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On 2-variable q-Legendre polynomials:
the view point of the q-operational technique

Raza N.1, Fadel M.1,2, C. Cesarano3,

In this work, we exploit the methods of an operational formality and extension of quasi-

monomials to describe and realize 2-variable q-Legendre polynomials. We introduce the generating

function of 2-variable q-Legendre polynomials with a context of 0th order q-Bessel Tricomi functions

and obtain their properties such as series definition and q-differential equations. Also, we establish

the q-multiplicative and q-derivative operators of these polynomials. The operational representa-

tions of 2-variable q-Legendre polynomials are obtained.
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Introduction

The operational techniques were utilized to create some special polynomials and new

families of special polynomials with several applications in applied sciences, providing versa-

tile and easy-to-understand solutions to boundary value problems. It has also resulted in the

establishment of new computer languages, such as umbral calculus and symbolic interpreta-

tion. G. Dattoli et. al. [4] used operational formalism to define 2-variable Legendre polynomi-

als, which have drawn the attention of several mathematicians due to their wide applications

in various fields of mathematics and physics (see, for example, [5, 18, 28, 32]).

The Legendre polynomials Sn(x, y) and Rn(x, y)/n! are defined [4] by means of the follow-

ing generating functions:

eytC0(−xt2) =
∞

∑
n=0

Sn(x, y)
tn

n!
(1)

and

C0(xt) C0(−yt) =
∞

∑
n=0

Rn(x, y)

n!

tn

n!
. (2)

Quantum calculus is a relatively subfield in the realm of scientific study. This area is a

generalization of ordinary calculus for the case where q → 1− exists. It has been demonstrated

that it is helpful in the investigation of various problems, which arise in various branches
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of the sciences, mathematics, statistics, quantum mechanics and quantum physics. Recently,

several researchers, working in the field of q-special functions, introduced and studied several

q-special functions and their characteristics (see, for example, [2, 12, 19, 25, 29, 30]).

In this quick recap, we take a look at a few definitions and notations associated with the

quantum calculus [7].

The q-factorial is defined as

[n]q! =











n

∏
k=1

[k]q , 0 < q < 1, n ≥ 1,

1, n = 0.

The two q-exponential functions are defined as:

eq(x) =
∞

∑
n=0

xn

[n]q!
, 0 < q < 1, (3)

and

Eq(x) =
∞

∑
n=0

q(
2
n)

xn

[n]q!
, 0 < q < 1,

which satisfy the following rule

eq(x)Eq(−x) = 1. (4)

We recall some identities of q-derivatives:

D̂q,x xn = [n]qxn−1, (5)

D̂q,xeq(αx) = αeq(αx), (6)

D̂q,x( f (x)g(x)) = f (x)D̂q,x g(x) + g(qx)D̂q,x f (x). (7)

The theory of q-Bessel function was studied by many mathematicians and physicists. This

theory grew to include two variables and generalized q-Bessel functions. The most well-

known forms are two related q-Bessel functions J1
n(x; q) and J2

n(x; q) [15]. The q-Bessel function

J1
n(x; q) is introduced and studied by F.H. Jackson [17]. Later, W. Hahn and H. Exton cre-

ated a third form of q-Bessel function [8, 9, 14], which is studied by T.H. Koornwinder and

R. Swarttouw [22]. Recently, M. Fadel et. al. [10] presented new properties and characterize

q-Bessel functions of the first kind.

The series definition of q-Bessel functions of the first kind qBF Jn(x; q) is given [27] by

Jn(x; q) =
1

(q; q)n

∞

∑
k=0

(−1)k
(

x/2
)n+2k

(q; q)k(qn+1; q)k
=

∞

∑
k=0

(−1)k
(

x/2
)n+2k

[n + k]q![k]q !
, (8)

which converges absolutely for |x| < 2.

