References
- Berg C., Ismail M.E.H. \(q\)-Hermite polynomials and classical orthogonal polynomials. Canad. J. Math. 1996, 48 (1), 43–63. doi:10.4153/CJM-1996-002-4
- Cao J., Huang J.-Y., Fadel M., Arjika S. A review of \(q\)-difference equations for Al-Salam–Carlitz polynomials and applications to \(U (n+ 1)\) type generating functions and Ramanujan’s integrals. Mathematics 2023, 11 (7), article 1655. doi:10.3390/math11071655
- Cao J., Raza N., Fadel M. Two-variable \(q\)-Laguerre polynomials from the context of quasi-monomiality. J. Math. Anal. Appl. 2024, 535 (2), article 128126. doi:10.1016/j.jmaa.2024.128126
- Dattoli G., Ricci P.E., Cesarano C. A note on Legendre polynomials. Int. J. Nonlinear Sci. Numer. Simul. 2001, 2 (4), 365–370. doi:10.1515/IJNSNS.2001.2.4.365
- Dattoli G., Srivastava H.M., Cesarano C. The Laguerre and Legendre polynomials from an operational point of view. Appl. Math. Comput. 2001, 124 (1), 117–127. doi:10.1016/S0096-3003(00)00082-5
- Ernst T. \(q\)-Calculus as operational algebra. Proc. Est. Acad. Sci. 2009, 58 (2), 73–97. doi:10.3176/proc.2009.2.01
- Ernst T. A comprehensive treatment of \(q\)-calculus. Birkhäuser Basel, Basel, 2012. doi:10.1007/978-3-0348-0431-8
- Exton H. A basic analogue of the Bessel-Clifford equation. Jnanabha 1978, 8, 49–56.
- Exton H. \(q\)-Hypergeometric Functions and Applications. Halstead Press, New York, 1983.
- Fadel M., Raza N., Du W.-S. Characterizing \(q\)-Bessel functions of the first kind with their new summation and integral representations. Mathematics 2023, 11 (18), article 3831. doi:10.3390/math11183831
- Fadel M., Alatawi M.S., Khan W.A. Two-variable \(q\)-Hermite-Based Appell polynomials and their applications. Mathematics 2024, 12 (9), article 1358. doi:10.3390/math12091358
- Fadel M., Raza N., Du W.-S. On \(q\)-Hermite polynomials with three variables: Recurrence relations, \(q\)-differential equations, summation and operational formulas. Symmetry 2024, 16 (4), article 385. doi:10.3390/sym16040385
- Floreanini R., Vinet L. Quantum algebras and \(q\)-special functions. Ann. Physics 1993, 221 (1), 53–70. doi:10.1006/aphy.1993.1003
- Hahn W. The mechanical interpretation of a geometric difference equation. Z. Angew. Math. Mech. 1953, 33 (8–9), 270–272. doi:10.1002/zamm.19530330811 (in German)
- Ismail M.E.H. The zeros of basic Bessel functions, the functions \(J_{v+ax}(x)\), and associated orthogonal polynomials. J. Math. Anal. Appl. 1982, 86 (1), 1–19. doi:10.1016/0022-247X(82)90248-7
- Ismail M.E.H., Stanton D., Viennot G. The combinatorics of \(q\)-Hermite polynomials and the Askey-Wilson integral. European J. Combin. 1987, 8 (4), 379–392. doi:10.1016/S0195-6698(87)80046-X
- Jackson F.H. I. – On Generalized Functions of Legendre and Bessel. Trans. Roy. Soc. Edinburgh 1906, 41 (1), 1–28. doi:10.1017/S0080456800080017
- Khan S., Raza N. Families of Legendre-Sheffer polynomials. Math. Comput. Modelling 2012, 55 (3–4), 969–982. doi:10.1016/j.mcm.2011.09.023
- Khan S., Haneef M., Riyasat M. Construction of certain new families related to \(q\)-Fubini polynomials. Georgian Math. J. 2022, 29 (5), 725–739. doi:10.1515/gmj-2022-2170
- Koelink H.T. Addition formula for big \(q\)-Legendre polynomials from the quantum \(SU(2)\) group. Canad. J. Math. 1995, 47 (2), 436–448. doi:10.4153/CJM-1995-024-8
- Koornwinder T.H. Orthogonal polynomials in connection with quantum groups. In: Nevai P. (Ed.) Orthogonal polynomials, NATO ASI Series, 294. Springer, Dordrecht, 1990. doi:10.1007/978-94-009-0501-6_12
- Koornwinder T.H., Swarttouw R. On \(q\)-analogues of the Fourier and Hankel transforms. Trans. Amer. Math. Soc. 1992, 333 (1), 445–461. doi:10.2307/2154118
- Nalci S., Pashaev O.K. \(q\)-Analog of shock soliton solution. J. Phys. A: Math. Theor. 2010, 43 (44), article 445205. doi:10.1088/1751-8113/43/44/445205
- Rahman M. A simple proof of Koornwinder’s addition formula for the little \(q\)-Legendre polynomials. Proc. Amer. Math. Soc. 1989, 107 (2), 373–381. doi:10.2307/2047827
- Raza N., Fadel M., Nisar K.S., Zakarya M. On 2-variable \(q\)-Hermite polynomials. Aims Math. 2021, 6 (8), 8705–8727. doi:10.3934/math.2021506
- Raza N., Fadel M., Khan S., Cesarano C. Monomility principle for \(q\)-polynomials: introduction and applications. Math. Mech. Complex Syst. 2024, in press.
- Riyasat M., Nahid T., Khan S. \(q\)-Tricomi functions and quantum algebra representations. Georgian Math. J. 2021, 28 (5), 793–803. doi:10.1515/gmj-2020-2079
- Srivastava H.M., Riyasat M., Khan S., Araci S., Acikgoz M. A new approach to Legendre-truncated-exponential-based Sheffer sequences via Riordan arrays. Appl. Math. Comput. 2020, 369, article 124683. doi:10.1016/j.amc.2019.124683
- Srivastava H.M., Cao J., Arjika S. A note on generalized \(q\)-difference equations and their applications involving \(q\)-hypergeometric functions. Symmetry 2020, 12 (11), article 1816. doi:10.3390/sym12111816
- Srivastava H.M., Arjika S. A general family of \(q\)-hypergeometric polynomials and associated generating functions. Mathematics 2021, 9 (11), article 1161. doi:10.3390/math9111161
- Van Assche W., Koornwinder T.H. Asymptotic behavior for Wall polynomials and the addition formula for little \(q\)-Legendre polynomials. SIAM J. Math. Anal. 1991, 22 (1), 302–311. doi:10.1137/0522019
- Yasmin G. Some properties of Legendre–Gould Hopper polynomials and operational methods. J. Math. Anal. Appl. 2014, 413 (1), 84–99. doi:10.1016/j.jmaa.2013.11.037