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Generalized Ricci-Bourguignon flow

Shahroud Azami

In this paper, we consider a kind of generalized Ricci-Bourguignon flow system, which is closely

like the Ricci-Bourguignon flow and possesses a gradient form. We establish the existence and

uniqueness of the solution to this flow on an n-dimensional closed Riemannian manifold. We in-

troduce generalized Ricci-Bourguignon system soliton and give a condition to a gradient general-

ized Ricci-Bourguignon system soliton to be isometric to an Euclidean sphere. Then we give the

evolution of some geometric structure of manifold along this flow and establish higher-derivative

estimates for compact manifolds and the compactness theorem for this general Ricci-Bourguignon

flow system on closed Riemannian manifolds.
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1 Introduction

Geometric flows are evolution of geometric structures under differential equations with

functionals on a manifold, which play an important role in differential geometry and physics.

Let M be an n-dimensional complete Riemannian manifold with Riemannian metric g =
(

gij

)

.

The first important geometric flow is Ricci flow, which is defined by

∂

∂t
g = −2Ric, g(0) = g0, (1)

where Ric denotes the Ricci curvature of g and Ricci flow evolves a Riemannian metric by its

Ricci curvature. The short-time existence and uniqueness for solution of Ricci flow proved

by R. Hamilton (see [7]) and D. DeTurck (see [6]) on compact Riemannian manifolds. Also

evolution equations for geometric structures dependant to metric investigated by B. Chow and

D. Knopf (see [5]).

A generalization of Ricci flow is the Ricci-Bourguignon flow, which is defined as follows

∂

∂t
g = −2Ric + 2ρRg = −2(Ric − ρRg), g(0) = g0, (2)

where R is the scalar curvature of g and ρ is a real constant. The Ricci-Bourguignon flow was

introduced by J.P. Bourguignon for the first time in 1981 (see [3]). Short-time existence and

uniqueness for solution to the Ricci-Bourguignon flow on [0, T) have been shown by G. Catino

et. al. in [4] for ρ <
1

2(n−1)
.
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Recently, researchers started considering the Ricci flow together with some other geometric

flows. For instance, Y. Li [9] considered the following generalized Ricci flow on M

{

∂gij

∂t (x, t) = −2Ric(x, t) + h(x, t), g(x, 0) = g(x),
∂
∂t H(x, t) = ∆HL,g(x,t)H(x, t), H(x, 0) = H(x),

(3)

and J.Y. Wu in [12] studied a generalization of harmonic-Ricci flow as follows















∂gij

∂t (x, t) = −2Ric(x, t) + h(x, t) + 2τdu ⊗ du, g(x, 0) = g(x),
∂
∂t H(x, t) = ∆HL,g(x,t)H(x, t), H(x, 0) = H(x),
∂
∂t u(x, t) = ∆u(x, t), u(x, 0) = u0(x),

where Ric is the Ricci tensor of the manifold M, h is a two-form with the components

hij = 1
2 HiklH

kl
j , ∆HL = − (dd∗ + d∗d) denotes the Hodge-Laplace operator, and τ is a posi-

tive constant. They established the existence and uniqueness for solution of above geometric

system flow and higher-derivative estimates for compact manifolds. As an application, they

proved the compactness theorem for these flow systems.

Let (M, g) denote an n-dimensional closed Riemannian manifold and H = {Hijk} be a

three-form on M. Motivated by the above works, in this paper, we consider the following

generalized Ricci-Bourguignon flow (GRBF for short) on M

{

∂
∂t gij(x, t) = −2Rij(x, t) + 2ρRgij(x, t) + 1

2 HiklH
kl
j (x, t),

∂
∂t H(x, t) = ∆HL,g(x,t)H(x, t), H(x, 0) = H(x), g(x, 0) = g(x),

(4)

where Ric is the Ricci tensor of the manifold M, h is a two-form with the components

hij = 1
2 HiklH

kl
j , ρ is a real constant, and ∆HL = −(dd∗ + d∗d) denotes the Hodge-Laplace

operator. In the above system, if the form H is closed, then the corresponding system is called

the refined generalized Ricci-Bourguignon flow (RGRBF for short), namely






∂
∂t gij(x, t) = −2Rij(x, t) + 2ρRgij(x, t) + 1

2 HiklH
kl
j (x, t),

∂
∂t H(x, t) = −dd∗

g(x,t)H(x, t), H(x, 0) = H(x), g(x, 0) = g(x),

where d∗ is the dual operator of d with respect to the metric g(x, t). We prove the existence and

uniqueness of the solution to flow (4). We define the generalized Ricci-Bourguignon system

soliton and give a condition to a gradient generalized Ricci-Bourguignon system soliton to be

isometric to a Euclidean sphere. Then we study the evolution of some geometric structure of

manifold along this flow and show higher-derivative estimates for compact manifolds and the

compactness theorem for the flow (4).

The rest of this paper is organized as follows. In Section 2, we prove the existence and

uniqueness for solution of GRBF system (4). In Section 3, we introduce GRBF system soliton

and gradient GRBF system soliton. Then we give a condition to a gradient GRBF system soli-

ton to be isometric to an Euclidean sphere and we show that any complete shrinking GRBF

system soliton has finite fundamental group. In Section 4, we find the evolution formula for

Riemannain curvature tensor, Ricci curvature tensor, and scalar curvature of manifold along

the GRBF system (4). In Section 5, we establish higher-derivative estimates for compact mani-

folds. Finally, in Section 6, we prove the compactness theorems for the GRBF system.
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2 Short-time existence and uniqueness the GRBF system

In this section, by a similar argument with the existence and uniqueness of geometric flow

such as Ricci flow, and Ricci-Bourguignon flow, we establish the short-time existence and

uniqueness for the GRBF system on a compact n-dimensional Riemannian manifold. Firstly,

we show that if H(x) is closed, then we have the following propositions.

Proposition 1. Along the RGRBF, the form H(x, t) is closed if the initial value H(x) is closed.

Proof. The exterior derivative d is independent of the metric, so we get

∂

∂t
dH(x, t) = d

∂

∂t
H(x, t) = d

(

−dd∗g(x,t)H(x, t)
)

= 0.

Therefore, dH(x, t) is independent of time variable t and dH(x, t) = dH(x). Since H(x) is

closed form, we conclude that dH(x, t) = 0.

Proposition 2. If
(

g(x, t), H(x, t)
)

is a solution to RGRBF and the initial value H(x) is closed

form, then
(

g(x, t), H(x, t)
)

is also a solution to GRBF.

Proof. From Proposition 1, since H(x) is closed form, H(x, t) is closed form under the RGRBF.

Therefore,

∆HL,g(x,t)H(x, t) = −dd∗g(x,t)H(x, t).

Theorem 1. Let ρ <
1

2(n−1)
. Then the evolution equation GRBF has a unique solution for a

short time on any smooth, n-dimensional, closed Riemannian manifold M.

Proof. For the proof of theorem we use the DeTurk trick in Ricci flow to prove its short time

existence. Let
(

g(x, t), H(x, t)
)

be the solution of the GRBF and φt : M → M be a family of

smooth diffeomorphisms of M. Suppose ĝ(x, t) = φ∗
t g(x, t) is the pull-back metric of g(x, t).

For computing the evolution equation for the metric ĝ(x, t), let

y(x, t) = φt(x) =
{

y1(x, t), y2(x, t), . . . , yn(x, t)
}

,

in local coordinates system x =
{

x1, x2, . . . , xn
}

. Following the same calculations as in [10], we

get

ĝij(x, t) =
∂yα

∂xi

∂yβ

∂xj
gαβ(y, t)

and

∂

∂t
ĝij(x, t) =

∂yα

∂xi

∂yβ

∂xj

(

∂

∂t
gαβ(y, t)

)

+
∂

∂xi

(

∂yα

∂t

)

∂yβ

∂xj
gαβ(y, t) +

∂yα

∂xi

∂

∂xj

(

∂yβ

∂t

)

gαβ(y, t).

For a fixed point p ∈ M, we consider a normal coordinate
{

xi
}

around p such that
∂ĝij

∂xk = 0

at p. Since g(x, t) is the solution of GRBF, we get

∂

∂t
gαβ(x, t) = −2Rαβ(x, t) + 2ρRgαβ(x, t) + hαβ(x, t),
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where hαβ = 1
2 HαklH

kl
β (x, t). Hence,

∂

∂t
gαβ(y, t) = −2Rαβ(y, t) + 2ρRgαβ(y, t) + hαβ(y, t) +

∂gαβ

∂yγ

∂yγ

∂t
,

and substituting above equality in (2) we infer

∂

∂t
ĝij(x, t) =− 2

∂yα

∂xi

∂yβ

∂xj
Rαβ(y, t) + 2ρ

∂yα

∂xi

∂yβ

∂xj
Rgαβ(y, t) +

∂yα

∂xi

∂yβ

∂xj
hαβ(y, t)

+
∂yα

∂xi

∂yβ

∂xj

∂gαβ

∂yγ

∂yγ

∂t
+

∂

∂xi

(

∂yα

∂t

)

∂yβ

∂xj
gαβ(y, t) +

∂yα

∂xi

∂

∂xj

(

∂yβ

∂t

)

gαβ(y, t).