The series definition of nth order q-Tricomi Bessel functions is defined [27] by

Cn,q(x) =
1

(q; q)n

∞

∑
k=0

(−1)kxk

(q; q)k(qn+1; q)k
=

∞

∑
k=0

(−1)kxk

[k]q ![n + k]q!
, (9)

which converges absolutely for all values of x.
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In view of equations (8) and (9), it is clear that the nth order q-Bessel Tricomi functions of

first kind C1
n,q(x) := Cn,q(x) is related with qBF J1

n(x; q) in the following manner

Cn,q(x) = x−x/2 J
(1)
n (2

√
x; q). (10)

Also, for n = 0, equation (10) gives the 0th order q-Bessel Tricomi function C0,q(x), namely

C0,q(x) =
∞

∑
k=0

(−1)kxk

([k]q !)2
, (11)

which converges absolutely for all values of x.

The relation between 0th order q-Bessel Tricomi functions and exponential function can be

written [3] as

C0,q(xt) = eq(−D̂−1
q,x t){1}, (12)

where

D̂−1
q,x f (x) :=

∫ x

0
f (ζ)dqζ (13)

and

(D̂−1
q,x )

n{1} =
xn

[n]q!
, n ∈ N ∪ {0}. (14)

In view of equations (11) and (12), the q-partial derivatives of 0th order q-Bessel Tricomi

functions are realized [3] as

D̂q,xxD̂q,xC0,q(xt) =
∂q

∂qD−1
q,x

C0,q(xt) = −tC0,q(xt) (15)

and

D̂q,yyD̂q,yC0,q(−yt) =
∂q

∂qD−1
q,y

C0,q(−yt) = tC0,q(−yt), (16)

respectively.

The extension of monomiality can create a concept within the theory of q-special functions,

generating new families of q-special polynomials and demonstrating their quasi-monomiali-

ty. This treatment provides a framework for understanding q-special polynomials as solutions

to generalized forms of q-partial differential equations and q-integro-differential equations. It

can also derive additional classes of q-generating functions and generalizations of q-special

functions. Recently, q-special polynomials such as q-Laguerre polynomials of two variables [3]

and q-Hermite-based Appell polynomials of two variables [11] were effectively achieved by

extending the monomiality.

The two q-operators M̂q and P̂q, called q-multiplicative and q-derivative operators, respec-

tively, for a q-polynomials set pn,q(x), n ∈ N, x ∈ C, are defined [26] as

M̂q {pn,q(x)} = pn+1,q(x)

and

P̂q{pn,q(x)} = [n]q pn−1,q(x). (17)

The q-operators M̂q and P̂q satisfy the commutation relation

[P̂q, M̂q] = P̂qM̂q − M̂qP̂q. (18)
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If M̂q and P̂q have q-differential realization, then the q-differential equation satisfied by

pn,q(x) is

M̂qP̂q {pn,q(x)} = [n]q pn,q(x). (19)

In view of equations (18) and (19), we have

[P̂q, M̂q] = [n + 1]q − [n]q.

The q-Hermite polynomials have multiple definitions (see, for example, [1, 16, 23]). Such

polynomials are used in combinatorics, quantum physics, non-commutative probability and

other areas of mathematics and physics. Recently, N. Raza et. al. [25] and M. Fadel et. al. [12]

introduced and studied the properties of q-Hermite polynomials with two and three variables.

The generating function of 2-variable q-Hermite polynomials is given [25] as

eq(xt) eq(yt2) =
∞

∑
n=0

Hn,q(x, y)
tn

[n]q !
. (20)

The q-partial derivative with respect to t for eq(yt2) is given [25] by

Dq,t eq(yt2) = yt eq(yt2) + qyt eq(qyt2). (21)

The q-dilatation operator Tz, which acts on any function of the complex variable z, is

defined [13] as

Tk
z f (z) = f (qkz), k ∈ R. (22)

Many mathematicians and physicists have been explored q-Legendre polynomials. Vari-

ous results related to q-difference equations, orthogonality, and temperature, corresponding

to q-Legendre polynomials, have provided by T.H. Koornwinder, M. Rahman, H.T. Koelink,

A.W. Van and T. Ernst (see [6, 7, 20, 21, 24, 31] for more details).

The generating function of 2 variable q-Laguerre polynomials 2VqLP Ln,q(x, y) is given [3]

by

C0,q(xt)eq(yt) =
∞

∑
n=0

Ln,q(x, y)
tn

[n]q !
.

