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A uniqueness theorem for Sturm-Liouville equations with a
spectral parameter nonlinearly contained in the boundary
condition

Farzullazadeh R.G.!, Mamedov Kh.R.?

In this work, we consider the inverse scattering problem for Sturm-Liouville equation on the
semi-infinite interval with a nonlinear spectral parameter in the boundary condition. The scattering
data of the problem is defined and the properties of the scattering data are investigated. The funda-
mental equation is obtained and uniqueness of the algorithm to the potential with given scattering
data is studied.
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1 Introduction

On the half line [0, o), we consider the differential equation
—2" + p(x)z = A%z (1)

and the boundary condition

<0c0 + az)@) 2/(0) — (;30 + B + [SZAZ) 2(0) = 0. )

Here p(x) is a real valued function satisfying the condition

/0°°(1+x)\p(x)\dx<oo, 3)

A is a complex parameter, &, [3]-, j =0,1,2, are real numbers and g, ap, Bo > 0.

Boundary value problem with spectral parameter dependence in the boundary condition
may come across in problems as well as in applications. The physical applications of these
types of boundary value problems on the half line [0, c0) are given in [1,12,13,15].

In this paper, we study the inverse scattering problem for the equation (1) with spectral pa-
rameter contained in the boundary condition. We note that direct and inverse scattering prob-
lems for the boundary value problem in the case ay = f1 = B2 = 0 are completely solved
in [3,4,11]. Also, when spectral parameter contained in the boundary condition was investi-
gated in [2,6-10,16].
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Note that, as different from the previous work (different from the self-adjoint case) the
zeros of the Jost function do not lie on the imaginary axis, lie on the complex plane and these
zeros are not simple or the boundary value problem (1)—-(3) may have complex eigenvalues.

Depending on the coefficients in the boundary condition, selfadjoint and nonselfadjoint
cases are encountered. Therefore, when solving the problem, it is necessary to use different
methods.

It is well known from [11] if the condition (3) is satisfied, then (for all Im A > 0 ) exists a
unique solution f(x, A) regular (with respect to A) in half plane Im A > 0, continuous on the
real line and can be expressed as

f(x,A) = e +/ K(x, t)eMdt. 4)
X
The kernel K(x, t) satisfies the inequality

s <3 (5ol -n (5

and satisfies the equality

o

K@J):%A p(t)dt, 5)

where

amz/}mm@ M@E/U@ﬁ
Moreover, the function f(x, A) has the following properties in Im A > 0 (see [11])
|f(x, )| <exp{—ImAx+cq(x)}, (6)

‘f(x, A) . ei/\x

< {Ul(x) -0 <x~|— %) } exp{ —ImAx +0q(x)}, (7)

f(x,A) —ire™| < o(x)exp { —Im Ax + 09 (x)}. (8)

Using the above properties it was shown for real A # 0 the functions f(x,A) and

f(x,A) = f(x, —A) form a fundamental system of solutions of the equation (1) and their Wron-
skian is independent of variable x and is equal to 2iA (see [11, p. 168]), i.e.

W{f(xA), fx, A} = f1(x, M f(x,A) = fx A)ff (3, A) = 2iA ©)
Denote by ¢(x, A) the solution of the equation (1) satisfying the initial-value conditions
¢(0,A) = &g +aA%,  ¢'(0,A) = Bo + B1A + BaA>. (10)

Let
E(A) = <0c0 + az)@) F1(0,7) — (;30 +BiA+ [SZA2> £(0,1),

Ei(A) = <0c0 n a2A2> £1(0,-A) — <,30 + B+ ,82A2> £(0,—0).
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2 Scattering data

Now we introduce the scattering data for the boundary value problem.
Lemma 1. For any real A # 0 the inequality E(A) # 0 holds.