Since

R̂ij(x, t) =
∂yα

∂xi

∂yβ

∂xj
Rαβ(y, t), R̂(x, t) = R(y, t), ĥij(x, t) =

∂yα

∂xi

∂yβ

∂xj
hαβ(y, t),

and in the normal coordinate

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t

∂gαβ

∂yγ
=

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t
ĝkl(x, t)

∂

∂yγ

(

∂xk

∂yα

∂xl

∂yβ

)

=
∂yα

∂t

∂

∂xi

(

∂xk

∂yα

)

ĝjk(x, t) +
∂yβ

∂t

∂

∂xj

(

∂xk

∂yβ

)

ĝik(x, t)

=
∂

∂xi

(

∂yα

∂t

∂xk

∂yα
ĝjk(x, t)

)

+
∂

∂xj

(

∂yβ

∂t

∂xk

∂yβ
ĝik(x, t)

)

−
∂

∂xi

(

∂yα

∂t

)

∂xk

∂yα
ĝjk(x, t)−

∂

∂xj

(

∂yβ

∂t

)

∂xk

∂yβ
ĝik(x, t)

=
∂

∂xi

(

∂yα

∂t

∂xk

∂yα
ĝjk(x, t)

)

+
∂

∂xj

(

∂yβ

∂t

∂xk

∂yβ
ĝik(x, t)

)

−
∂

∂xi

(

∂yα

∂t

)

∂yβ

∂xj
gαβ(y, t)−

∂

∂xj

(

∂yβ

∂t

)

∂yα

∂xi
gαβ(y, t),

we obtain

∂

∂t
ĝij(x, t) = −2R̂ij(x, t) + 2ρRĝij(x, t) + ĥij(x, t)

+∇i

(

∂yα

∂t

∂xk

∂yα
ĝjk(x, t)

)

+∇j

(

∂yβ

∂t

∂xk

∂yβ
ĝik(x, t)

)

.
(5)

According to DeTurk trick, if we define y(x, t) = φt(x) by the equations

∂yα

∂t
=

∂yα

∂xk
ĝjl
(

Γ̂k
jl − Γ̊k

jl

)

, (6)

and Vi = ĝik ĝjl
(

Γ̂k
jl − Γ̊k

jl

)

, then (5) becomes

∂

∂t
ĝij(x, t) = −2R̂ij(x, t) + 2ρRĝij(x, t) + ĥij(x, t) +∇iVj +∇jVi, ĝij(x, 0) = ĝ(x).
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Also,

∂Ĥ

∂t
= φ∗

t

(

∂H

∂t
+ LV H

)

= ∆LB Ĥ − d〈Ĥ, V〉, Ĥ(x, 0) = Ĥ(x).

Since

Γ̂k
ij =

∂yα

∂xj

∂yβ

∂xi

∂xk

∂yγ
Γ

γ
αβ +

∂xk

∂yα

∂2yα

∂xj∂xi
,

the initial value problem (6) can be rewritten as











∂yα

∂t
= ĝjl

(

Γ
β
αγ

∂yγ

∂xi

∂yβ

∂xj
+

∂2yα

∂xj∂xl
− Γ̊k

jl

∂yα

∂xk

)

,

yα(x, 0) = xα.

(7)

Note, that (7) is strictly parabolic system. Since manifold M is compact, it follows from the

theory of parabolic equations that the system (7) has a unique smooth solution for a short time.

At the same time, we have

∂

∂t
ĝij(x, t) = ĝkl ∂2 ĝij

∂xk∂xl
(x, t)− 2ρĝij ĝ

pq ĝkl ∂2 ĝkl

∂xp∂xq (x, t)

+ 2ρĝij ĝ
pq ĝkl

∂2 ĝql

∂xp∂xk
(x, t) + lower order terms,

(8)

and

∂

∂t
Ĥijk(x, t) = ĝrs

∂2Ĥijk

∂xr∂xs
(x, t) + lower order terms. (9)

From [2, 4] it follows that for ρ <
1

2(n−1)
the equations (8) and (9) form a strictly parabolic

system. Since manifold M is compact, by the standard theory of parabolic equations, the sys-

tem (8) – (9) have a unique smooth solution for a short time. From the solution of (8) – (9) we

can obtain a solution of the GRBF (4).

Let us show the uniqueness of the solution. For any two solutions g
(1)
ij (x, t) and g

(2)
ij (x, t) of

the GRBF system (4) with the same initial data, we solve the initial value problem (7) and find

two families φ
(1)
t and φ

(2)
t of diffeomorphisms of M. Therefore we get two solutions

ĝ
(1)
ij (x, t) =

(

φ
(1)
t

)∗
g
(1)
ij (x, t) and ĝ

(2)
ij (x, t) =

(

φ
(2)
t

)∗
g
(2)
ij (x, t)

to the modified evolution equation (8) with same initial data ĝij(x, 0) = gij(x). The uniqueness

result for the strictly parabolic equation (8) implies that ĝ
(1)
ij (x, t) = ĝ

(2)
ij (x, t) and then by

system (7) and the standard uniqueness result of PDE system, the corresponding solutions

φ
(1)
t and φ

(2)
t of (7) must agree. Consequently the metrics g

(1)
ij (x, t) and g

(2)
ij (x, t) must agree

also. Hence we have proved the uniqueness for solution of the GRBF (4).
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3 GRBF system soliton

In this section, we introduce the GRBF system soliton and give some properties of this

soliton.

Definition 1. A solution
(

g(t), H(t)
)

, t ∈ [0, T), of the GRBF system on manifold Mn with

initial data
(

g(0), H(0)
)

is called a GRBF system soliton if there exists a one-parameter family

of diffeomorphisms ψt : M → M with ψ0 = idM and a scaling function c : [0, T) → R+ such

that
{

g(t) = c(t)ψ∗
t g(0),

H(t) = ψ∗
t H(0).

(10)

The cases ċ = ∂
∂t c(t) < 0, ċ = 0 and ċ > 0 correspond to shrinking, steady and expanding soli-

tons, respectively. If the diffeomorphisms ψt are generated by a vector field X(t) = ∇ f (t) for

some function f (t) on M, then the soliton called gradient soliton and f is called the potential

of the soliton.

Lemma 1. Let Mn be a Riemannain manifold and
(

g(t), H(t)
)

, t ∈ [0, T), be a GRBF system

soliton. Then there exists a vector field X on Mn such that
{

−Ric
(

g(0)
)

+ ρRg(0)g(0) +
1
2 h(0) = 1

2LXg(0) + λg(0),

∆HL,g(0)H(0) = LX H(0),
(11)

where λ = 1
2 ċ(0) and LXg(0) denotes the Lie derivative of the metric g(0) with respect to the

vector field X.

Conversely, given a vector field X on M and a solution of (11), there exist one-parameter

families of scalars c(t) and diffeomorphisms ψt : M → M with ψ0 = idM such that
(

g(t), H(t)
)

,

t ∈ [0, T), becomes a solution of the GRBF system, when
(

g(t), H(t)
)

is defined by (10).

Proof. First suppose that
(

g(t), H(t)
)

, t ∈ [0, T), is a GRBF system soliton. Without loss of

generality we assume that c(0) = 1 and ψ0 = idM. Then we infer

−2Ric
(

g(0)
)

+ 2ρRg(0)g(0) + h(0) =
∂

∂t
g(t)|t=0

=
∂

∂t
(c(t)ψ∗

t g(0)) |t=0 = ċ(0)g(0) + LY(0)g(0),

and

∆HL,g(0)H(0) =
∂

∂t
H(t)|t=0 =

∂

∂t
(ψ∗

t H(0)) |t=0 = LY(0)H(0),

where Y(t) is the family of vector fields generating the diffeomorphisms ψt. This implies that
(

g(0), H(0)
)

satisfies (11) with λ = 1
2 ċ(0) and X = Y(0).

Conversely, suppose that
(

g(0), H(0)
)

satisfies (11) for some vector field X on M. Define

c(t) := 1+ 2λt and define an one-parameter family of vector fields Y(t) on M by Y(t) := 1
c(t)

X.

Suppose that ψt are the diffeomorphisms generated by the family Y(t), where ψ0 = idM and

define
(

g(t), φ(t)
)

as in (10). The computation

∂

∂t
g(t) = ċ(t)ψ∗

t

(

g(0)
)

+ c(t)ψ∗
t

(

LY(t)g(0)
)

= ψ∗
t

(

2λg(0) + LXg(0)
)

= ψ∗
t

(

− 2Ric
(

g(0)
)

+ 2ρRg(0)g(0) + h(0)
)

= −2Ric
(

g(t)
)

+ 2ρRg(t)g(t) + h(t),
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and

∂

∂t
H(t) = ψ∗

t

(

LY(t)H(0)
)

=
1

c(t)
ψ∗

t

(

LX H(0)
)

=
1

c(t)
ψ∗

t

(

∆HL,g(0)H(0)
)

= ∆HL,g(t)H(t),

imply that
(

g(t), H(t)
)

is a solution of the GRBF system.

After then we say that (Mn, g, H, X, λ, ρ) is a GRBF system soliton whenever it satisfies (11)

and it is shrinking, steady and expanding, if λ < 0, λ = 0 and λ > 0, respectively. Also, we

say that (Mn, g, H,∇ f , λ, ρ) is a gradient GRBF system soliton if it satisfies
{

−Ric + ρRg + 1
2 h = Hess f + λg,

∆HL,gH = d〈H,∇ f 〉.
(12)

In the following, we provide some equation of structure for gradient GRBF system soliton.

Proposition 3. For a gradient GRBF system soliton (Mn, g, H,∇ f , λ, ρ), the following identities

hold

(i) (1 − nρ)R + ∆ f − 1
4 |H|2 + nλ = 0,

(ii)
(

1 − 2(n − 1)ρ
)

∇iR = −∇jhij + 2Ril∇
l f + 1

2∇i|H|2,

(iii)
(

1 − 2ρ(n − 1)
)

∇iR = 2ρhR∇i f + hil∇
l f −∇i|∇ f |2 − 2λ∇i f −∇jhij +

1
2∇i|H|2.

Proof. For a gradient GRBF system soliton the identity (12) holds. Taking trace of equation (12)

yields (i). In order to obtain equation (ii), take the covariant derivative of (i) in an orthonormal

frame, this gives

(1 − nρ)∇iR +∇i∇
j∇j f −

1

4
∇i|H|2 = 0.