The generating function of 2-variable mth order q-Laguerre polynomials [m]Ln,q(x, y) is

given [3] by

C0,q(−xtm)eq(yt) =
∞

∑
n=0

[m]Ln,q(x, y)
tn

[n]q !
, m ∈ N. (23)

We note that, for q → 1−, all the results in q-calculus lead to the corresponding results in

ordinary calculus.

We motivated by the applications of operational techniques, which serve as a useful tool to

simplify the study of certain results that cannot be obtained by classical methods, including

the 2-variable Legendre polynomials and their applications in applied sciences, which pro-

vide ranged and relatable solutions to boundary value problems. Moreover, motivated by

the applications of q-special functions in mathematical and engineering science, we present

and examine the distinctive features of q-Legendre polynomials with two variables by em-

ploying the extension of the concept of monomiality principle and the method of operational

formalism. In this paper, we explore the possibility of these applications to introduce the

2-variable q-Legendre polynomials from the view point of 0th order q-Bessel Tricomi functions

and study their properties. Also, we establish quasi-monomiality properties for these polyno-

mials and study their characteristics.
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1 2-variable q-Legendre polynomials

In this section, we introduce the 2-variable q-Legendre polynomials 2VqLP Sn,q(x, y) and

Rn,q(x, y)/[n]q! by means of generating function involving 0th order q-Bessel Tricomi functions

and obtain their series definitions, q-differential equations and operational identities.

In view of equations (1), (2) and (11), we define the 2-variable q-Legendre polynomials

2VqLP Sn,q(x, y) and Rn,q(x, y)/[n]q! by means of the following generating functions

eq(yt) C0,q(−xt2) =
∞

∑
n=0

Sn,q(x, y)
tn

[n]q !
(24)

and

C0,q(xt) C0,q(−yt) =
∞

∑
n=0

Rn,q(x, y)

[n]q!

tn

[n]q!
, (25)

where C0,q(xt) denotes the 0th order q-Bessel Tricomi functions, defined by equation (11).

Expanding the left hand side of equation (24), using equations (3) and (11) and then using

the series rearrangement technique, we get

∞

∑
n=0

[n/2]

∑
k=0

xkyn−2ktn

([k]q !)2[n − 2k]q !
=

∞

∑
n=0

Sn,q(x, y)
tn

[n]q !
.

Comparing the coefficients of equal powers of t from both sides of the above equation, we get

the following explicit form

Sn,q(x, y) = [n]q!
[n/2]

∑
k=0

xkyn−2k

([k]q !)2[n − 2k]q!
(26)

of Sn,q(x, y) polynomials.

Similarly, expanding the left hand side of equation (25) and using the same approaches in

acquiring (26), we obtain the following explicit form

Rn,q(x, y)

[n]q!
= [n]q !

n

∑
k=0

(−1)kxkyn−k

([k]q !)2([n − k]q!)2
(27)

of Rn,q(x, y)/[n]q !.

From equations (26) and (27), we get

Sn,q(x,−y) = (−1)nSn,q(x, y) and Rn,q(−x,−y) = (−1)nRn,q(x, y),

respectively. Moreover, taking x = 0 and y = 0 one by one in equations (26) and (27), we get

the following boundary conditions

Sn,q(0, y) = yn, Sn,q(x, 0) =

{

[n]q!(x)
[n/2]
q /([n/2]q!)2, if n is even,

0, if n is odd,

and

Rn,q(x, 0) = (−x)n, Rn,q(0, y) = yn,

respectively.
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The operational identity allows the representation of Sn,q(x, y) as q-Laguerre and q-Hermite

polynomials of two variables by using equations (20) and (24), equation (23), for m = 2, as

follows

Sn,q(x, y) = [2]Ln,q(x, y) = Hn,q(y, D−1
q,x ){1}.

Similarly, the polynomials Rn,q(x, y)/[n]q ! can be represented as 2-variable q-Laguerre poly-

nomials by using the operational identity and equations (12) and (25) as follows

Rn,q(x, y)

[n]q!
= Ln,q(x, D−1

q,y ){1}.

