References

  1. Aubin J.-P., Cellina A. Differential Inclusious. In: Chenciner A., Varadhan S.R.S. (Eds.) Grundlehren der mathematischen Wissenschaften, 264. Springer, 1984.
  2. Aubin J.-P., Frankowska H. Set-Valued Analysis. Birkhäuser, Boston, 1990.
  3. Barbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei Bucuresti Romania, Noordhoff, 1976.
  4. Ball J.M. Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 1977, 63, 370–373. doi:10.1090/S0002-9939-1977-0442748-6
  5. Carvalho A.N., Cholewa W.J., Dlotko T. Abstract Parabolic Problems in Ordered Banach Spaces. Colloq. Math. 2001, 90 (1), 1–17. doi:10.4064/cm90-1-1
  6. Dashkovskiy S., Kapustyan O., Romaniuk I. Global attractors of impulsive parabolic inclusions. Discrete Contin. Dyn. Syst. Ser. B 2017, 22 (5), 1875–1886. doi:10.3934/dcdsb.2017111
  7. Denkowski Z., Mortola S. Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations. J. Optim. Theory Appl. 1993, 78, 365–391. doi:10.1007/BF00939675
  8. Feketa P., Kapustyan O., Kapustian O., Korol I. Global attractors of mild solutions semiflow for semilinear parabolic equation without uniqueness. Appl. Math. Lett. 2023, 135, 108435. doi:10.1016/j.aml.2022.108435
  9. Haraux A. Nonlinear evolution equations. Global behavior of solutions. In: Morel J.-M., Teissier B. (Eds.) Lecture Notes in Mathematics, 841. Springer, Heidelberg, 2006.
  10. Haraux A., Kirane M. Estimations \(C^1\) pour des problèmes paraboliques semi-linéaires. Ann. Fac. Sci. Toulouse Math. (5) 1983, 5 (3–4), 265–280. doi:10.5802/AFST.598
  11. Kapustyan O., Kapustian O., Stanzhytskyi O., Korol I. Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory. Arch. Math. 2023, 59, 191–200. doi:10.5817/AM2023-2-191
  12. Kapustyan O.V., Kapustian O.A., Ryzhov A., Sobchuk V. Approximate Optimal Control for a Parabolic System with Perturbations in the Coefficients on the Half-Axis. Axioms 2022, 11 (4), 175. doi:10.3390/axioms11040175
  13. Kasyanov P.O. Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity. Cybernet. Systems Anal. 2011, 47, 800–811. doi:10.1007/s10559-011-9359-6
  14. Manthey R., Zausinger T. Stochastic evolution equations in \(L^{2\nu}_p\). Stochastics and Stochastic Reports, 66 (1–2), 37–85. doi:10.1080/17442509908834186
  15. Melnik V.S., Valero J. On Attractors of Multivalued Semi-Flows and Differential Inclusions. Set-Valued Var. Anal. 1998, 6, 83–111. doi:10.1023/A:1008608431399
  16. Papageorgiou N.S. Countinuous Dependence Results for a class of Evolution Inclusions. Proc. Edinb. Math. Soc. (2) 1992, 35, 139–158.
  17. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. In: Bloch A., Epstein Ch.L., Goriely A., Greengard L. (Eds.) Applied Mathematical Sciences, 44. Springer-Verlag, 1983.
  18. Sell G.R., You Y. Dynamics of Evolutionary Equations. In: Bloch A., Epstein Ch.L., Goriely A., Greengard L. (Eds.) Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
  19. Smirnov G.V. Introduction to the theory of differential inclusions. In: Graduate Studies in Mathematics, 41. AMS, Providence, Rhode Island, 41, 2002.
  20. Stanzhyts'kyi O.M., Nosenko T.V. Averaging method in some problems of optimal control. Nonlinear Oscillations, 2008, 11 (4), 539–547. doi:10.1007/s11072-009-0049-5
  21. Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, 1988.
  22. Tolstonogov A.A., Umanskii Ya.I. On solutions of evolution inclusions. II. Sib. Math. J. 1992, 33, 693–702. doi:10.1007/BF00971135
  23. Valero J. A Weak Comparison Principle for Reaction-Diffusion Systems. J. Funct. Spaces Appl. 2012, 4, 679465. doi:10.1155/2012/679465
  24. Valero J., Kapustyan A. On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems. J. Math. Anal. Appl. 2006, 323 (1), 614–633. doi:10.1016/j.jmaa.2005.10.042