Proof. Assume the contrary. Let E(Ag) = 0 for Ag € R, Ag # 0. Then

+ B1Ao + PaAj
(0, 1) = PO 0£(0, Ag). 1
£(0,A9) %0+ A2 f(0,20) (11)
From (9) and (11) we have
Bo + Brro + BaAG == Po+ BiAo + BoAf :
0,A 0,Ag) — 0,A 0,Ap) = 2iA
%0+ 622 £(0,20)£(0,A0) %0 + 122 f(0,40)£(0, Ag) = 2iAg
or 0 = 2iAg. This is a contradiction for Ay # 0. Lemma 1 is proved. O
Lemma 2. The identity
2iAp(x,A)
RN f(x,=A) =S(A)f(x, A) (12)
holds for real A # 0, where
_E(W)
S(A) = E(A) (13)
Moreover,
s =1.

Proof. Since two functions f(x,A) and f(x, —A) form a fundamental system of solutions to the
equation (1) for all real A # 0, we can write

¢(x,A) = c1(A)f(x,A) +ca(A)f(x, =A). (14)

Using (9) and the initial data (10), we obtain

Ei(A E(A
ald) = - ;EA)’ 2(A) = 2(1'}\)'
After substituting ¢1(A) and cp(A) in (14), we get
Ei(A E(A
o) =~ g2y E gy, (15)

By Lemma 1 for real A # 0, E(A) # 0. Then dividing (15) by %E(A), we obtain (12), which
can be expressed as (13). Since

E(A) = (a0 +aA2) F(0,4) — (o + B + B2A%) F(0,2)
= (w0 +22) £(0,=A) = (Bo + B1A + B2A?) £(0,~A) = Ea(A),

then clearly, implies that [S(A)| = 1. Lemma 2 is proved. O

The function S(A) is called the scattering function of the boundary value problem (1)—(3).
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Lemma 3. The function E(A) may have only a finite number of zeros in the half planeIm A > 0.
The function A [E(A)] ! is bounded in a neighborhood point A = 0.

Proof. Since E(A) # 0 for A € R, A # 0, the point A = 0 is possible real zero of the function
E(A). It follows from the analyticity of the function E(A) on upper half plane. Zeros of E(A)
form at the most countable set. Let us show that this setis bounded. We assume that E (A;) =0
and |Ag| — o0 as k — oco. Then we have

+51Ak+52}\2
'(0,A _Po kf£(0,A).
F0m) = T 0

For x = 0 and A = A; it follows from (8) that

Bo + B1Ax + B2A? .
0,Ar) —iAg| < o(0 0)}.
DT OA) ik < o0 (310)
From here,
Bo + BiAx + BaAZ
Al < 0,A 0 0)}.
< [PPSR 00 |+ e0) oxp (010}

Since |Ag| — oo as k — oo, then it follows from (6) and (7) that f (0, Ax) = 1 as k — oo. The
resulting contradiction shows that the set {A;} is bounded. Therefore, the zeros of E(A) form
at most countable and bounded set having A = 0 as the possible limit point.

Now let us show that the function E(A) may have a finite number of zeros A = A,,
n=1,2,.... Then the function z, = z (x, A,,) satisfies the equation
—2, + p(X)zn = Ajzn (16)

and the boundary condition

((xo + rxz)\%> 2 (0) — <ﬁo + Bidn + ﬁZAﬁ) 2,(0) = 0. (17)

Let us multiply both sides of the equation (16) by z, and integrate this equation over x
from 0 to co. In this connection, using (17) and integrating by parts, we have

+ B1Au + B2A;
n

where
L (2, 20) :/0 (12 + p(x) yzn,2> dx = @ (2,), (zw20) = 1.

Investigating the roots of the equation (18) of the fourth degree (applying Vieta’s theo-
rem) and taking into account the conditions on the coefficients (ag, ap, Bo > 0), we obtain
D(z,) <0,n=12,....

From the asymptotic formulas (as x — oo0) for the solutions of equation (1) it follows that
the system {z,(x)};_; of functions is linearly independent (see [14, p. 445]).