As we noted earlier, the partial differential equations of ordinary 2-variable Legendre poly-

nomials give rise to real applied problems in areas such as heat condition equations and other

kinds of heat diffusion equations. To this end, we demonstrate the q-partial differential equa-

tions of 2VqLP Sn,q(x, y) and Rn,q(x, y)/[n]q!.

Theorem 1. The 2VqLP Sn,q(x, y) and Rn,q(x, y)/[n]q ! satisfy the following q-partial differential

equations:

LD̂q,xSn,q(x, y) = D̂2
q,ySn,q(x, y), (28)

or, alternatively,

(qxD̂2
q,x − D̂2

q,y + D̂q,x)Sn,q(x, y) = 0 (29)

and

LD̂q,xRn,q(x, y) = −LD̂q,yRn,q(x, y), (30)

or, alternatively,

(q(xD̂2
q,x + yD̂2

q,y) + D̂q,x + D̂q,y)Rn,q(x, y) = 0, (31)

where

LD̂q,x := D̂q,xxD̂q,x. (32)

Proof. Operating LD̂q,x on both sides of equation (24) and using equations (32) and (15) in the

left hand side, we get

t2eq(yt)C0,q(−xt2) =
∞

∑
k=0

LD̂q,xSn,q(x, y)
tn

[n]q !
. (33)

Furthermore, operating D̂q,y on both sides of equation (24), by using equation (6), we receive

teq(yt)C0,q(−xt2) =
∞

∑
n=0

D̂q,ySn,q(x, y)
tn

[n]q !
. (34)

Using equation (24) in the left hand side of equations (33) and (34), then comparing the

coefficients of equal powers of t from both sides of the resultant equation, we get

LD̂q,xSn,q(x, y) = [n]q[n − 1]qSn−2,q(x, y), n ≥ 2, (35)

and

D̂q,ySn,q(x, y) = [n]qSn−1,q(x, y), n ≥ 1. (36)
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Equations (35) and (36), give assertion (28).

In view of equations (5) and (7), for any function fq(t), we have the following equivalent

form

LD̂q,t fq(t) = (qtD̂2
q,t + D̂q,t) fq(t). (37)

In view of equation (37), the q-partial differential equation (28) gives assertion (29).

Similarly, operating LD̂q,x and LD̂q,y one by one on both sides of equation (25) and using

equations (15) and (25) in the left hand side of the resultant equations, then comparing the

coefficients of equal powers of t from both sides of the resultant equations, we find

−LD̂q,xRn,q(x, y) = [n]qRn−1,q(x, y), n ≥ 1, (38)

and

LD̂q,yRn,q(x, y) = [n]qRn−1,q(x, y), n ≥ 1, (39)

respectively.

Equations (38) and (39) give assertion (30). Therefore, q-partial differential equation (30)

gives assertion (31).

Remark 1. In view of equations (12), (24) and (25), we have

eq(yt) eq(D−1
q,x t2){1} =

∞

∑
n=0

Sn,q(x, y)
tn

[n]q !

and

eq(−tD−1
q,x ) eq(tD−1

q,y ){1} =
∞

∑
n=0

Rn,q(x, y)

[n]q!

tn

[n]q!
.

Using equation (15) in equations (24) and (25) and then simplifying, we get

∂q

∂qD−1
q,x

Sn,q(x, y) = LD̂q,xSn,q(x, y), (40)

− ∂q

∂qD−1
q,x

Rn,q(x, y) = LD̂q,xRn,q(x, y), (41)

and
∂q

∂qD−1
q,y

Rn,q(x, y) = LD̂q,yRn,q(x, y), (42)

respectively.

Also, in view of equations (28) and (40), we have

∂q

∂qD−1
q,x

Sn,q(x, y) = D̂2
q,ySn,q(x, y)

and in view of equations (30), (41) and (42), we get

∂q

∂qD−1
q,x

Rn,q(x, y) = − ∂q

∂qD−1
q,y

Rn,q(x, y).

In the next section, we discuss the q-monomiality characteristics and operational identities

for 2VqLP Sn,q(x, y) and Rn,q(x, y)/[n]q !.
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2 Quasi-monomiality characteristics

The extension of quasi-monomials treatment to q-special functions has provided a tool

for investigating the characteristics of q-special functions and q-polynomial families, such as

q-multiplication and q-derivative operators, integro-differential equations and other important

identities. In this section, we establish that the 2-variable q-Legendre polynomials are quasi-

monomials and obtain their operational identities.

