7. The operator of stochastic differentiation of first order on (H.) is a differenti-
ation, i.e. satisfies the Leibnitz rule, with respect to the Wick multiplication, that is for all
f,g € (Hr) and FV) € H_ ¢ we have

(D(f42)) (FM) = (Df) (FV)) 03+ f4(Dg) (FV) € (o). (48)
Remark 13. Since, in contrast to the regular case, the constructions of the Wick product (as well

as of the operators of stochastic differentiation) on the spaces (H—.) and (H.) are different,
we cannot use the corresponding result from [26] and have to prove (48) directly.

Proof. First we note that the expressions in the left hand side and in the right hand side of
(48) belong to (H+), this follows from the properties of the operator D and Theorem 2. Now,

let us prove equality (48). Note, that if f = < 0®0, (0 >: = fO cCorg = :<o®0,g(0)>: =
¢'% € C, then equality (48) trivially holds. We begin from the special case f = : <O®”, f (”)> 5

g = :<o®m,g(m)> : f(”) € ’H?E, g(m) € H%&”, n,m € N . Let F(U be an arbitrary element of
H_+ c. By (18) and (47) we obtain

feg= < omtm f(n)gqlm )> : (D (f’g)) (F(l)) = (n+m): <o®”+'"1, <F(1),f(”)®g(m)>ext > :
(DY) <F(1 ) =n <o®”_1, <F(1),f(”)>gxt>:, (Df) (F(1)> 4g = <o®”+m_1, <F(1),f(”)>gxt @g(m)> 5

(Dg) (FV) = m: (04, (FI0,g™) Y, ro(Dg) (FIV) = m: (054, 70 (F0,g0) .

So, we have to prove that
(1) () & o (m) — (1) £(n) 2 olm) (Mg (M) olm)
(n+m) (FO, f" &g >xt—n<F f > &g +mf" @ (F), g >t (49)

Since the set { Gontm=1.GecH_. C} is total in the space H®”+m ! in order to prove (49) it is
sufficient to prove that for each G € H_, ¢ we have

(n+ m)<c®"+m1, <P<1>, f(")®g(m)> t> = n<c®n+m1, <p<1), f(n>> t®g<m)>

(50)
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Using (41), (42), (44) and considering that U; = 1 (see Remark 11), we obtain

(n+m) <G®n+m—1, <F(1>,f(n>®g(m)>€xt > =(n+ m)<llnim 1G®”+m_1, <F(1),f(n)®g(m)>eﬂ >

ext

(n+m)(FV o (Ut GO, f<n>®g(m>>

<u SGentm- 1} f(n)®g(m)>
ext

F G®n+m 1f ®g )>

ext (51)
n+m
n+m

entm=1 [p(1) £(n)\ G, m)
1’Z<G I<F ’f >ext®g >

e o) o ), ) (6

n{ UG, (P, o) t> (Gom,gtm)
XL/ ext

(
n<F un L Gon- 1) f(n)> <G®m,g(m)>
(|

ext

u; 1 O Yelcks 1] ,f(n)> <G®m1g(m)> S <F(1)®G®"71,f(”)> <G®m,g(m)>

= (FM (1) G (2)++- G () + FD (2) G (3) -+ G () G (1)
+. +p()( W) G (1) G (pen), f (- > Gem m>
= (F( G(n)Gons1) -G lonam) TP (2)G(3) - Gn)G(1) Gt - Glowem)
+e +F( )( )G('l)"'G('nfl)G( n+1) ( n+m)/f ( ‘n)g(m)(‘n+1/---/‘n+m)>r
<G®n+m 1 f F > > — m<G®n+m 1 f <F(1),g(’”)> t>

= G®n F u G®m l) g(m)>
ext
:m G®n PO~ F(l e 1} g(m)> <G®n I )> <F( JBGEm-1 o )>
ext
= < ><F(1 n41)G(nt2) - Glongm) + F( )( n+2)G(nt3) G(ntm)G(ont1)
+ - +F( )( n+m)G( n+1) G( n+m 1) g(m)('n-H/ ’ n+m)>

= < ) E (n1)Gns2) - Glnm)
+ ( ) G( )F( )( n+2)G('n+3) e G(‘n+m)G('n+1)

