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A new modification of the finite difference method for solving
transmission problems for two-interval differential equations

Cavusoglu S.!, Muxtarov F.S.2, Mukhtarov O.Sh.3

In this paper, we consider a new type of boundary value problems, the main feature of which is
the nature of the differential equation being solved and the imposed boundary conditions. Namely,
the differential equation under consideration is given on two non-intersecting segments with a com-
mon and, on which additional interaction conditions are imposed, the so-called transmission con-
ditions.

As is known, classical analytical and numerical methods are designed to solve one-interval dif-
ferential equations without transmission conditions. The main purpose of this work is to develop a
new modification of the classical finite difference method for solving two-interval boundary value
transmission problems.

Key words and phrases: finite difference method, singular point, transmission condition, two-
interval boundary value problem.
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1 Introduction

Boundary value problems for differential equations arise as mathematical models of many
problems in physics, engineering and other branches of natural sciences. Evidently, not all
problems can be solved analytically. In some cases the given differential equation can be solved
analytically, but the implicit form of the exact solution may take such a complex form that it is
useless to use as an important tool to find approximate solutions of many types of linear and
nonlinear differential equations with unknown exact solutions. The finite difference method
(FDM, for short) is one of the simple but effective methods for solving various type ordinary
and partial differential equations [7,18]. This method was used by L. Euler in solving ordinary
differential equations and was extended to partial differential equations by C. Runge. Since
the early 1950s years the FDM has been used to numerically solve some problems in physics.
The main idea of this method is that it replace ordinary and partial derivaties included in the
differential equations by algebraic relations, the so-called finite differences that approximate
them.

Further development of this method was stimulated by the emergence of computers, which
offered a convenient basis for solving complex problems of mathematical physics [8,19]. Later
many important theoretical results were obtained regarding the convergence, accuracy and
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efficiency of FDM [1,2,10,13,14,20]. M.M. Chawla and C.P. Katti [4] investigate the convergence
of FDM for a class of singular boundary value problems (BVP’s, for short). E. Ugurlu and
K. Tas [21] developed a new modification of the finite difference scheme and demonstrated its
applications to double singular BVP’s. M. Kumar [12] examined the applicability of three-point
FDM and 2nd order spline FDM to singular two-point BVP’s.

Two-interval BVP’s with singular points and additional transmission conditions arise in
solving of many mathematical physics problems, including those related to vibration of loaded
strings, diffraction, electric circuits, heat and mass transfer problems, thermal conduction
for a thin laminated plate, hydraulic fracturing problems etc. (see [9,11] and references cited
therein).

O.S. Mukhtarov et. al. studied some theoretical aspects of BVP’s involving additional trans-
mission conditions at some interval singular points [15-17]. S. Cavusoglu et. al. suggested a
new generalization of FDM to solve a new type BVP’s consisting of two-interval differential
equations and boundary-transmission conditions [3, 5, 6].

Note that classical FDM cannot be directly applied to two-interval BVP’s with additional
transmission conditions. The main goal of this study is to develop a new modification of classi-
cal FDM, which can also be applied to two-interval BVP’s with singular points and additional
transmission conditions.

2 Finite difference method for second-order ordinary differential equa-
tions

The idea of the numerical method, called FDM, is based on replacing derivatives in the
considered differential equation with finite differences. As a result, the considered differential
equation is reduced to a computer-solvable linear algebraic equation system as follows.

Consider a two-order linear differential equation

y' +p(x)y +qx)y = f(x), x¢€lab], (1)

subject to the separated boundary conditions

y(a) =a, y(b) =B, 2

where the functions p(x), q(x) and f(x) are continuous on the interval [a,b], «, B are real
numbers. To discretize the boundary value problem (1), (2) the definition range [a, b] is divided
into finite number intervals [x;_q,x;], j = 1,..., N, where

. . b—a
xj:a—i—]h, j=01,...,N, h= N
Based on Taylor’s expansion, we obtain
y(xj+h) = y(x)) +y’(x]-)h + o(hz), j=01,...,N—1. (3)

From the last asymptotic equation it follows immediately that if & is sufficiently small, then

y/(x]-) ~ y(xj+1)h_ ]/(x]') and ]//(xj) ~ y(x]-) _hy(le) .
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Based on Taylor’s expansion, we obtain
y(xj —h) :y(xj)—y'(xj)h+o(h2), ji=1,...,N. (4)
From (3) and (4) it follows that if h is sufficiently small, then

y(xj41) —y(xi-1) .
Y (x) = T 5 = j=1,..,N-1

Definition 1. The finite differences

D+y(x) — y(x + h})l — y(x)’ D_y(x) — y(x) — Z(x — h)
and
Doy(x) — y(x +h) — y(x — h)

2h
are called forward finite difference, backward finite difference and centered finite difference of the

function y(x), respectively.