The mathematical framework of q-Legendre polynomials can be developed by utilizing the

formalism associated with the extension of the concept of quasi-monomiality. We define the

following q-multiplicative M̂q,S and q-derivative P̂q,S operators of 2VqLP Sn,q(x, y).

Theorem 2. The 2VqLP Sn,q(x, y) are quasi monomials with respect to the following q-multi-

plicative and q-derivative operators:

M̂q,S = y + D−1
q,x D̂q,yTy(1 + qTx), (43)

or, alternatively,

M̂q,S := yTx + D−1
q,x D̂q,y(1 + qTx) (44)

and

P̂q,qS = D̂q,y. (45)

Proof. Differentiating both sides of equation (24) partially with respect to t by using equation

(7), we get

∞

∑
n=1

Sn,q(x, y)
tn−1

[n − 1]q!
= eq(qyt) D̂q,tC0,q(−xt2) + D̂q,teq(yt)C0,q(−xt2). (46)

In view of equations (12) and (21), we have

D̂q,tC0,q(−xt2) = D̂q,t eq(D−1
q,x t2){1} = D−1

q,x t eq(D−1
q,x t2){1}+ qD−1

q,x t eq(qD−1
q,x t2){1}

= D−1
q,x t C0,q(−xt2) + qD−1

q,x t C0,q(−qxt2).
(47)

Using equations (6) and (47) in the right hand side of equation (46), we get

∞

∑
n=0

Sn+1,q(x, y)tn

[n]q!
= D−1

q,x t eq(qyt)C0,q(−xt2) + qD−1
q,x t eq(qyt)C0,q(−qxt2) + yeq(yt)C0,q(−xt2).

In view of equation (34), using equation (24) in the right hand side of aforementioned equation,

we get

∞

∑
n=0

Sn+1,q(x, y)
tn

[n]q !
= D−1

q,x D̂q,y

∞

∑
n=0

Sn,q(x, qy)
tn

[n]q !

+ qD−1
q,x D̂q,y

∞

∑
n=0

Sn,q(qx, qy)
tn

[n]q !
+ y

∞

∑
n=0

Sn,q(x, y)
tn

[n]q !
.

Using equation (22) and then comparing the coefficients of equal powers of t from both sides

of the above equation, we get assertion (43).

Similarly, differentiating both sides of equation (24) with respect to t by using equation (7)

for fq(t) = eq(yt) and gq(t) = C0,q(−xt2), then using equations (22) and (24) and comparing

the coefficients of equal powers of t from both sides of the resultant equation, we obtain an

alternate form of q-multiplicative operator of Sn,q(x, y), given by equation (44).

In view of equations (17) and (36), we get assertion (45).
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Moreover, we obtain the following q-multiplicative M̂q,R and q-derivative P̂q,R operators of

2VqLP Rn,q(x, y)/[n]q !.

Theorem 3. The 2VqLP Rn,q(x, y)/[n]q ! are quasi-monomials with respect to the following

q-multiplicative and q-derivative operators:

M̂q,R = −D−1
q,x Ty + D−1

q,y , (48)

or, alternatively,

M̂q,R := −D−1
q,x + D−1

q,y Tx (49)

and

P̂q,R = −D̂q,xxD̂q,x =
∂q

∂qD−1
q,x

, (50)

or, alternatively,

P̂q,R = D̂q,yyD̂q,y = − ∂q

∂qD−1
q,y

. (51)

Proof. Differentiating both sides of equation (25) with respect to t, by using equation (7), we

get

∞

∑
n=1

Rn,q(x, y)

[n]q!

tn−1

[n − 1]q!
= D̂q,tC0,q(xt)C0,q(−qyt) + C0,q(xt)D̂q,tC0,q(−yt).

Using equation (15) in the right hand side of aforementioned equation, we obtain

∞

∑
n=0

Rn+1,q(x, y)

[n + 1]q!

tn

[n]q!
= −xC0,q(xt)C0,q(−qyt) + yC0,q(xt)C0,q(−yt).