+eee G('l)' o G('H)F(l)('n+m)G('n+1)‘ : ‘G('n+m—1)/f(n)(‘1/ teey 'n)g(m)(‘nH/ ceey 'n+m)>,
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therefore

n<G®n+m—1’ <F(1)’f(n)>ext ®g(m)> + m<G®n+m—1,f(n)® <F(1)’g(ﬂl)>ext >

= (n+m) <F(1)®G®n+m—1’f(n) ®g(m)> = (n+m) <F(1)®G®n+m—1’f(n)®g(m)> )

whence, by virtue of (51), equality (50) follows. Thus, in our special case equality (48) is proved.
In the general case, (48) follows from this result and from linearity and continuity of the oper-
ator of stochastic differentiation and of the Wick multiplication on (). O

Remark 14. Let f € (H;) and h : C — C be a holomorphic at (Sf)(0) function such that

its Wick version h*(f) belongs to (H:) (recall Section 2). It can be proved that in this case

W ‘( f) € (M) and the following corollary of Theorem 7 is true: for any F() € H_. ¢ we have

(D (£)) (FY) = W (£)$(DA) (FD) € (),
here and above ' ‘( f) is the Wick version of the usual derivative of a function h.

Finally, we note that all results of this paper hold true (up to obvious modifications) if we
consider the space (D) instead of (H) (recall chain (11)).
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Kauanoscpxint M.O. Bixiscoke MHOMCEHHS ma 11020 38"930K 3 iHmMe2PpYBaHHIM Ma CroxXacmuvHum oudge-
PEHYII08AHHIM HA NPOCTHOPAX HepeyNapHUX 0CHOBHUX (pyHKyill 8 ananisi 6inozo wymy Aesi // Kapmat-
cbKi MaTeM. my6A. — 2024. — T.16, Nel. — C. 61-83.

Mu mpairfoeMo 3 IpOCTOpaMy HePeTyASPHUX OCHOBHUX (PYHKII B aHaAisi 6iroro mymy Ae-
Bi, HOOYAOBaHVMM 3 BUKOPVCTAHHSIM y3araAbHEHHS BAACTVMBOCTI XaOTMYHOTO PO3KAAAY, 3aIpOIo-
HoBaHOro €.B. AursuHOBMM. Hallioro MeToro € BUBUEHHSI BAACTMBOCTel IPUMPOAHOTO MHOXEHHS —
BiKiBChKOTO MHOXKEHHST Ha IVIX ITPOCTOPaXx, a TAKOX OMMC B3a€MO3B’ 13Ky LIbOrO MHOXKEHHSI 3 iHTerpy-
BaHHSIM Ta CTOXaCTUUIHMM AM(pepeHIiIOBaHHSIM. BiABII TOUHO, MM BCTAHOBAIOEMO, IO BiKiBCHKIIA
AOBYTOK HeperyAsipHMX OCHOBHMX (PYHKIIIN € HepeTryAsIpHOIO OCHOBHOKO (PYHKITI€I0; TTOKa3yeMO,
110, BUKOPVICTOBYIOUM BiKiBChbKe MHOKEHHSI, MO>KHa BMHOCUTI He3aAeXXHII Bia 9acy MHOXKHMIK 3-TTiA
3HAKy y3araAbHEHOIO CTOXaCTUMYHOIO iHTerpaAa; BCTAHOBAIOEMO aHAAOL LIbOTO Pe3yAbTaTy AAS iH-
Terpana Ilerrica (caabkoro iHTerpana); OTpMMyeMO IIpeACTaBAEHHS Y3aTaAbHEHOTO CTOXaCTUIHOTO
inTerpana yepe3s dppopmarbHMII inTerpan Ilerrica Bia BikiBcbkoro A06yTKY BMXiAHOI miAIHTerpaAbHOT
dyukii Ha 6iAvit ITym AeBi; Ta AOBOAMMO, IIIO OIIEPAaTOP CTOXaCTMIHOTO AVdpepeHIIifoBaHHS Iep-
IIIOTO MOPSIAKY Ha IPOCTOpaxX HeperyAsipHMX OCHOBHMX (DYHKIIN 3aA0BOABHSIE IpaBUAO AetibHira
BiAHOCHO BiKiBChKOT'O MHOXKEHHSI.

Kntouosi cnoea i ¢ppasu: mpouec Aesi, BiKiBCbKIIT AODYTOK, CTOXaCTMUHWIA iHTerpaa, iHTerpan
INeTTica, omepaTOp CTOXaCTUIHOTO AVIdPepeHIIiIOBaHHS.