By using the similar technique, the first and second derivatives can be expressed by the
relations

1 1
v () ~ 5 (Day(x) + Doy(x)) = 57 (vl + 1) —y(x; = 1) )
and . .
y'(x)) ~ - (D+y(x;) = D-y(x))) = 75 (v(x; +1) = 2y(x)) +y(x = 1)). (6)
Substituting these finite differences in the boundary value problem (1)—(2), we get the fol-
lowing finite difference approximation

Yit1 — 2Yj T ¥j Yi+1 —Yj—1 ;
: h2] —+p 2h] tayi=fi, j=01,....N,

where the notations y;, pj, q;, f; are used for y(x;), p(x;), 9(x;) and f(x;), respectively.
Thus we have the following linear system of algebraic equations
(= pih+2)yj1 + (29;1* — 4)y; + (pjh +2)yj41 = 207f;, j=0,1,2,...,N,
with respect to the variables vy, y1, . . ., yN. Boundary conditions (2) give yo = a and yny = B.
Now we can write (1)—(2) in the matrix-equation form
AY = B, (7)

where Y and B are the component vectors, given by

Y = (yllyzl---,nyzrnyl)T, B = (b1,by,...,bn—2, bel)T
and A = (a;),1,j=0,1,...,N —1,is the (N — 1) x (N — 1) tridiagonal matrix. Here
2q;h*> —4, for i=j,
pih + 2, fori=j—1,
—pih+2, fori=j+1,
0, for |i—j| > 2,

ai]- =

Y = (yny2 - yn—2,Yn-1) ",
2h%f(xj) + (pih — 2)a, for i =1,
bj = 2h2f(xj), for 1<i<N-2,
2h%f(xj) + (pih — 2)B, for i =N —1.
Since the linear system (7) of algebraic equations is tridiagonal, it can be solved efficiently
by the Crout or Cholesky algoritm [2].
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3 Solution of boundary-value transmission problems by using modified
finite difference method

Now, consider a boundary value transmission problem, consisting of the two-interval
differential equation

y' +p(x)y +q(x)y = f(x), x€lac)U(cb], (8)

separable boundary conditions
y(a) =a, y(b) =p )

and additional interaction conditions at the common end x = ¢, the so-called transmission
conditions

y(c—0) =0y(c+0) (10)

and
¥ (c—0) =9y (c+0), (11)

where p, g and f are continuous on each of intervals [a,¢) and (¢, b] with the finite one-hand
limit values p(c F0), g(c F0) and f(c F 0), respectively, «, B, 6 and -y are real constants.

Let us divide the domain of definition [a, ] into N + 1 equal subintervals by the grid points
Xj = a+ jh, 7 = 0,1,...,N+1, where h = ;\’[_fl is the mesh width, the distance between
successive grid points. Denote by p;, g; and f; the values of the data functions p, g and f at the
grid point x;, respectively, and by y; the approximation to the solution y(x) at the grid point x;.

Now we will calculate the grid solution of the boundary-value-transmission problem
(8)—(11) consisting of values vo, ¥1,...,YN,YN+1. From the boundary conditions (9) we obtain
that yo = «, yn+1 = B. Therefore, we have N unknown values v, 2, ..., yn to compute.