Using equations (14) and (25) in the right hand side of the above equation, we get

∞

∑
n=0

Rn+1,q(x, y)

[n + 1]q!

tn

[n]q!
= −D−1

q,x

∞

∑
n=0

Rn,q(x, qy)

[n]q!

tn

[n]q!
+ D−1

q,y

∞

∑
n=0

Rn,q(x, y)

[n]q!

tn

[n]q!
,

which on using equation (22) and then comparing the coefficients of equal powers of t from

both sides, gives assertion (48).

Similarly, differentiating both sides of equation (25) with respect to t by using equation

(7) for fq(t) = C0,q(−yt) and gq(t) = C0,q(xt), then using equations (22), (25), comparing

the coefficients of equal powers of t from both sides of the resultant equation, we obtain an

alternate form of q-multiplicative operator of Rn,q(x, y), given by equation (49).

From equations (17), (38) and (40), we get assertion (50). Similarly, in view of equations (17),

(39) and (41), we get assertion (51).

In the next theorem, we will see how the q-Legendre polynomials Sn,q(x, y) can be ex-

pressed as operational identities.

Theorem 4. The 2-variable q-Legendre polynomials Sn,q(x, y) satisfy the following operational

identities:

Sn,q(x, y) = eq(D−1
q,x D̂2

q,y){yn}, (52)

Sn,q(x, y) = C0,q(−xD̂2
q,y){yn}, (53)

and

Eq(−D̂−1
q,x D̂2

q,y)Sn,q(x, y) = {yn}. (54)
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Proof. In view of equation (5), we have

D̂2k
q,y yn =

[n]q!

[n − 2k]q!
yn−2k.

Using aforementioned equation in the right hand side of equation (26), we get

Sn,q(x, y) =
∞

∑
k=0

xkD̂2k
q,yyn

([k]q !)2
.

Using equations (3) and (14) in the right hand side of the above equation, we obtain assertion

(52). In view of equations (12) and (52), assertion (53) follows.

Operating Eq(−D̂−1
q,x D̂2

q,y) on both sides of equation (52) then using equation (4) in the re-

sultant equation, we get assertion (54).

Now, we obtain the operational identities for Rn,q(x, y)/[n]q !.

Theorem 5. The 2-variable q-Legendre polynomials Rn,q(x, y) satisfy the following operational

identities:

Rn,q(x, y) = C0,q

(

x
∂q

∂qD−1
q,y

)

{yn}, (55)

or, equivalently,

Rn,q(x, y) = eq

(

− D−1
q,x

∂q

∂qD−1
q,y

)

{yn} (56)

and

Eq

(

D−1
q,x

∂q

∂qD−1
q,y

)

Rn,q(x, y) = yn, (57)

respectively.

Proof. From equation (16), we have

C0,q

(

x
∂q

∂qD−1
q,y

)

C0,q(−yt) = C0,q(xt)C0,q(−yt).

Using equations (11) and (25) in the right hand side and then comparing the coefficients of

equal powers of t from both sides of the resultant equation, we get assertion (55). In view of

equations (12) and (55), assertion (56) follows. Operating

Eq

(

− D−1
q,x

∂q

∂qD−1
q,y

)

on both sides of equation (56) and then using equation (4) in the resultant equation, we get

assertion (57).

Applying the same technique that leads to proof of Theorem 5, we derive the following

operational identities of 2-variable q-Legendre polynomials Rn,q(x, y).
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Theorem 6. The 2-variable q-Legendre polynomials Rn,q(x, y) satisfy the following equivalent

operational identities:

Rn,q(x, y) = C0,q

(

y
∂q

∂qD−1
q,x

)

{(−x)n},

or, equivalently,

Rn,q(x, y) = eq

(

− D−1
q,y

∂q

∂qD−1
q,x

)

{(−x)n}

and

Eq

(

D−1
q,y

∂q

∂qD−1
q,x

)

Rn,q(x, y) = (−x)n,

respectively.