Using the Bianchi identity and the contracted second Bianchi identity, we get

(1 − nρ)∇iR = −∇j∇i∇j f + Ril∇
l f +

1

4
∇i|H|2

= −∇j

(

−Rij − λgij + ρRgij +
1

2
hij

)

+ Ril∇
l f +

1

4
∇i|H|2

=
1

2
∇iR − ρ∇iR −

1

2
∇jhij + Ril∇

l f +
1

4
∇i|H|2,

which proves (ii). Now, to prove equation (iii), from (ii) we obtain

(

1 − 2ρ(n − 1)
)

∇iR = 2∇l f

(

−∇i∇l f − λgil + ρRgil +
1

2
hil

)

−∇jhij +
1

2
∇i|H|2

= −∇i|∇ f |2 − 2λ∇i f + 2ρR∇i f + hil∇
l f −∇jhij +

1

2
∇i|H|2.

Hence the proof of proposition complete.

Theorem 2. Let (Mn, g, H,∇ f , λ, ρ) be a compact gradient GRBF system soliton. Then

∫

M
2

∣

∣

∣

∣

∇2 f −
∆ f

n
g +

1

4n
|H|2g

∣

∣

∣

∣

2

dµ =
n − 2

n

∫

M
g(∇R,∇ f )dµ −

1

2n

∫

M
∆ f |H|2dµ

+
∫

M
( f − 1)∇i∇jhijdµ +

1

8n

∫

M
|H|4dµ,

(13)

∫

M

∣

∣

∣

∣

Ric −
R

n
g −

1

2
h

∣

∣

∣

∣

2

dµ =
∫

M

∣

∣

∣

∣

∇2 f −
∆ f

n
g +

1

4n
|H|2g

∣

∣

∣

∣

2

dµ. (14)
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Proof. Taking the divergence of equation (iii) from Proposition 3, we get
(

1 − 2ρ(n − 1)
)

∆R = −∆|∇ f |2 − 2λ∆ f + 2ρ∇iR∇i f + 2ρR∆ f

+∇ihil∇
l f + hil∇

i∇l f −∇i∇jhij +
1

2
∆|H|2.

(15)

On the other hand we have

∆|∇ f |2 = 2∇i f∇i∆ f + 2Rij∇
i f∇j f + 2|∇2 f |2.

Taking covariant derivative of equation (i) from Proposition 3 and using (12), we conclude

0 = ∇i∆ f + (1 − nρ)∇iR −
1

4
∇i|H|2 = (1 − nρ)∇iR −

1

4
∇i|H|2

+∇j

(

−Rij − λgij + ρRgij +
1

2
hij

)

− hRil∇
l f

=

(

1

2
− ρ(n − 1)

)

∇iR −
1

4
∇i|H|2 − Ril∇

l f +
1

2
∇jhij.

Therefore

0 =
(

1 − 2ρ(n − 1)
)

∇iR∇
i f −

1

2
∇i∇i|H|2 +∇jhij∇

i f − 2Ril∇
l f∇i f ,

and it implies that

∆|∇ f |2 = 2∇i f∇i∆ f +
(

1 − 2ρ(n − 1)
)

∇iR∇
i f −

1

2
∇i∇i|H|2 +∇jhij∇

i f + 2|∇2 f |2. (16)

Identity (1 − nρ)∇iR +∇i∆ f − 1
4∇

i∇i|H|2 = 0 implies

(1 − nρ)∇iR∇
i f +∇i∆ f∇i f −

1

4
∇i∇i|H|2∇i f = 0.

Substituting the above equality into (16), we infer

∆|∇ f |2 = (2ρ − 1)∇iR∇
i f +∇jhij∇

i f + 2|∇2 f |2.

Therefore we can write (15) as follows

(

1 − 2ρ(n − 1)
)

∆R = ∇iR∇i f + 2ρR∆ f + hil∇
i∇l f − 2|∇2 f |2 − 2λ∆ f −∇i∇jhij +

1

2
∆|H|2.

Then
(

1 − 2ρ(n − 1)
)

∆R + 2λ∆ f −
1

2
∆|H|2 = 2ρR∆ f +∇iR∇i f + hil∇

i∇l f −∇i∇jhij

− 2

∣

∣

∣

∣

∇2 f −
∆ f

n
g +

1

4n
|H|2g

∣

∣

∣

∣

2

−
1

8n
|H|4

− 2
∆ f

n

(

(nρ − 1)R − nλ +
1

4
|H|2

)

.

By integrating of both sides of the above identity on closed Riemannian manifold M, we

obtain (13). Since

Ric −
R

n
g −

1

2
h = −∇2 f − λg + ρRg −

R

n
g = −∇2 f +

(

−λ + ρR −
R

n

)

g

= −∇2 f +

(

∆ f −
1

4
|H|2

)

g

n
,

we conclude (14).
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Corollary 1. In a nontrivial compact gradient GRBF system soliton (Mn, g, H,∇ f , λ, ρ) with

n ≥ 3, vector field ∇ f is a nontrivial conformal vector field, if the following condition holds

n − 2

n

∫

M
g(∇R,∇ f )dµ −

1

2n

∫

M
∆ f |H|2dµ +

∫

M
( f − 1)∇i∇jhijdµ +

1

8n

∫

M
|H|4dµ ≤ 0.

Proof. The assumptions of Corollary conclude that the right hand side of (13) is less that or

equal to zero, but left hand side of (13) is greater than or equal to zero, hence Ric = R
n g + 1

2 h.

So, ∇∇ f =
(

−λ + R
(

ρ − 1
n

))

g. Therefore ∇ f is a nontrivial conformal vector field.

Theorem 3. Let (M, g) be a complete Riemannian manifold with a 3-form H =
{

Hijk

}

satisfy-

ing

Ric − ρRg −
1

2
h +

1

2
LXg ≥ σg (17)

for some smooth vector field X on M and some constant σ > 0. Let h ≥ 0 and ρR ≥ a for some

constant a such that a + σ > 0. Then M is compact if and only if ‖X‖ is bounded on (M, g) by

a constant K. Moreover, in this case, we have

diam(M) ≤
2π

a + σ

(

K +

√

K2 + (n − 1)
a + σ

2

)

.

Proof. If manifold M is compact, then it obvious that ‖X‖ is bounded.

Conversely, let ‖X‖ be bounded by a constant K and p be a point in M. Consider any

geodesic γ : [0,+∞) → M emanating p and parameterized by arc length t. Along geodesic γ

we have

LXg
(

γ′(t), γ′(t)
)

= 2g
(

∇γ′(t)X, γ′(t)
)

= 2
d

dt
g
(

X, γ′(t)
)

. (18)

Multiplying the both sides of (17) by γ′iγ′j and using (18) we obtain

γ′iγ′jRij ≥ γ′iγ′jσgij + γ′iγ′jρRgij +
1

2
γ′iγ′jhij −

d

dt

(

γ′kXk

)

= a + σ +
d

dt

(

−γ′kXk

)

.

The Cauchy-Schwaz inequality implies that

∣

∣

∣
−γ′kXk

∣

∣

∣
=
∣

∣

∣
gkl

(

γ(t), γ′(t)
)

γ′kXk

∣

∣

∣
≤
∣

∣

∣
gkl

(

γ(t), γ′(t)
)

XkXl
∣

∣

∣

1
2

≤ max
∣

∣

∣
gkl

(

γ(t), γ′(t)
)

XkXl
∣

∣

∣

1
2
= ‖X‖γ(t) ≤ K

and the results follow from [1, Lemma 1].

Corollary 2. Let (M, g, H, X, λ, ρ) be a complete shrinking GRBF system soliton. Let h ≥ 0 and

ρR ≥ a for some constant a such that a + λ > 0. Then M is compact if and only if ‖X‖ is

bounded on (M, g) by a constant K. Moreover, in this case, we have

diam(M) ≤
2π

a + λ

(

K +

√

K2 + (n − 1)
a + λ

2

)

.

Remark 1. In Theorem 3, the assumption of boundedness of ‖X‖ is necessary to show that M

is compact. For instance, Euclidean space with the vector field X(v) = v, ∀v ∈ R
n, and H = 0

satisfies (17).
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Theorem 4. Let (M, g) be a complete Riemannian manifold with a vector field X and 3-form

H =
{

Hijk

}

satisfying h ≥ 0 and (17) for some σ > 0. Then for any p, q ∈ M and ρ ≥ 0 we have

d(p, q) ≤ max

{

1,
1

σ + ρΛ

(

2(n − 1) + Gp + Gq + 2‖Xp‖+ ‖Xq‖
)

}

, (19)

where σ + ρΛ ≥ 0, R ≥ Λ, and

Gp = max
{

0, sup
{

Ricy(v, v) : y ∈ B(p, 1), ‖v‖ = 1
}

}

.

Proof. Assume that r = d(p, q) > 1 and let γ be the minimal geodesic from p to q parameter-

ized by arc length. Using equations (17) and LX

(

γ′(s), γ′(s)
)

= 2 d
ds g
(

X, γ′(s)
)

, we get
∫ r

0
Ric
(

γ′(s), γ′(s)
)

ds ≥
∫ r

0

[

σg
(

γ′(s), γ′(s)
)

−
1

2
LXg

(

γ′(s), γ′(s)
)

+ ρRg
(

γ′(s), γ′(s)
)

]

ds +
1

2

∫ r

0
h
(

γ′(s), γ′(s)
)

ds

≥ σd(p, q) + gp

(

X, γ′(0)
)

− gq

(

X, γ′(s)
)

+ ρ
∫ r

0
Rds

≥ σd(p, q) + gp

(

X, γ′(0)
)

− gq

(

X, γ′(s)
)

+ ρΛd(p, q).

(20)

On the other hand, [13, Lemma 2.2] implies that
∫ r

0
Ric
(

γ′(s), γ′(s)
)

ds ≤ 2(n − 1) + Gp + Gq. (21)

Combining (20) and (21) and solving for d(p, q) gives (19).

Theorem 5. Let M be a complete Riemannian manifold satisfying (17), where h ≥ 0, R ≥ Λ,

ρ > 0, σ > 0 and σ + ρΛ ≥ 0. Then M has finite fundamental group.