If we apply the centered finite difference (CFD, for short) approximations to equation (8),
we get a set of algebraic equations

1 1 .
2 (Yji—1 — 2y + yj+1) + i (Yjit1 —vj-1) +9yj=fj, j=1...,N. (12)

Consider the case when x; # cforallj =1,...,N. Then there is an unique k € {0,1,..., N}
such that x; < ¢ < x5 41. At first we apply the CFD approximation to the equation (8) on the
leftinterval [xo, x¢] = [a, x], then we obtain a set of algebraic equations (12) forj =1,...,k—1.
Similarly, applying CFD to the same equation on the right interval [x1, xN41] = [xk11, b], we
get a set of algebraic equations (12) for j = k+2,k+3,...,N — 1. Thus we get N — 2 linear
algebraic equations for N unknown y1, 3, ..., yn. Taking in view the fact that

y(c—0) = y(xx), y(c+0) = y(xri1),
Y(c—-0)=y' (%), vy (c+0)~y (xs1)

for sufficiently large N and using finite difference approximation at the points x; and x 1, the
transmission conditions (9) take the form

1 0
Yk = 0Yky1, A (Yk — Yx—1) = i (Ykt2 = Yit1) -
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Consequently, for the unknowns y1,1»,...,yny we have the following N linear algebraic
equations

<1—’%h) yio1+ (=24 qih®) y; + <1+’%h) yi1 =k, for j=1,2,.. k-1,
Yj —0yjt1 =0, for j =k,
_]/jflfyj_'ij+1_'ij+2:O/ | for j=k+1,

(1=5) g1+ (2402 g+ (14 5 yjon = 12fj, for j=k+2,...,N.

The solution of this linear system of algebraic equations can be found by using MATLAB,
Octave or Mathematica. The case ¢ = x; for some j = 1,..., N can be investigated similarly.

4 Convergence of the method and error estimates of the approximate
solution

When the approximate method is applied to solve a differential equation, it is very essential
to know how accurate the discrete values of the numerical solution relative to the true solution.

Definition 2. Let Y = (y1,12,...,yn) denote the finite difference solution. Let the values of
the exact solution at the grid points x1, X, ..., X, be denoted by j = (y(x1),y(x2),...,y(xn)).
Then the vector

E=(—y®)y2—y(a) . yn—ym) =Y =7
is said to be the global error vector.
Our goal is to find an admissible upper bound for this error with respect to the infinite
norm (so-called maximum norm), defined by || E||c = max lyi — y(xi)|.
<i<n
Denote h := max (xi11 — x;). If ||E||eo converges to zero as h — oo, then a finite difference
Isn

method is called convergent.
Moreover, if there is ¢ > 0 such that ||E||« < ChY, g > 0, we say that the finite difference
method is gth order accurate.

Definition 3. If ;llirré |E|l = O, then we say that the FDM is convergent with respect to the
%

norm || E||co-

Definition 4. The vector T = Ajj — F is said to be the local truncation error (LTE, for short), that

isT = A(j — Y), where j and Y are the values of the exact solution and FDM solution at the
grid points.
Remark 1. Actually, the LTE is defined by replacing finite difference solutions y; by the exact

solution y(x;) in the finite difference approximation of the original differential equation.

We will show that the finite difference solution converges to the exact solution of the
BVP (1)—(2) as h converges to zero. Using formulas (5) and (6), one can show that the exact
solution § = (y(x1),y(x2),...,y(xn)) satisfies the following linear system of equations

y(xi1) = 2y(x) +y(xji-1) W2 y(xj41) —y(xj—1) K2
2 — ¥ @) +; 7 =y ) +ay(x) = f(x)),

)
1<j<n
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On the other hand the FDM solution Y = (y1,v2,...,Yy») satisfies the following linear
system of equations

Yi+1— 2y +yi L p i Y

2 i, tayi=fi 1=j=n
Subtracting these equations one from the other, we get
ejt1 —2ej+ejq €j+1 —€j—1 .
/ ﬁ ! +mJ—EfL—+%q:h%ﬁ 1<j<n, (13)

where ¢; := y(x;) — y; is the global error, h? f; is the local truncation error at the grid point x;
and

i = 159 0(&) — ey,

After multiplying both sides of (13) by h? and then collecting the corresponding terms, we
obtain

(1 — gp]‘)ej'_l —+ (—2 + hij> ej —+ (1 —+ gpj)ejﬂ = h4f]'. (14)

To estimate the magnitude of the error vector & = (eg, e1,...,en+1), it is necessary to use an
infinite norm ||€||«, because it is used to measure grid functions.
The equation (14) can be written as

<2 + hzq]-)ei = <1 - gp])eijﬂ - <1 + gp])eij + h4f]-.
Consequently

242 lef < |1 2py| gl +[1+ 2| ei] + 1 |5

h . h - z
< [1=Zp[lelleo + |1+ 5p1|I12llo + 1 e
2 2
h F 00 — il
where |||l = max |fj
From the latter inequality it follows immediately that
2 ~ h h ~ 4 F
2+ 12| lele < (|1 = 3p5] + [1+ 37 lelles + B4l (15)

Since g(x) < 0, one can choose /1 > 0 small enough to satisfy
h h By ’
‘1 — Ep]-) + )1—1— Ep]-‘ =2 and ‘Z—i-h q]-) =2+h }q]-}
forallj =1,2,...,N. Consequently, for sufficiently small # > 0 we have from (15) that
195] lelleo < 72(|flco-

Denoting C = Wl \ve obtain
2]]e0 < CH.