Now, we construct the following series of functions

uj(x) = ajzj(x) + bjzj;1(x), j=12,...,
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where aj, b]-, j = 1,2,..., are complex numbers and can be chosen such that the condition
u;(0) = 0 holds. In this case, we shall show that the functions u;(x) are linearly independent.
Thus, the relations

—ul + p(x)uy = Apiiy,

u,(0) =0
hold.
Denote by L, the operator in the space L, (0, o) acting as Lyz = —z" + p(x)z on the domain
D (L)) = {z(x) : Z'(x) € AC[0,00), —z" + p(x)z € L,(0,0) =0}.

From this it follows that u, (x) € D (L)) and (Ljuy, u,) < 0. We obtain that the operator L, has
only an infinite number of negative eigenvalues. But this is impossible due to the condition (3)
on p(x) (see [11]). Consequently, we obtain a contradiction. It follows that the function E(A)
may have a finite number of zeros in upper half plane Im A > 0.

Similarly to [11, Lemma 3.1.3], it is obtained that the function A [E(A)] ~!is bounded in half
sphere {A : |[A| < p,Im A > 0}. Lemma 3 is proved. O

Corollary 1. The zeros of the function E(A) and E1(A) are complex conjugate each other and
the number of these zeros is equal.

Proof. According to Lemma 3 the function E(A) in upper half plane Im A > 0 has finitely many
zeros Aj, j = 1,2,...,n. From the properties f (0,4;) = f (0,—A;), ' (0,4;) = f' (0,—4A;) of
the function f(x, A) we have

E(N) = (wo+@A2) £ (0,-A)) = (Bo+ B+ B2A7) f (0,—A)) = B (&), j=1,2,...,m.
Therefore, the zeros of the functions E(A) and E;(A) are complex conjugate, and the number

of these zeros is equal. Corollary 1 is proved. O

Lemma 4. From the properties of the function E(A) for |A| — oo we get

S(A)=-140 G) :

From the relation for Im A > 0 we get —1 — S(A) € Lp(—o0, 00) and hence the function

1

Ey(x) = E/_Z [—1-5(A)]eMdA

also belongs to the space Ly(—o0, 00).
It is known (see [14, p. 299]) that the equation (1) has a solution f (x, A), which satisfies for
every 6 > 0 and ¢ > 0 the relation

flx,A) =e ™ [1+0(1)] as x — oo

uniformly in the domainIm A > 6, |A| > ¢
We denote

ri(x) = Re Q) e, (19)
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where E(A) = (ag + a2A?) f'(0,A) — (Bo + 1A + B2A?) £(0,A), j = 1,2,...,n. According to
[5] (see also [14, p. 327]) we call the polynomial

Pi(x) = e_i’\fxrj(x), i=12,...,n,

with the degree of k; — 1 the normalization polynomial for the boundary value problem (1)-(3),
where k]- is the multiplicity of thenumbers A;, j =1,2,...,n

The set of values {S(A), A Pi(x):j=1,2,..., n} is called the scattering data of the bound-
ary value problem (1) - (3).

The inverse scattering problem for the boundary value problem (1) —(3) consists in recov-
ering the coefficient p(x) from the scattering data.

Similarly, for the solution f(x,A) and f(x, A),

2iAp(x,A)  » E(M)
RN f(x,A) = mf(x/ A) (20)

is obtained.

3 The fundamental equation

The fundamental equation has played an important role in solving of the inverse scattering
problem. We use the identity (12), which was obtained in Lemma 2. Rewriting the identity
(12), we get the following form

2iAp(x,A) oA _ pmidx —[-1- { iAx +/ (x, 1) zx\tdt}

E(A)
+/ (x,1) —Wdt+/ (x, t)eMdt.

1 .
Let us multiply both sides of the last relation by Ee’” with T > x and integrate over A

from —oo to oo, we obtain
1/° A1) e / ¢, A) it
nlm¢(x,A) {E(A) ocz)t] A + — ol cosAx| e TdA
— i/ [—1—5(A)] D0

L /°° { [—1-S(A)] /xoo K(x, t)ei)‘(t”)dt} dA

277 J -

R Y —iA(t4T)
+o /_oo {/x K(x,t)e dt » dA.

