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On 2-variable g-Legendre polynomials:
the view point of the g-operational technique

Raza N.1, Fadel M.12, C. Cesarano®2<

In this work, we exploit the methods of an operational formality and extension of quasi-
monomials to describe and realize 2-variable g-Legendre polynomials. We introduce the generating
function of 2-variable g-Legendre polynomials with a context of 0" order g-Bessel Tricomi functions
and obtain their properties such as series definition and g-differential equations. Also, we establish
the g-multiplicative and g-derivative operators of these polynomials. The operational representa-
tions of 2-variable g-Legendre polynomials are obtained.

Key words and phrases: quantum calculus, Legendre polynomial, extension of quasi-monomiality,
g-dilatation operator.
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Introduction

The operational techniques were utilized to create some special polynomials and new
families of special polynomials with several applications in applied sciences, providing versa-
tile and easy-to-understand solutions to boundary value problems. It has also resulted in the
establishment of new computer languages, such as umbral calculus and symbolic interpreta-
tion. G. Dattoli et. al. [4] used operational formalism to define 2-variable Legendre polynomi-
als, which have drawn the attention of several mathematicians due to their wide applications
in various fields of mathematics and physics (see, for example, [5, 18,28, 32]).

The Legendre polynomials S,,(x,y) and R, (x,y)/n! are defined [4] by means of the follow-
ing generating functions:

eV Co(—xt?) = i Sn(x,y):l—n' (1)
n=0 :
and o
Colat) Co(—yt) = Y, Rl I @

n=0

Quantum calculus is a relatively subfield in the realm of scientific study. This area is a
generalization of ordinary calculus for the case where g — 1 exists. It has been demonstrated
that it is helpful in the investigation of various problems, which arise in various branches
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of the sciences, mathematics, statistics, quantum mechanics and quantum physics. Recently,
several researchers, working in the field of g-special functions, introduced and studied several
g-special functions and their characteristics (see, for example, [2,12,19, 25,29, 30]).

In this quick recap, we take a look at a few definitions and notations associated with the
quantum calculus [7].

The g-factorial is defined as

n
ot = ]Hl[k]q, 0<g<1l,n>1,
q- = Y k=
1, n=20.

The two g-exponential functions are defined as:

) o
— , 0<g<1, 3)
n=0 [n]q! 7
and )
o n
Ex) =Y g2, 0<g<1
q( ) n:Oq [n]q' q
which satisfy the following rule
eq(x)Eg(—x) = 1. 4)
We recall some identities of g-derivatives:
Dy x" = [n]px" 1, (5)
D xeq(ax) = aeq(ax), (6)
Dy x(f(x)g(x)) = f(x)Dgrg(x) +g(qx) Dy, f (x). 7)

The theory of g-Bessel function was studied by many mathematicians and physicists. This
theory grew to include two variables and generalized g-Bessel functions. The most well-
known forms are two related g-Bessel functions J(x;¢) and J2(x; q) [15]. The g-Bessel function
J(x;q) is introduced and studied by F.H. Jackson [17]. Later, W. Hahn and H. Exton cre-
ated a third form of g-Bessel function [8, 9, 14], which is studied by T.H. Koornwinder and
R. Swarttouw [22]. Recently, M. Fadel et. al. [10] presented new properties and characterize
g-Bessel functions of the first kind.

The series definition of g-Bessel functions of the first kind gBF J,(x; ) is given [27] by

0o ( /2)n+2k B 00 (_1)k(x/2)n+2k
Inlxia) = ; P RPTEPF A D o ®)

which converges absolutely for |x| < 2.
The series definition of nth order g-Tricomi Bessel functions is defined [27] by

RO B S G S G Dl
) = G o e 2 Wl = Rl ”

which converges absolutely for all values of x.