Proof. Let f : M̃ → M be the universal covering manifold of M. Notice that the fundamental

group of M is in one-to-one corresponding with discrete counterimage of a base point p ∈ M

and

f ∗g = g̃, f ∗H = H̃, f ∗Ric = R̃ic, f ∗LXg = LX̃ g̃.

Inequality (17) implies that

R̃ic − ρR̃g̃ −
1

2
h̃ +

1

2
LX̃ g̃ ≥ σg̃.

Fix p̃ in M̃. Let α ∈ π1(M) identifies a deck transformation on M̃. A deck transformation on

the universal covering manifold M̃ is an isometry. Also, B
(

p̃, 1
)

and B
(

α(p̃), 1
)

are isometric.

Hence, Gp = Gα(p) and
∥

∥X̃p̃

∥

∥ =
∥

∥X̃α( p̃)

∥

∥. Then, by applying Theorem 4 to the point p̃ and

α(p̃), we get

d
(

p̃, α(p̃)
)

≤ max

{

1,
2

σ + ρΛ

(

n − 1 + Gp̃ +
∥

∥X̃p̃

∥

∥

)

}

for any deck transformation α. Thus the set α−1(p) is bounded, where p = α(p̃). By applying

the geodesically completeness and the Hopf-Rinow’s theorem, the closed and bounded subset

α−1(p) of M̃ is compact and being discrete is finite. Since M is connected and π1(M, p) is in

bijective relation with α−1(p), we imply that π1(M) is finite.

Corollary 3. Let (M, g, H, X, u, λ, ρ) be a complete shrinking GRBF system soliton. If h ≥ 0,

R ≥ Λ, ρ > 0 and −λ + ρΛ ≥ 0, then M has finite fundamental group.
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4 Evolution of the curvatures

In this section, we compute evolution equations for curvature tensors under the GRBF sys-

tem (4). As the metric tensor evolves by

∂

∂t
gij = −2Rij + 2ρRgij + hij,

where hij =
1
2 HiklH

kl
j , we get

∂

∂t
gij = 2Rij − 2ρRgij − hij,

and the canonical volume measure dµ evolves by

∂dµ

∂t
=

1

2
trg

(

∂g

∂t

)

dµ =

[

(nρ − 1)R +
1

4
|H|2

]

dµ.

To compute evolution equation for curvature tensors, we need the following results for a

general flow (see [5, Lemma 6.5], [11]).

Lemma 2. Let (Mn, g(t)) be a Riemannian manifold with ∂
∂t gij = vij, then

∂

∂t
Γk

ij =
1

2
gkl
(

∇ivjl +∇jvil −∇lvij

)

,

∂

∂t
Rijkl =

1

2

[

∇i∇lvjk +∇j∇kvil −∇i∇kvjl −∇j∇lvik

]

+
1

2
gpq(Rijplvkq − Rijpkvlq),

∂

∂t
Rij = −

1

2

[

∆Lvij +∇i∇j(trv)− gpq
(

∇i∇pvjq +∇j∇pviq

)]

,

∂R

∂t
= −∆v + gpqgrs

(

∇p∇rvqs − Rprvqs

)

,

where ∆Lvij := ∆vij + 2Ril jpvlp − R
p
i vjp − R

p
j vip.

By computing in a normal coordinates system, the evolution equation for the Christoffel

symbols is given by

∂

∂t
Γk

ij = −∇jR
k
i −∇iR

k
j −∇kRjk + ρ

(

∇jRδk
i +∇iRδk

j +∇kRgij

)

+
1

2

(

∇ih
k
j +∇jh

k
i −∇khij

)

.

Proposition 4. Under the GRBF system (4), the Riemannian curvature tensor Rijkl of (Mn, g(t))

satisfies the evolution equation

∂

∂t
Rijkl = ∆Rijkl + 2

(

Bijkl − Bijlk − Bil jk + Bikjl

)

− RpjklR
p
i − RipklR

p
j − RijplR

p
k − RijkpR

p
l

+
1

2

(

Rijplh
p
k − Rijpkh

p
l

)

+
1

2

(

∇i∇lhjk +∇j∇khil −∇i∇khjl −∇j∇lhik

)

− ρ
(

∇i∇kRgjl −∇i∇lRgjk −∇j∇kRgil +∇j∇lRgik

)

+ 2ρRRijkl ,

(22)

where Bijkl = gpqgrsRipjrRkqls.

Proof. Since the quantities −2Rij + 2ρRgij and hij are independent, we can compute the evolu-

tion of Riemannian curvature tensor along the metric evolving by those two quantities sepa-

rately. In [4], for vij = −2Rij + 2ρRgij it has been shown that

∂

∂t
Rijkl = ∆Rijkl + 2

(

Bijkl − Bijlk − Bil jk + Bikjl

)

− RpjklR
p
i − RipklR

p
j − RijplR

p
k − RijkpR

p
l

− ρ
(

∇i∇kRgjl −∇i∇lRgjk −∇j∇kRgil +∇j∇lRgik

)

+ 2ρRRijkl .
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If vij = hij, using Lemma 2, we have that

∂

∂t
Rijkl =

1

2

(

Rijplh
p
k − Rijpkh

p
l

)

+
1

2

(

∇i∇lhjk +∇j∇khil −∇i∇khjl −∇j∇lhik

)

.

Therefore (22) follows by adding the above two evolution formulas.

Definition 2. Suppose that A and B are two tensorial quantities on a Riemannian manifold

(M, g). We denote by A ∗ B any tensor quantity obtained from A ⊗ B by summation over pairs

of matching indices, contractions on lower indices with respect to the dual metric, contractions

on upper indices with respect to the metric, and multiplication with constants depending only

on n = dim M and ranks of A and B. We also write A∗1 := 1 ∗ A and A∗2 := A ∗ A.

Corollary 4. Under the GRBF system (4) we have

∂

∂t
Rm = ∆Rm + Rm ∗ Rm + ρ∇2R ∗ g + ρRRm + H ∗ H ∗ Rm +

2

∑
i=0

∇iH ∗ ∇2−iH. (23)

Proof. From Proposition 4 we obtain

∂

∂t
Rm = ∆Rm + Rm ∗ Rm + ρ∇2R ∗ g + ρRRm +∇2h + h ∗ Rm. (24)

Since h = H ∗ H, we get

∇2h = ∇
(

∇(H ∗ H)
)

= ∇
(

∇H ∗ H
)

= ∇2H ∗ H +∇H ∗ ∇H. (25)

Substituting (25) into (24), we obtain the result.

Proposition 5. The evolution equation of Ricci curvature tensor under the GRBF system (4) is

as follow
∂

∂t
Rik = ∆Rik + 2gpqgrsRpirkRqs − 2gpqRpiRqk − (n − 2)ρ∇i∇kR − ρ∆Rgik

+
1

2

(

Riph
p
k − gjlRijpkh

p
l

)

− hjlRijkl

+
1

2

(

gjl∇i∇lhjk + gjl∇j∇khil −∇i∇k|H|2 − ∆hik

)

.

(26)

Proof. We have
∂

∂t
gjl = 2Rjl − 2ρRgjl − hjl (27)

and

gjlhjl = gjl HjpqH
pq
l = |H|2.

Since
∂

∂t
Rik =

∂

∂t

(

gjlRijkl

)

= gjl ∂

∂t
Rijkl + Rijkl

∂

∂t
gjl , (28)

by replacing (27) and (28) in (22) we get the result.

Corollary 5. Under the GRBF system (4), the evolution equation of the scalar curvature satis-

fies
∂

∂t
R =

(

1 − 2(n − 1)ρ
)

∆R + 2|Ric|2 − 2ρR2 −
3

4
∆|H|2 + gikgjl∇i∇jhkl − hikRik. (29)

Proof. We have
∂

∂t
R =

∂

∂t

(

giklRik

)

= gik ∂

∂t
Rik + Rik

∂

∂t
gik (30)

and

gik

[

1

2

(

Riph
p
k − gjlRijpkh

p
l

)

− hjl Rijkl

]

= 0.

By replacing (26) and ∂
∂t gjl = 2Rjl − 2ρRgjl − hjl in (30), we obtain (29).
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5 Derivative estimate

At first, from [5], we recall several basic identities of commutators [∆,∇] and [ ∂
∂t ,∇].

For any t-dependency tensor A = A(t) under a general geometric flow ∂
∂t gij = vij we have

∂

∂t
∇A = ∇

∂

∂t
A + A ∗ ∇v

and

[∇, ∆]A = ∇∆A − ∆∇A = Rm ∗ ∇A +∇Rm ∗ A.

In this section, C is denotes a constant and it may changes line to line. Therefore, under the

GRBF system (4), we get

∂

∂t
∇Rm = ∇

∂

∂t
Rm + Rm ∗ ∇

(

Rm + ρRg + H∗2
)

= ∇

(

∆Rm + Rm∗2 + ρ∇2R ∗ g + ρRRm + H∗2 ∗ Rm +
2

∑
i=0

∇iH ∗ ∇2−iH

)

+ Rm ∗ ∇
(

Rm + ρRg + H∗2
)

= ∆∇Rm +∇Rm ∗ Rm + ρ∇3R ∗ g

+ ρ ∑
α+β=1

∇αR ∗ ∇βRm + ∑
α+β=3

∇α H ∗ ∇β H+ ∑
α+β+γ=1

∇α H ∗ ∇βH ∗ ∇γRm.

(31)

More general result is as follow.