On the right-hand side of (21), taking K(x, t) = 0 for x > t into account, we obtain

(21)

F(x+7) +K(x,7) + / K(x, t)Es(t + 7) dt.
X
Taking into account (20) in the first integral of (21), we find
l * l_i ATy — 5 y _M _Z_i iAT
/ P(x, M) {E(A) ocz)t] A =1 ) Res {f(x,)\) E(A)f(x,}\) “2A¢(x,)\) et

7T J—co Im A>0A=A
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It is clear that for Im A > 0, f(x, A) is holomorphic function and ¢(x, A) is entire function with
respect to A. Then according to Lemma 3, we have

%/ LY [Ei()}\\) N (xl}\] e*TaA
—0 2
. E(A [ E(M) |
= { ZA:>O§€§\ EE)\; iA(x4T } z/x K(x,t) {)I\{E/s\‘%el)\(tqw)} dt (22)

:—er(x—i-r / K(x,t) Zr]t+r)d
=1

where 7j(x) is defined by (19).
Therefore, for T > x, taking the equality (22) into account, from (21) we derive the relation

- Zn:rj(x +7)— /oo K(x,t) Xn:rj(t +71)dt = Fs(x +7) + K(x,7) + /oo K(x,t)Fs(t + T)dt.
) x =1 x

Finally, we obtain the integral equation

F(x+17) +K(x,7) + /°° Ko OF(t+T)dt =0, x <7< oo, (23)
where "
x) =) ri(x) + Fs(x). (24)
j=1

The equation (23) is called the fundamental equation or Gelfand-Levitan-Marchenko equation
of the inverse problem of scattering theory for the boundary value problem (1) —(3). Therefore
we have the assertion.

Theorem 1. For each fixed x > 0, the kernel K(x,t) of the representation (4) satisfies the
fundamental equation (23).

As in [11], using the fundamental equation (23), we show that for all x > 0 the function
Fs(x) has a derivative and the following inequalities hold:

|F(2x)| < Co(x),

F'(2x) — —p( )| < Clo(x)]?, (25)

where C > 0. Since (1 + x)o(x) < oo, from (25) we obtain that the function (1 + x) |F/(x)]| is
also summable on [0, c0).

4 Uniqueness theorem

It is shown above that the function F(x) is differentiable and
/ (1+x) |F/(x)] dx < .
0

Let
Qx) = / F(1)|dt, Oy(x) = / Q(t)dt. (26)



A uniqueness theorem for Sturm-Liouville equations with a spectral parameter ... 555

Clearly,
[F(x)| < Q(x) 27)

and ()1 (0) < oo. In fact, according to (26), we have

@)l < [P0t =0,
0
Theorem 2. Assume that the function ¢x(t) is summable on the half line t > x and
+/ o (OF(E+1)dE =0, t>x. (28)

Then ¢, (t) =0 fort > x.

Proof. Assume that y,(t) is the solution of the equation

ox(t) = yx(t) + / K(t, )y (T)dT, > x, (29)

where the function K(7,t) satisfies the equation (23) and for this function the inequality
|K(x,t)| < Co (%) is valid. Then according to (27)

/:o |F(t+&)K(7,8)|d¢ < /:o %eﬁ(O)g <TT+(:> Q(t + &)dé

< 3¢10(0) [~ @) = 3¢ O(0)0n (7),

/:o} (t+ E)K(T,8)|dE < Cor(7), (30)

where C = %601(0)0'(0) > 0. It follows from (29) and (30) that

) —1—/xtK(T,t)yx(T)dT __ /xwyx(r)p(wt)dr

(/ /) dT/ K(t,&)F(E 4 t)de.