Hence, the FDM is convergent and 2-order accurate.
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5 Numerical example

Consider the following boundary value transmission problem, consisting of the two-inter-
val differential equation

v +xy + ze + %) y=0, x¢€[-2,0)U(,2], (16)

subject to the boundary conditions at the endpoints x = —2 and x = 2, given by
y(=2) =0, y(2) =3, (17)
together with additional transmission conditions across the common endpoint x = 0, given by
y(07) =3y(0"), (18)
y'(07) =2y/(07). (19)

At first we will consider the problem (16)—(19) without transmission conditions (18)—(19). It is
easy to verify that the function

3 142
y=get (x+2) (20)
satisfies the equation (16) on whole [-2,0) U (0,2] and both boundary conditions (17). For
simplicity we will use the uniform cartesian grid x;, = =2 +ih,i = 0,1,...,50, for h = 0,08.
In particular we have xp = —2, x50 = 2.

The CFD approximation of the derivatives iy’ and i’ are defined by

Y() =3 (D) +Dy(x)  and  y'(x) % 1 (Dey(x) ~ Dy(v)),

where D y(x) and D_y(x) denote the forward finite difference and backward finite difference
of y(x), respectively.

By applying the CFD to the differential equation (16) at a typical grid point x; and denoting
yi = y(x;), we obtain the following finite difference equations

(4-2hx)yi1+ (=84 (W +2)hH)y; + (4+2hx))yi 1 =0, i=12,...,49. (21

That is we have the linear algebraic system of equations with respect to the variables
Y1,Y2,...,Ya9. The system of linear algebraic equations (21) can be written in a tridiagonal
matrix-vector form Ay = b, where v = (y1,y2,...,Y4s,Ya9)', b = (0,0,...,0, —3(4 + 2hxy9))”
and

—8+ (¥} +2) 12 4+ 2hx; 0 0
4+ 2hxy —8+4+ (x3+2)h* - 0 0
0 4+ 2hx; 0 0
A=
0 0 o =84 (xfg+2) 12 4+ 2hxyg

0 0 e 4+ 2hxyg —8+ (xy +2) 1?
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Figure 1. Graph of the FDM solution and exact Figure 2. Graph of the FDM solution and exact
solution for the problem (16)—(17) for N = 8 solution for the problem (16)—(17) for N = 16

O FDM Solution o FomSoion
s Exact Solution — Exact Solution

0@ o s L .
2 1 0 1 2 2 A 0 1 2

Figure 3. Graph of the FDM solution and exact Figure 4. Graph of the FDM solution and exact
solution for the problem (16)-(17) for N = 32 solution for the problem (16)—(17) for N = 64

The solution of this system can be found by using MATLAB/Octave. The obtained numer-
ical finite difference method solutions are graphically compared with the exact solution (20)
(see Figures 1, 2, 3 and 4).

N h [[E]oo N h [[E]oo

4 3 1.0654 128 = 0.00075157
8 3 0.20712 256 o 0.00018786
6 2 0.048747 512 = 0.000046963
32 % 0.012079 1024 25 0.000011741
64 & 0.0030087 2048 555 0.0000029352

Table 1. Maximum absolute error

Remark 2. It can be seen from these graphical illustrations that the error between the finite
difference method solutions and the exact solution decreases as the number of grid points

increases.
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6 Solution of transmission problem by modification of FDM

Now we will investigate the boundary value transmission problem (16)—(19). It is easy to
show that the exact solution of this problem is

9 2
-3

z¢ (2+x),

2
13—061_4 (4+3x).

Now let us solve the boundary value transition problem (16)—(19) with the modified finite
difference method. If we select N = 32, then we can discretize the first transmission condition
by

Y16 = 3y17.