Proposition 6. Under the GRBF system (4) for any nonnegative integer k we have

∂

∂t

(

∇kRm
)

= ∆
(

∇kRm
)

+ ∑
α+β=k

∇αRm ∗ ∇βRm + ρ∇k+2R ∗ g + ρ ∑
α+β=k

∇αR ∗ ∇βRm

+ ∑
α+β=2+k

∇α H ∗ ∇βH + ∑
α+β+γ=k

∇α H ∗ ∇β H ∗ ∇γRm.
(32)

Proof. From (23) and (31), we see that (32) holds for k = 0, 1. For the induction step, assume

that (33) holds for all 0 ≤ j < k. We have

∂

∂t

(

∇kRm
)

=
∂

∂t
∇
(

∇k−1Rm
)

= ∇
∂

∂t

(

∇k−1Rm
)

+
(

∇k−1Rm
)

∗ ∇
(

Rm + ρRg + H∗2
)

= ∇

[

∆
(

∇k−1Rm
)

+ ∑
α+β=k−1

∇αRm ∗ ∇βRm + ρ∇k+1R ∗ g

+ ρ ∑
α+β=k−1

∇αR ∗ ∇βRm + ∑
α+β=1+k

∇α H ∗ ∇βH

+ ∑
α+β+γ=k−1

∇α H ∗ ∇β H ∗ ∇γRm

]

+
(

∇k−1Rm
)

∗ ∇
(

Rm + ρRg + H∗2
)

= ∆
(

∇kRm
)

+ ∑
α+β=k

∇αRm ∗ ∇βRm + ρ∇k+2R ∗ g + ρ ∑
α+β=k

∇αR ∗ ∇βRm

+ ∑
α+β=2+k

∇αH ∗ ∇βH + ∑
α+β+γ=k

∇α H ∗ ∇β H ∗ ∇γRm.

(33)

This completes the inductive step and we obtain the required result.
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As an immediate consequence, we get the following assertion.

Corollary 6. Under the GRBF system (4) the evolution of the length of derivative of Rieman-

nian curvature tensor satisfies

∂

∂t
|Rm|2 ≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3

+ |ρ|C|Rm||∇2 R|+ |ρ|C|R||Rm|2

+ C|H|2|Rm|2 + C ∑
α+β=2

|∇α H| |∇β H||Rm|

(34)

and for any positive integer k we have

∂

∂t

∣

∣

∣
∇kRm

∣

∣

∣

2
≤ ∆

∣

∣

∣
∇kRm

∣

∣

∣

2
− 2

∣

∣

∣
∇k+1Rm

∣

∣

∣

2

+ C
∣

∣

∣
∇kRm

∣

∣

∣ ∑
α+β=k

|∇αRm|
∣

∣

∣
∇βRm

∣

∣

∣

+ ρC
∣

∣

∣
∇kRm

∣

∣

∣

∣

∣

∣
∇k+2R

∣

∣

∣

+ ρC
∣

∣

∣
∇kRm

∣

∣

∣ ∑
α+β=k

|∇αR|
∣

∣

∣
∇βRm

∣

∣

∣

+ C
∣

∣

∣
∇kRm

∣

∣

∣ ∑
α+β=2+k

|∇α H|
∣

∣

∣
∇β H

∣

∣

∣

+ C
∣

∣

∣
∇kRm

∣

∣

∣ ∑
α+β+γ=k

|∇αH|
∣

∣

∣
∇β H

∣

∣

∣
|∇γRm| ,

(35)

where C represents universal constants depending only on the dimension of M.

Proof. By the evolution equation (23), we get

∂

∂t
|Rm|2 = 2Rm ∗

(

∂

∂t
Rm

)

+ (Rm)∗2 ∗
(

Rm + ρRg + H∗2
)

= 2Rm ∗

(

∆Rm + Rm ∗ Rm + ρ∇2R ∗ g + ρRRm + H∗2 ∗ Rm +
2

∑
i=0

∇iH ∗ ∇2−iH

)

+ (Rm)∗2 ∗
(

Rm + ρRg + H∗2
)

≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3 + |ρ|C|Rm|
∣

∣

∣
∇2R

∣

∣

∣
+ |ρ|C|R||Rm|2 + C|H|2|Rm|2

+ C ∑
α+β=2

|∇α H|
∣

∣

∣
∇β H

∣

∣

∣
|Rm|.

Hence (34) follows. To prove (35), we note

∂

∂t

∣

∣

∣
∇kRm

∣

∣

∣

2
= 2

(

∇kRm
)

∗

(

∂

∂t

(

∇kRm
)

)

+
(

∇kRm
)∗2

∗
(

Rm + ρRg + H∗2
)

.

Combining it with (32), we obtain the required result.

Now we derive the evolution equations for the covariant derivative of H.



652 Shahroud Azami

Proposition 7. Under the GRBF system (4) we have

∂

∂t
(∇H) = ∆(∇H) + ∑

α+β=1

∇αH ∗ ∇βRm + ρH ∗ ∇R +∇H ∗ H∗2 (36)

and
∂

∂t

(

∇k H
)

= ∆
(

∇k H
)

+ ∑
α+β=k

∇α H ∗ ∇βRm + ρ ∑
α+β=k−1

∇αH ∗ ∇1+βR

+ ∑
α+β+γ=k

∇α H ∗ ∇βH ∗ ∇γ H
(37)

for all k ≥ 2.

Proof. Since ∂
∂t H = ∆H + H ∗ Rm, we conclude

∂

∂t
(∇H) = ∇

∂H

∂t
+ H ∗ ∇

(

Rm + ρRg + H∗2
)

= ∇(∆H + H ∗ Rm) + H ∗ ∇Rm + ρH ∗ ∇R +∇H ∗ H∗2

= ∆(∇H) +∇H ∗ Rm + H ∗ ∇Rm + ρH ∗ ∇R +∇H ∗ H∗2.

Hence (36) holds. Let us prove (37) by induction. Assume the evolution equation ∇j H holds

for all 1 ≤ j < k in (37). We have

∂

∂t

(

∇k H
)

=
∂

∂t
∇
(

∇k−1H
)

= ∇

(

∂

∂t

(

∇k−1H
)

)

+∇k−1H ∗ ∇
(

Rm + ρRg + H∗2
)

= ∇

[

∆
(

∇k−1H
)

+ ∑
α+β=k−1

∇α H ∗ ∇βRm + ρ ∑
α+β=k−2

∇α H ∗ ∇1+βR

+ ∑
α+β+γ=k−1

∇α H ∗ ∇β H ∗ ∇γH

]

+∇k−1H ∗ ∇
(

Rm + ρRg + H∗2
)

= ∆(∇k H) + ∑
α+β=k

∇αH ∗ ∇βRm + ρ ∑
α+β=k−1

∇α H ∗ ∇1+βR

+ ∑
α+β+γ=k

∇α H ∗ ∇βH ∗ ∇γH.

This completes the proof.

By Proposition 7, we get the following result.

Corollary 7. Under the GRBF system (4) we have

∂

∂t

∣

∣∇H
∣

∣

2
≤ ∆

∣

∣∇H
∣

∣

2
− 2
∣

∣∇2H
∣

∣

2
+ C

∣

∣∇H
∣

∣ ∑
α+β=1

∣

∣∇α H
∣

∣

∣

∣∇βRm
∣

∣

+
∣

∣ρ
∣

∣ C
∣

∣∇H
∣

∣ ∑
α+β=1

∣

∣∇αH
∣

∣

∣

∣∇βR
∣

∣+ C
∣

∣∇H
∣

∣

2∣
∣H
∣

∣

2

and
∂

∂t

∣

∣∇k H
∣

∣

2
≤ ∆

∣

∣∇k H
∣

∣

2
− 2
∣

∣∇k H
∣

∣

2
+ C

∣

∣∇k H
∣

∣ ∑
α+β=k

∣

∣∇α H
∣

∣

∣

∣∇βRm
∣

∣

+
∣

∣ρ
∣

∣C
∣

∣∇k H
∣

∣ ∑
α+β=k

∣

∣∇α H
∣

∣

∣

∣∇βR
∣

∣

+ C
∣

∣∇k H
∣

∣ ∑
α+β+γ=k

∣

∣∇α H
∣

∣

∣

∣∇βH
∣

∣

∣

∣∇γ H
∣

∣

for all k ≥ 2.
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Proposition 8. Under the GRBF system (4) we have

∂

∂t
(∇R) =

(

1 − 2(n − 1)ρ
)

∆∇R +
(

1 − 2(n − 1)ρ
)

Rm ∗ ∇R

+
(

2 − 2(n − 1
)

ρ)R∇Rm

+∇Rm ∗ Rm − 2ρR∇R

−
3

4
∆∇|H|2 + Rm ∗ ∇|H|2 −

1

2
|H|2∇Rm

+ ∑
α+β=3

∇αH ∗ ∇β H

+ ∑
α+β+γ=1

∇α H ∗ ∇βH ∗ ∇γRm

+ R H ∗ H + 2ρR2g

and

∂

∂t

(

∇kR
)

=
(

1 − 2(n − 1)ρ
)

∆∇kR + ∑
α+β=k

∇αRm ∗ ∇βR

+ ∑
α+β=k

∇αRm ∗ ∇βRm

+ ∑
α+β≤k

∇αR ∗ ∇βR −
3

4
∆∇2|H|2

+ ∑
α+β=k

∇αRm ∗ ∇β|H|2

+ ∑
α+β=2+k

∇αH ∗ ∇βH

+ ∑
α+β+γ=k

∇α H ∗ ∇βH ∗ ∇γRm

+ ∑
α+β+γ=k−1

∇α H ∗ ∇β H ∗ ∇γR

for all k ≥ 2.

Proof. We have

∂

∂t
(∇R) = ∇

∂R

∂t
+ R∇ (Rm + H ∗ H + 2ρRg)

=
(

1 − 2(n − 1)ρ
)

∇∆R + 2∇|Ric|2 − 2ρR∇R −
3

4
∇∆|H|2

+∇

(

∑
α+β=2

∇α H ∗ ∇β H + H ∗ H ∗ Rm

)

+ R∇Rm + R H ∗ H + 2ρR2g

=
(

1 − 2(n − 1)ρ
)

∆∇R +
(

1 − 2(n − 1)ρ
)

Rm ∗ ∇R + (1 − 2(n − 1)ρ)R∇Rm

+∇Rm ∗ Rm − 2ρR∇R −
3

4
∆∇|H|2 + Rm ∗ ∇|H|2 −

1

2
|H|2∇Rm

+ ∑
α+β=3

∇αH ∗ ∇βH + ∑
α+β+γ=1

∇α H ∗ ∇βH ∗ ∇γRm

+ R∇Rm + R H ∗ H + 2ρR2g.