Now, we obtain q-integro-differential equations of q-Legendre polynomials Sn,q(x, y) and

Rn,q(x, y)/[n]q! by utilizing the formalism associated with the extension of the quasi-mono-

miality.

Theorem 7. The following q-integro-differential equations for Sn,q(x, y) and Rn,q(x, y)/[n]q !

hold true:

q
∫ x

0
D̂2

q,yTuSn,q(u, y)dqu +
∫ x

0
D̂2

q,ySn,q(u, y)dqu = ([n]q − yTxD̂q,y)Sn,q(x, y), (58)

q
∫ x

0
D̂q,uRn,q(u, y)dqu +

∫ x

0
uD̂2

q,uRn,q(u, y)dqu

= [n]qRn,q(x, y) +
∫ y

0
(qTxD̂q,x + xTxD̂2

q,x)Rn,q(x, v)dqv,
(59)

and
∫ x

0
D̂q,yyD̂q,yRn,q(u, y)dqu =

∫ y

0
D̂q,vvD̂q,vRn,q(x, v)dqv − [n]qRn,q(x, y). (60)

Proof. In view of equations (19), (44) and (45), we have

(yTx + D−1
q,x D̂q,y(1 + qTx))D̂q,ySn,q(x, y) = [n]qSn,q(x, y),

or, equivalently,

(yTx D̂q,y + D−1
q,x D̂2

q,ySn,q(x, y) + qD−1
q,x D̂2

q,yTxSn,q(x, y) = [n]qSn,q(x, y),

which, in view of equation (13), gives assertion (58).

In view of equations (19), (49) and (50), we have

(−D̂−1
q,x + D̂−1

q,y Tx)(−D̂q,xxD̂q,x)Rn,q(x, y) = [n]qRn,q(x, y).

From equation (37) we get

(−D̂−1
q,x + D̂−1

q,y Tx)(−qD̂q,x − xD̂2
q,x)Rn,q(x, y) = [n]qRn,q(x, y),

which, in view of equation (13), gives assertion (59).

Similarly, in view of equations (19), (48), (51), and (13), we get assertion (60).

Remark 2. For q → 1−, equations (24) and (25) lead to the generating functions of 2VLP

Sn(x, y) and Rn(x, y)/n! given by equations (1) and (2) respectively. Further, for q → 1−, equa-

tions (43) – (51) lead to the respective multiplicative and derivative operators of 2VLP Sn(x, y)

and Rn(x, y)/n! (see [4]).
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3 Conclusions

The approach of monomiality for q-polynomials paved the way for the development of

an original notion while working within the constraints of the theory of q-special functions.

This approach can be utilized in order to investigate certain characteristics for some q-special

polynomials. It is astonishing that this was the spark for the discovery the monomiality prop-

erties for certain q-polynomials such two-variable q-Laguerre polynomials and two-variable

q-Hermite based Appell polynomials, as well as further research into their properties [3, 11].

In this context, we have introduced the 2-variable q-Legendre polynomials from the view point

of 0th order q-Bessel Tricomi functions and study their properties. Also, we have established

quasi-monomiality properties for these polynomials and studied their characteristics. We want

to learn more about the recently introduced quasi-monomiality properties for q-polynomials

in order to examine their possible applications in mathematics, science and engineering.
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Раза Н., Фадель М., Чезарано К. Про q-полiноми Лежандра з двома змiнними: погляд з точки зору

q-операцiйної технiки // Карпатськi матем. публ. — 2025. — Т.17, №1. — C. 14–26.

У цiй роботi використовуються методи операцiйного формалiзму та розширення квазiмо-

номiв для опису та реалiзацiї полiномiв q-Лежандра з 2 змiнними. Введено генеруючу функцiю

q-полiномiв Лежандра з двома змiнними в контекстi q-Бесселя Трiкомi функцiй нульовогого

порядку та отримано їх властивостi, такi як визначення ряду та q-диференцiальнi рiвняння.

Встановлено q-мультиплiкативний i q-похiдний оператори цих полiномiв та отримано опера-

торнi зображення q-полiномiв Лежандра вiд двох змiнних.

Ключовi слова i фрази: квантове числення, полiном Лежандра, розширення квазiмономiаль-

ностi, оператор q-дилатацiї.