Discretization of the second transmission conditions (18) gives

Yie — Y14 2y19 — Y17
h? B h2

Thus we have two additional algebraic equations

Y16 —3y17 =0, (22)

Y14 — Y16 — 2Y17 + 2y19 = 0. (23)

Note that each equation of this system involves solution values at three nodal points x;_1,
X and Xit1-

By adding equations (22) and (23) to the system of equations (21) writing for 1 < i < 14
and for 17 < i < 31 we have the following linear system of algebraic equations

Yo =0,
(1= 2hp))yic1 + (—2+ K2q;)yi + (1 + 3hpi)yin = K f(x;), 1<i<14,
Y16 —3y17 =0,

Y14 — Y16 — 2¥17 + 2y19 = 0,
(1= 31hp)yioa + (—2+ K2q)yi + (1 + 3hpi)yin = WP f(x;), 17 <i <31,

uy32 = 3.

The solution of this system of equations can be found by using MATLAB/Octave. The

obtained numerical solutions are graphically compared with the exact solution (see Figures 5,
6,7 and 8).
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@ FDM Solutonin [-2,0)

Figure 5. Graph of the numerical solution and
exact solution for the problem (16)—(19)
for N = 16

o @ FOV Solutionin [2.0)

2 Bl 0 1 2

Figure 7. Graph of the numerical solution and
exact solution for the problem (16)—(19)

L L .
2 4 0 1 2

Figure 6. Graph of the numerical solution and
exact solution for the problem (16)—(19)
for N = 32

1 2

Figure 8. Graph of the numerical solution and
exact solution for the problem (16)—(19)

for N = 64 for N =128
N h [|E]foo N h |||
3 3
4 i 2.5858 32 3 0.55334
3 3
8 g 1.7106 64 o 0.29347
3 3
16 16 1.0080 128 % 0.12946143

Table 2. Maximum absolute error for the transmission problem (16)—(19)

7 Conclusion

We know that the classical finite difference method is intended for solving one-interval
differential equations, and it is not clear how to apply this technique to two-interval differen-
tial equations that satisfy additional conditions of interaction between these two-intervals, the
so-called transmission conditions. In this study, we have adapted this method to two-interval
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differential equations satisfying not only boundary value conditions, but also additional trans-
mission conditions. The modified FDM was applied to one illustrative two-interval boundary-
transmission problem. To demonstrate the applicability and efficiency of the proposed modi-
fication of FDM the obtained finite-difference solution is compared graphically with the exact
solution, and the corresponding error analysis is also presented in tables. The obtained results
show the applicability, efficiency and reliability of the proposed modified FDM, developed for
the first time in this study.
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V 1iif cTaTTi MM PO3rASIAA@EMO HOBMIL THIT KPaMlOBMX 3aAa4, OCHOBHOIO OCODAMBICTIO SIKMX € Xa-
pakTep AMdpepeHIiaABHOTO PiBHSIHHSI, IIIO PO3B’sI3y€ThCs, Ta HakAaAeHi KpalioBi yMOBM. 30KpeMa,
AdpepeHIiaAbHE PiBHSHHS PO3TASIAAETHCSI HA ABOX HEMlepeTMHHMX Biapiszkax i3 CIiABHOIO TOUKOIO,
Ha sIKy HaKAaAalOThCsl AOAATKOBI YMOBM B3a€MOAII, Tak 3BaHi yMOBM IlepeAadi.

SIK BiAOMO, KAQCMYHI aHAAITWUHI Ta UMCeAbHI METOAM IpM3HaYeHi AASI PO3B'SI3yBaHHSI Aude-
PpeHIiaABHMX PiBHSHD Ha OAHOMY BiapisKy 6e3 yMoB mepeaadui. OCHOBHOIO MeTOIO ITi€l poboTH € po3-
pobka HOBOI MoAMIKaIIii KAACMYHOTO METOAY CKiHUeHHMX Pi3HMIIb AASI PO3B’SI3yBaHHS KpalfoBIX
3apa4 Ilepepaydi Ha ABOX BiApisKax.

Kntouosi cnosa i ppasu: MeTOA CKiHUEHHVX Pi3HUIIb, CMHTYASIPHA TOUKa, yMOBa Ilepepadi, Kpario-
Ba 3ajava Ha ABOX iHTepBaAax.