By using the induction we conclude the second result.
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Corollary 8. Under the GRBF system (4) we have

∂

∂t
|∇R|2 =

(

1 − 2(n − 1)ρ
)

∆|∇R|2− 2
(

1 − 2(n − 1)ρ
)

|∇2R|+∇R ∗ Rm ∗ ∇R + R∇R ∗ ∇Rm

+∇R ∗ ∇Rm ∗ Rm − 2ρR∇R ∗ ∇R +∇R ∗ ∆∇|H|2 +∇R ∗ Rm ∗ ∇|H|2

+ |H|2∇R ∗ ∇Rm +∇R ∗ ∑
α+β=3

∇α H ∗ ∇βH +∇R ∗ ∑
α+β+γ=1

∇α H ∗ ∇βH ∗ ∇γRm

+ R∇R ∗ H ∗ H + R2∇R ∗ g + Rm ∗ ∇R ∗ ∇R + H ∗ H ∗ ∇R ∗ ∇R + R∇R ∗ g

≤
(

1 − 2(n − 1)ρ
)

∆|∇R|2 − 2
(

1 − 2(n − 1)ρ
)

|∇2R|+ C|∇R|2|Rm|

+ C|Rm||∇R||∇Rm| + C|∇R||∆∇|H|2 + C|∇R||Rm||∇|H|2 + C|H|2|∇R||∇Rm|

+ C|∇R| ∑
α+β=3

|∇αH| |∇β H|+ C|∇R| ∑
α+β+γ=1

|∇α H||∇β H||∇γRm|

+ C|Rm||∇R||H|2 + C|Rm|2|∇R|+ C|H|2|∇R|2 + |Rm||∇R|

and

∂

∂t

∣

∣∇kR
∣

∣

2
≤
(

1 − 2(n − 1)ρ
)

∆
∣

∣∇kR
∣

∣

2
− 2
(

1 − 2(n − 1)ρ
)∣

∣∇k+1R
∣

∣

2

+ C
∣

∣∇kR
∣

∣ ∑
α+β=k

|∇αRm|
∣

∣∇βR
∣

∣

+ C
∣

∣∇kR
∣

∣ ∑
α+β=k

|∇αRm|
∣

∣∇βRm
∣

∣

+ C
∣

∣∇kR
∣

∣ ∑
α+β≤k

|∇αR|
∣

∣∇βR
∣

∣

+ C
∣

∣∇kR
∣

∣

2∣
∣∆∇2

∣

∣

∣

∣H2
∣

∣

+ C
∣

∣∇kR
∣

∣ ∑
α+β=k

|∇αRm|
∣

∣∇β
∣

∣

∣

∣H2
∣

∣

+ C
∣

∣∇kR
∣

∣ ∑
α+β=2+k

|∇α H|
∣

∣∇β H
∣

∣

+ C
∣

∣∇kR
∣

∣ ∑
α+β+γ=k

|∇αH|
∣

∣∇βH
∣

∣

∣

∣∇γRm
∣

∣

+ C
∣

∣∇kR
∣

∣ ∑
α+β+γ=k−1

|∇α H|
∣

∣∇βH
∣

∣

∣

∣∇γR
∣

∣

+ C|Rm|
∣

∣∇kR
∣

∣

2
.

for all k ≥ 2.

Theorem 6. Let
(

g(x, t), H(x, t)
)

be a solution to GRBF system (4) on a closed manifold Mn on

0 ≤ t ≤ T and K1, K2 be arbitrary given nonnegative constants. Then there exists a constant

C(n) depending only on n such that if
∣

∣Rm(x, t)
∣

∣

g(x,t)
≤ K1 and

∣

∣H(x)
∣

∣ ≤ K2

for all (x, t) ∈ Mn × [0, T], then

∣

∣H(x, t)
∣

∣

g(x,t)
≤ K2e

1
2 C(n)K1t

for all (x, t) ∈ Mn × [0, T].
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Proof. Since ∂H
∂t = ∆H + Rm ∗ H we have

∂

∂t
|H|2 = 2HikpH

kp
j

(

2Rij − 2ρRgij −
1

2
hij
)

+ 2 (∆H + Rm ∗ H) ∗ H

= ∆|H|2 − 2|∇H|2 + Rm ∗ H ∗ H + ρRH ∗ H − |H|4

≤ ∆|H|2 + C1(n)|Rm||H|2 + C1(n)|ρ||R||H|2

≤ ∆|H|2 + C(n)K1|H|2.

Suppose that y(t) is the solution to the corresponding ordinary differential equation
dy
dt = C(n)K1y with y(0) = K2

2. Then y(t) = K2
2eC(n)K1t and by the maximum principle we

obtain
∣

∣H(x, t)
∣

∣ ≤ K2e
1
2 C(n)K1t.

6 Compactness theorem for the GRBF system

In [2], the compactness theorem and its various versions for solutions of the Ricci flow are

discussed to understand singularity formation. This is most effective when the compactness

theorem is combined with monotonicity formulas on other geometric techniques. The com-

pactness for the Ricci flow has applications to study solution (Mn, g(t)) to the Ricci flow on

t ∈ (a, b), where b ≤ ∞ is maximal. It helps in understanding the limiting behavior of the

solution g(t) as t → b and to determining, when there exists a subsequence of pointed solu-

tion to the Ricci flow
(

M, gk(t), Ok

)

, that converges to a complete solution
(

M∞, g∞(t), O∞

)

. In

this section, using the definitions and notations of [2], we prove the compactness theorem for

solution of the GRBF system.

In the following, we find bounds on the metric and its derivatives.

Lemma 3. Let (Mn, g) be a close manifold, ρ <
1

2(n−1)
, U be a compact subset of M, and

(gk(t), Hk(t)) be smooth solutions of the GRBF system in neighborhood of U × [β, ψ], where

β < 0 < ψ. At time t = 0 on U suppose that:

(a) the metrics gk(x, 0) are all uniformly equivalent to g(x) on U, i.e. for all V ∈ Tx M, k

and x ∈ U, we have cg(V, V) ≤ gk(x, 0)(V, V) ≤ Cg(V, V), where c and C are constants

independent of V, k, and x,

(b) |∇pgk|g ≤ Cp for all p ≥ 1, where Cp is a constant independent of k,

(c) |∇p Hk|g ≤ C′
p for all p ≥ 0, where C′

p is a constant independent of k, and in addition

(d) sup
U×[β,ψ]

∣

∣∇
p
k Rmk

∣

∣

gk
≤ C′′

p for all p ≥ 0, where C′′
p is a constant independent of k,

(e) sup
U×[β,ψ]

∣

∣∇
p
k Hk

∣

∣

gk
≤ C′′′

p for all p ≥ 0, where C′′′
p is a constant independent of k.

Then we have

(i) c̃g(V, V) ≤ gk(t)(V, V) ≤ C̃g(V, V),

(ii) sup
U×[β,ψ]

∣

∣∇
p
k gk

∣

∣

g
≤ C̃p for all p ≥ 1,

(iii) sup
U×[β,ψ]

∣

∣∇
p
k Hk

∣

∣

g
≤ C̃′

p for all p ≥ 0,

on U × [β, ψ], where c̃, C̃, C̃p, and C̃′
p are constants independent of k for all t ∈ [0, τ].
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Proof. In the process of proving the Lemma, C̄k, 1 ≤ k ≤ 31 are constants. For any V ∈ Tx M

we have

∂

∂t
gk(x, t)(V, V) = −2Rick(x, t)(V, V) + 2ρRkgk(x, t)(V, V) + hk(x, t)(V, V).

Then using (d) and (e), we infer

|Rick(x, t)(V, V)|gk
≤ C̄1(n)C

′′
0 gk(x, t)(V, V),

|Rk(x, t)| ≤ C̄2(n)C
′′
0 ,

|hk(x, t)(V, V)|gk
≤ C̄3(n) |Hk(x, t)|2gk

gk(x, t)(V, V) ≤ C̄3(n)C
′′′
0 gk(x, t)(V, V),

which give

∣

∣

∣

∣

∂

∂t
gk(x, t)(V, V)

∣

∣

∣

∣

gk

≤ 2 |Rick(x, t)(V, V)|gk
+ 2 |ρ| |Rk| g(x,t)(V, V) + |hk(x, t)(V, V)|gk

≤
(

C̄1(n)C
′′
0 + 2|ρ|C̄2(n)C

′′
0 + C̄3(n)C

′′′
0

)

gk(x, t)(V, V).

Therefore for 0 ≤ t ≤ ψ we obtain

∣

∣

∣

∣

log
gk(x, t)(V, V)

gk(x, 0)(V, V)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

∂
∂t gk(x, t)(V, V)

gk(x, t)(V, V)
dt

∣

∣

∣

∣

≤
∫ t

0

∣

∣

∣

∣

∂
∂t gk(x, t)(V, V)

gk(x, t)(V, V)

∣

∣

∣

∣

g(t)

dt

≤
(

C̄1(n)C
′′
0 + 2|ρ|C̄2(n)C

′′
0 + C̄3(n)C

′′′
0

)

ψ.

Hence, this inequality and the assumption condition (a) complete the proof of (i).

Let ∇, Γ, k∇ and kΓ be connections and Christoffel symbols of metrics g and gk, respectively.