According to the fundamental equation (23), for t > T we get

/ T K(t,&)F(t +8)dE = — [F(t+ 1) + K(T, )]

From this equality, it follows that the relation
yx(t):—/tooyx( { T+1t) +/ F(E+1t)dg|dt, t=>r, (31)
holds. From the inequalities (28) and (29), we have
'F(t + 1)+ /:o K(t,&)F(t+ é’)d@" <Q(t+71)+CO1(T) < Q1) + CO(7) < C1O4(T),
where C, C; > 0. Using this relation and (31), we find

<€ [ (@Al + DT < [ ()] Qe
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lyx(t)] < e—{—Cl/ lyx(T)| Q(T)dT  forall & > 0.
t

Applying Gronwall’s lemma,
()] < eexp{Cl/ Q(t )dr} eexp{Cl/O Q(T)dr}
t

is obtained. Since ¢ > 0 is arbitrary real number, it follows that for t > x, y,(f) = 0. Then from
(29), for t > x we have @y (t) = 0. Theorem 2 is proved. O

Theorem 3. The equation (23) has the unique solution K(x, -) € L1(0,c0) for each x > 0.

Proof. To prove the theorem, it suffices to show that the homogeneous equation

+/ or(OFE +1)dt =0, t>x,

has only the trivial solution g (t) € L1(0, c0). Since the operator

(Feo)(t) = [ p:(@F(E + )

is the compact operator (for the compactness of IF, see [11, Lemma 3.3.1]). From the proper-
ties of the function F(y), it is obtained that the function F(t) and the corresponding solution
2x(t) = K(x,t) are bounded in the half axis x < t < co. Therefore, ¢x(t) € Ly(x,00). For each
fixed x, we can consider the fundamental equation as Fredholm type equation. Then from
Theorem 2 we obtain that the equation has a unique solution. Theorem 3 is proved. O

For x > 0, from the continuity of the function F(x) it follows that the fundamental equation
is also valid for t = x.

According to Theorem 2 for arbitrary x > 0, fundamental equation (23) has not any solution
other than the function K(x, t) satisfying the condition (4).

Assume that the collection {S(1), 7\]-, Pj(x) 1 —00 < A <oo,j=1,2,...,n} is the scattering
data of the boundary value problem (1), (2) whose potential ji(x) satisfies condition (3). Then
the following corollary is obtained.

Corollary 2. The potential from class (3) in the problem (1), (2) is uniquely defined by the
scattering data, i.e. if S(A) = S(A), —c0 < A < 00, Aj = A], Pi(x) = Pi(x),j =1,2,...,n, then
p(x) = p(x) almost everywhere on the half line [0, oo).

Proof. Given the scattering data, we can use formula (24) to construct the function F(x) and
write out the fundamental equation (23) for the unknown function K(x,t). It follows from
Theorem 3 that the fundamental equation has unique solution. Solving this equation, we find

the function K(x, t) and by (5) the potential is p(x) = —Z%K(x, X). O
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Y AaHilT pobOTi pO3rASIAAETHCSI OOepHEeHa 3apava po3cisHHS AAS piBHSHHS LITypMa-AiyBins
Ha HalliBHeCKiHYeHHOMY iHTepBaAi 3 HeAIHIVHMM CIIeKTPaAbHMM ITapaMeTPOM Y IPaHWMYHIN yMOBI.
BusnaueHO aaHi po3scitoBaHHS 3aAaui Ta AOCAIAXKEHO BAACTMBOCTI AaHMX po3cifoBaHHS. OTpuMaHO
dyHAaMEHTaAbHE PiBHSIHHS Ta AOCAIAXKEHO YHIKaABHICTb aATOPUTMY AASI TIOTEHITiaAY i3 3aAaHNMM
AaHVIMM PO3CiFOBaHHSI.

Kntouoei cnoea i ppasu: obepHeHa 3arava po3ciloBaHHS, HOpMaAi3alliifHIIT IOAIHOM, AaHi po3ci-
IOBaHHsI, PyHAAMeHTaAbHEe PiBHSHHS, TeOpeMa €AMHOCTI.