From the definition we have

kΓl
ij − Γl

ij =
1

2
(gk)

lr
{

∇i(gk)jr +∇j(gk)ir −∇r(gk)ij

}

,

thus
∣

∣

kΓ(x, t)− Γ(x)
∣

∣

g
≤ C̄4(n) |∇gk(x, t)|gk

. On the other hand, for a tensor T, we have

∇iTjr =
∂

∂xi
Tjr − Γl

ijTlr − Γl
irTl j =

k∇iTjr −
(

Γl
ij −

kΓ
l
ij

)

Tlr −
(

Γl
ir −

kΓ
l
ir

)

Tl j,

therefore,

∇i (gk)jr = −
(

Γl
ij −

k Γl
ij

)

(gk)lr −
(

Γl
ir −

k Γl
ir

)

(gk)l j .

It follows that |∇i(gk)(x, t)|gk
≤ C̄5(n)

∣

∣

kΓ(x, t)− Γ(x)
∣

∣

gk
and hence ∇gk is equivalent to

kΓ − Γ = k∇−∇. Since ∇ is independent of time, the evolution equation for kΓ − Γ is

∂

∂t

(

kΓ − Γ
)

=−
{

k∇i(Rick)jr +
k∇j(Rick)ir −

k∇r(Rick)ij

}

+ ρ
{

k∇iRk(gk)jr +
k∇jRk(gk)ir −

k∇rRk(gk)ij

}

+
1

2

{

k∇i(hk)jr +
k∇j(hk)ir −

k∇r(hk)ij

}

.
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It follows from the assumption that
∣

∣

∣

∣

∂

∂t

(

kΓ − Γ
)

∣

∣

∣

∣

gk

≤ C̄7

(

n, |ρ|
)

[

∣

∣

∣

k∇(Rick)
∣

∣

∣

gk

+
∣

∣

∣

k∇(Rk)
∣

∣

∣

gk

+
∣

∣

∣

k∇(hk)
∣

∣

∣

gk

]

≤ C̄8

(

n, |ρ|
) [

C”1 + C”′1C”′0
]

.

We conclude
∣

∣

∣

∣

∂

∂t
∇gk

∣

∣

∣

∣

g

≤ C̄9

∣

∣

∣

∣

∂

∂t

(

kΓ − Γ
)

∣

∣

∣

∣

gk

≤ C̄9C̄8

(

n, |ρ|
)[

C”1 + C”′1C”′0
]

,

where constant C̄9 comes from (i). Integrating on both sides, we get
∣

∣

∣

∣

∂

∂t
∇gk(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∇gk(0) +
∫ t

0
∇gk(τ)dτ

∣

∣

∣

∣

≤ C̃1 + C̄9C̄8

(

n, |ρ|
)[

C”1 + C”′1C”′0
]

ψ.

By (e) and (i), we obtain

|Hk|g ≤ C̄10 |Hk|gk
≤ C̄10C′′′

0 := C̃′
0.

Since ∇ is independent of time, we get

∂

∂t
∇Hk = ∇

∂

∂t
Hk = ∇ [∆k Hk + Rmk ⋆ Hk]

=
(

∇− k∇
)

∆k Hk +
k∇∆k Hk +

(

∇− k∇
)

Rmk ∗ Hk +
k∇Rmk ∗ Hk

+ Rmk ∗
(

∇− k∇
)

Hk + Rmk ∗
k∇Hk = ∇gk ∗ ∆k Hk +

k∇∆k Hk

+∇gk ∗ Rmk ∗ Hk +
k∇Rmk ∗ Hk + Rmk ∗ ∇gk ∗ Hk + Rmk ∗

k∇Hk,

where ∆k is the Laplace operator associated to gk and we used ∇gk ≃ ∇ − k∇. From the

assumptions (d), (e), (i) and (ii) for p = 1, the above equation implies that
∣

∣

∣

∂
∂t∇Hk

∣

∣

∣
≤ C̄11. As

above

|∇Hk(t)| ≤ |∇Hk(0)|+
∫ t

0

∣

∣

∣

∣

∂

∂τ
∇Hk(τ)

∣

∣

∣

∣

dτ ≤ C′
1 + C̄11ψ := C̃′

1.

For higher derivative of (gk, Hk) with respect to g, we have

∂

∂t
∇2gk = ∇2 (−2Ric + 2ρRkg + h)

= −2∇2Ric +∇2Rk ∗ gk + R1 ∗ ∇2gk +∇R ∗ ∇gk + Hk ∗ ∇
2Hk +∇Hk ∗ ∇Hk.

We can write

∂

∂t
∇2Rick =

(

∇− k∇
) [(

∇− k∇
)

Rick +
k∇Rick

]

+ k∇
(

∇− k∇
)

Rick +
k∇

2
Rick

= ∇gk ∗
[

∇gk ∗ Rick +
k∇Rick

]

+∇2gk ∗ Rick +
k∇

2
Rick.

Therefore

∂

∂t
∇2gk =∇gk ∗

[

∇gk ∗ Rick +
k∇Rick

]

+∇2gk ∗ Rick

+ k∇
2
Rick +∇2Rk ∗ gk + Rk1 ∗ ∇2gk +∇R ∗ ∇gk

+ Hk ∗

[

∇gk ∗
[

∇gk ∗ Hk +
k∇Rick

]

+∇2gk ∗ Hk +
k∇

2
Hk

]

+∇Hk ∗ ∇Hk.
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Hence the assumptions and (i) –(iii) for the case p = 0, 1 imply that
∣

∣

∣

∣

∂

∂t
∇2gk

∣

∣

∣

∣

≤ C̄12

(

∣

∣

∣
∇2gk

∣

∣

∣
+
∣

∣

∣
∇2Hk

∣

∣

∣

)

+ C̄13. (38)

Similarly we have

∂

∂t
∇2Hk = ∇2 (∆kHk + Rmk ∗ Hk)

= ∇gk ∗
[

∇gk ∗ ∆k Hk +
k∇∆k Hk

]

+∇2gk ∗ ∆k Hk +
k∇

2
∆k Hk

+∇2Rmk ∗ Hk + Rmk ∗ ∇
2Hk +∇gk ∗ Rmk ∗ ∇Hk +

k∇Rmk ∗ ∇Hk

and
∣

∣

∣

∣

∂

∂t
∇2Hk

∣

∣

∣

∣

≤ C̄14

(

∣

∣∇2gk

∣

∣+
∣

∣∇2Hk

∣

∣

)

+ C̄15. (39)

Putting (38) and (39) together, we arrive at
∣

∣

∣

∣

∂

∂t

(
∣

∣∇2gk

∣

∣+
∣

∣∇2Hk

∣

∣

)

∣

∣

∣

∣

≤ C̄16

(

∣

∣∇2gk

∣

∣+
∣

∣∇2Hk

∣

∣

)

+ C̄17.

Since
∣

∣∇2gk(0)
∣

∣+
∣

∣∇2Hk(0)
∣

∣ ≤ C2 + C′
2, integrating on both sides of above inequality, we get

∣

∣∇2gk(t)
∣

∣+
∣

∣∇2Hk(t)
∣

∣ ≤ C̄18.

Suppose that the estimates hold for p < N with N ≥ 2. Let us show that they also hold for

p = N. Notice

∣

∣

∣
∇N Rick

∣

∣

∣
=

∣

∣

∣

∣

∣

N

∑
i=1

∇N−i
(

∇− k∇
)

k∇
i−1

Rick +
k∇

N
Rick

∣

∣

∣

∣

∣

≤
N

∑
i=1

∣

∣

∣
∇N−i

(

∇− k∇
)

k∇
i−1

Rick

∣

∣

∣
+
∣

∣

∣

k∇
N

Rick

∣

∣

∣
.

By induction on p we show that

|∇pRick| ≤ Ap |∇
pgk|+ Bp, |∇pgk|+ |∇p Hk| ≤ Dp

for all p ≥ 1, where Ap, Bp, and Dp are constants independent of k. For i = 1, by induction and

the assumptions we have
∣

∣

∣
∇N−1

(

∇− k∇
)

Rick

∣

∣

∣
≤ C̄19

∣

∣

∣
∇N−1 (∇gkRick)

∣

∣

∣

≤ C̄19

∣

∣

∣

∣

∣

N−1

∑
j=0

(

N − 1

j

)

(

∇N−jgk

) (

∇jRick

)

∣

∣

∣

∣

∣

≤ C̄19

N−1

∑
j=0

(

N − 1

j

)

∣

∣

∣
∇N−jgk

∣

∣

∣

∣

∣

∣
∇jRick

∣

∣

∣

≤ C̄19

N−1

∑
j=0

(

N − 1

j

)

(

Aj

∣

∣

∣
∇jgk

∣

∣

∣
+ Bj

)
∣

∣

∣
∇N−jgk

∣

∣

∣

≤ C̄19

N−1

∑
j=0

(

N − 1

j

)

(

AjDj + Bj

)

∣

∣

∣
∇N−jgk

∣

∣

∣

≤ C̄20

∣

∣

∣
∇N gk

∣

∣

∣
+ C̄21.
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For 2 ≤ i ≤ N we have
∣

∣

∣

∣

∇N−i
(

∇− k∇
)

k∇
i−1

Rick

∣

∣

∣

∣

≤ C̄22

∣

∣

∣

∣

∇N−i
(

∇gk
k∇

i−1
Rick

)

∣

∣

∣

∣

≤ C̄22

N−1

∑
j=0

(

N − 1

j

)

∣

∣

∣
∇N−i−j+1gk

∣

∣

∣

∣

∣

∣

∣

∇j
(

k∇
i−1

Rick

)

∣

∣

∣

∣

= C̄22

N−1

∑
j=0

(

N − 1

j

)

∣

∣

∣
∇N−i−j+1gk

∣

∣

∣

∣

∣

∣

∣

(

(

∇− k∇
)

+ k∇

)j
(

k∇
i−1

Rick

)

∣

∣

∣

∣

= C̄23

N−1

∑
j=0

(

N − 1

j

)

∣

∣

∣
∇N−i−j+1gk

∣

∣

∣

( j

∑
l=0

(

j

l

)

∣

∣∇lgk

∣

∣

∣

∣

k∇
j−l+i−1

Rick

∣

∣

)

≤ C̄24.

Combining the above two inequalities, we deduce
∣

∣∇N Rick

∣

∣ ≤ AN

∣

∣∇N gk

∣

∣+ BN .

Similarly we have
∣

∣∇N Rmk

∣

∣ ≤ A′
N

∣

∣∇N gk

∣

∣+ B′
N,

∣

∣∇N∆k Hk

∣

∣ ≤ A′′
N

∣

∣∇N gk

∣

∣+ B′′
N ,

where A′
N , A′′

N, B′
N and B′′

N are constants independent of k. By induction, we have that |∇pHk|

bounded for all p < N. Now, for p ≥ 1, the equality

∂

∂t
∇pgk = ∇p (−2Ric + 2ρRkg + h) = −2∇pRic +

p

∑
i=0

∇iRk ∗ ∇
p−igk +

p

∑
i=0

∇iHk ∗ ∇
p−iHk

implies that
∣

∣

∣

∣

∂

∂t
∇N gk

∣

∣

∣

∣

≤ C̄25

(

∣

∣∇N gk

∣

∣+
∣

∣∇N Hk

∣

∣

)

+ C̄26. (40)

On the other hand, equality

∂

∂t
∇pHk = ∇p [∆k Hk + Rmk ⋆ Hk] = ∇p∆k Hk +

p

∑
i=1

∇iRmk ∗ ∇
p−iHk

yields
∣

∣

∣

∣

∂

∂t
∇N∆k Hk

∣

∣

∣

∣

≤ C̄27

(

∣

∣∇N gk

∣

∣+
∣

∣∇N Hk

∣

∣

)

+ C̄28. (41)

Combining (40) and (41), we conclude
∣

∣

∣

∣

∂

∂t

(

∣

∣∇N gk

∣

∣+
∣

∣∇N Hk

∣

∣

)

∣

∣

∣

∣

≤ C̄29

(

∣

∣∇N gk

∣

∣+
∣

∣∇N Hk

∣

∣

)

+ C̄30.

Since
∣

∣∇N gk(0)
∣

∣ +
∣

∣∇N Hk(0)
∣

∣ ≤ CN + C′
N , integrating on both sides of the above inequal-

ity, we get
∣

∣∇2gk(t)
∣

∣+
∣

∣∇2Hk(t)
∣

∣ ≤ C̄31.

This completes the proof of the lemma.
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Definition 3. Let E be a vector bundle on a Riemannian manifold M, and let metric g and

connection ∇ be given on E and on TM. Let Ω ⊂ M be an open set with compact closure Ω̄ in

M, and let (ηk) be a sequence of sections of E.

For any p ≥ 0 we say that ηk converges in Cp(M) to η∞ ∈ Γ (E|Ω̄) if for any ǫ > 0 there

exists k0 = k0(ǫ) such that

sup
0≤α≤p

sup
x∈Ω̄

∣

∣∇α (ηk − η∞)
∣

∣ < ǫ,

whenever k > k0.

We say ηK converges in C∞ to η∞ on Ω̄ if ηK converges in Cp to η∞ on Ω̄ for any p ∈ N.

Definition 4. A pointed Riemannian manifold is a 4-tuple (M, g, H, O), where (M, g) is a

Riemannian manifold and O ∈ M is a choice of point. If the metric g is complete, then the

4-tuple is called a complete pointed Riemannian manifold. We say that
(

M, g(t), H(t), O
)

,

t ∈ (a, b), is a pointed solution to the GRBF system if
(

M, g(t), H(t)
)

is a solution to the GRBF

system.

Definition 5. A sequence
{(

Mk, gk, Hk, Ok

)}

of complete pointed Riemannian manifolds con-

verges to a complete pointed Riemannian manifold (M∞, g∞, H∞, O∞) as Cheeger-Gromov

convergence if there exist

1) an exhaustion (Uk) of M∞ with O∞ ∈ Uk such that Ūk is compact and Ūk ⊂ Uk+1 for all k,

and
⋃

k≥1 Uk = M,

2) a sequence of diffeomorphisms φk : Uk → Vk ⊂ Mk with φ (O∞) = Ok such that
(

φ∗
k gk, φ∗

k Hk

)

converges in C∞ to (g∞, H∞) on compact sets in M∞.

Definition 6. A sequence
{(

Mk, gk(t), Hk(t), Ok

)}

, t ∈ (a, b), of complete pointed solutions

to the GRBF system converges to a complete pointed solution to the GRBF system

(M∞, g∞(t), H∞(t), O∞), t ∈ (a, b), if there exist

1) an exhaustion (Uk) of M∞ with O∞ ∈ Uk,

2) a sequence of diffeomorphisms φk : Uk → Vk ⊂ Mk with φ (O∞) = Ok such that
(

φ∗
k gk(t), φ∗

k Hk(t)
)

converges in C∞ to (g∞(t), H∞(t)) on compact sets in M∞ × (a, b).

In [8], the following theorem about compactness of metrics has been proven.

Theorem 7. Let
{(

Mk, gk, Ok

)}

be a sequence of complete pointed Riemannian manifolds that

satisfy

1)
∣

∣∇
p
k Rmk

∣

∣

k
≤ Cp on Mk for each p ≥ 0 and k, where Cp < ∞ is a sequence of constants

independent of k, and

2) injgk
(Ok) ≥ k0 for some constant k0, where injgk

(Ok) is the injectivity radius of the met-

ric g at the point Ok.

Then there exists a subsequence {jk} such that
{(

Mjk , gjk , Ojk

)}

converges to a complete

pointed Riemannian manifold (M∞, g∞, O∞) as k → ∞.
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Theorem 8 (compactness for the GRBF system). Let
{(

Mk, gk(t), Hk(t), Ok

)}

, t ∈ (a, b),

−∞ ≤ a < 0 < b ≤ ∞, be a sequence of complete pointed solutions to the GRBF system

such that

(i) the curvature is uniformly bounded, i.e.

|Rmk|gk
≤ K0, |Hk| ≤ K1 on Mk × (a, b)

for some constants K0, K1 < ∞ independent of k, and

(ii) injectivity radius at t = 0 has the following estimate

injgk(0)
(Ok) ≥ k0

for some constant k0 > 0.

Then there exists a subsequence
{

jk
}

such that
{(

Mjk , gjk(t), Hjk(t), Ojk

)}

converges to a

complete pointed solution to the GRBF system (M∞, g∞(t), H∞(t), O∞) as k → ∞ for t ∈ (a, b).

Proof. We only prove the case, where each Mk is compact. Consider a sequence of pointed

solutions
{

Mk, gk(t), Hk(t), Ok

}

, t ∈ (a, b), to the GRBF system, where

sup
Mk×(a,b)

|Rmk| ≤ K0 and sup
Mk×(a,b)

|Hk)| ≤ K1.

The Lemma 3 gives bounds of the form

|∇pRm(x, t)| ≤ A

for all x ∈ M and t ∈ [a + ǫ, b) for each small ǫ > 0.

Theorem 7 implies that there is a subsequence of
{(

Mk, gk(0), Ok

)}

, which converges

to (M∞, g∞, O∞). We write this subsequence again by
{(

Mk, gk(0), Ok

)}

if there is no am-

biguous. Let us show that there are metrics g∞(t), t ∈ (a, b), such that g∞(0) = g∞ and

{(Mk, gk(t), Hk(t), Ok)} converges to (M∞, g∞(t), H∞(t), O∞). Since {(Mk, gk(0), Ok)} conver-

ges to (M∞, g∞(t), O∞), there are an exhaustion (Uk) of M∞ and smooth maps φk : Uk → Vk

taking O∞ to Ok such that
(

g̃k(0), H̃k(0)
)

=
(

φ∗
k (gk(0)) , φ∗

k (Hk(0))
)

uniformly converges

in C∞ on compact sets of M∞ to (g∞, H∞). The metrics g̃k(0) are uniformly comparable to

ḡ = g∞, then by Lemma 3,
(

g̃k(t), H̃k(t)
)

=
(

φ∗
k (gk(t)), φ∗

k (Hk(t))
)

remain comparable for

other t ∈ (a, b).

We have
∣

∣∇̄p g̃k

∣

∣ ≤ B. Now, by the Arzela-Ascoli theorem, there is a subsequence, which

converges to (M∞, g∞(t), H∞, O∞) in C∞, where (g∞(t), H∞(t)) is defined to be the limit of
(

φ∗
k (gk(t)) , φ∗

k (Hk(t))
)

. Since all derivatives of the metric converge, the Ricci curvature of

gk(t) converges to the Ricci curvature of g∞(t) and hence the limit is a solution of the GRBF

system. Since any complete manifold is a σ-compact, locally compact Hausdorff space, then for

complete manifolds, it is sufficient to use Arzela-Ascoli theorem. This completes the proof.
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— C. 638–662.

У цiй роботi ми розглядаємо узагальнену систему потоку Рiччi-Бурґiньйона, яка має схо-

жiсть iз потоком Рiччi-Бурґiньйона та володiє градiєнтною формою. Ми встановлюємо iсну-

вання та єдинiсть розв’язку цього потоку на n-вимiрному замкненому рiмановому многовидi.

Ми вводимо узагальнений солiтон системи Рiччi-Бурґiньйона та надаємо умову, за якої гра-

дiєнтний узагальнений солiтон системи Рiччi-Бурґiньйона є iзометричним до евклiдової сфе-

ри. Потiм ми дослiджуємо еволюцiю деяких геометричних структур многовида вздовж цього

потоку та встановлюємо оцiнки для похiдних вищих порядкiв для компактних многовидiв, а

також теорему компактностi для цiєї узагальненої системи потоку Рiччi-Бурґiньйона на за-

мкнених рiманових многовидах.

Ключовi слова i фрази: потiк Рiччi-Бурґiньйона, градiєнтний солiтон Рiччi-Бурґiньйона, гра-

дiєнтна оцiнка, теорема компактностi.