16 Raza N., Fadel M., C. Cesarano

In view of equations (8) and (9), it is clear that the nth order g-Bessel Tricomi functions of
first kind C,lw(x) := Cp,q(x) is related with gBF J}(x; ) in the following manner

Cug(x) = x 210 (2v/%;q). (10)

Oth

Also, for n = 0, equation (10) gives the 0™ order g-Bessel Tricomi function Co4(x), namely

= (~1)f
Coq(x) = , (11)
= &
which converges absolutely for all values of x.
The relation between 0" order g-Bessel Tricomi functions and exponential function can be
written [3] as

Coq(xt) = eg(=Dgt){1}, (12)
where x
D) = [ F(@)yt (13)
and .
(D 1" {1) = [;]q!, n € NU{0}. (14)

In view of equations (11) and (12), the g-partial derivatives of 0™ order g-Bessel Tricomi
functions are realized [3] as

. . 0
qu,x
and
. .\ 0
DygyyDyg,yCoq(—yt) = Wq_l(ﬁoﬂ(—yt) = tCoq(—uyt), (16)
q9=qy
respectively.

The extension of monomiality can create a concept within the theory of g-special functions,
generating new families of g-special polynomials and demonstrating their quasi-monomiali-
ty. This treatment provides a framework for understanding g-special polynomials as solutions
to generalized forms of g-partial differential equations and g-integro-differential equations. It
can also derive additional classes of g-generating functions and generalizations of g-special
functions. Recently, g-special polynomials such as g-Laguerre polynomials of two variables [3]
and g-Hermite-based Appell polynomials of two variables [11] were effectively achieved by
extending the monomiality.

The two g-operators Mq and pq, called g-multiplicative and g-derivative operators, respec-
tively, for a g-polynomials set p;,, ;(x), n € N, x € C, are defined [26] as

Mq {Pn,q(x)} = Pn+1,q(x)

and
Py{png(x)} = [lgpu—1,4(). (17)

The g-operators Mq and pq satisfy the commutation relation
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If M, and D, have g-differential realization, then the g-differential equation satisfied by
Pn,q(x) is o
MyPy {pnq(x)} = [n]g png(x). (19)

In view of equations (18) and (19), we have
[Py, Mg] = [n+1]g — [n]g.

The g-Hermite polynomials have multiple definitions (see, for example, [1, 16, 23]). Such
polynomials are used in combinatorics, quantum physics, non-commutative probability and
other areas of mathematics and physics. Recently, N. Raza et. al. [25] and M. Fadel et. al. [12]
introduced and studied the properties of g-Hermite polynomials with two and three variables.

The generating function of 2-variable g-Hermite polynomials is given [25] as

n

eq(xt) eq(yt?) = 2: Hig (%, y) o7y (20)

gt
The g-partial derivative with respect to t for e, (y#?) is given [25] by

Dyt eq(yt*) = yt g (yt) + qyt eq(qyt?). (21)
The g-dilatation operator T, which acts on any function of the complex variable z, is
defined [13] as
Lf(z) = f(g"2), keR. (22)
Many mathematicians and physicists have been explored g-Legendre polynomials. Vari-
ous results related to g-difference equations, orthogonality, and temperature, corresponding
to g-Legendre polynomials, have provided by T.H. Koornwinder, M. Rahman, H.T. Koelink,
A.W. Van and T. Ernst (see [6,7,20,21,24,31] for more details).
The generating function of 2 variable g-Laguerre polynomials 2VgLP L, 4(x, ) is given [3]
by

Coq(xt)eg(yt) = Zanxy ]

The generating function of 2-variable mth order qg-Laguerre polynomials [,,Lyq(x,y) is
given [3] by

n

Coq(—xt")eg(yt) = Z () Ln,g (%, y)[ v m € IN. (23)

We note that, for g — 17, all the results in g-calculus lead to the corresponding results in
ordinary calculus.

We motivated by the applications of operational techniques, which serve as a useful tool to
simplify the study of certain results that cannot be obtained by classical methods, including
the 2-variable Legendre polynomials and their applications in applied sciences, which pro-
vide ranged and relatable solutions to boundary value problems. Moreover, motivated by
the applications of g-special functions in mathematical and engineering science, we present
and examine the distinctive features of g-Legendre polynomials with two variables by em-
ploying the extension of the concept of monomiality principle and the method of operational
formalism. In this paper, we explore the possibility of these applications to introduce the
2-variable g-Legendre polynomials from the view point of 0 order g-Bessel Tricomi functions
and study their properties. Also, we establish quasi-monomiality properties for these polyno-
mials and study their characteristics.
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1 2-variable g-Legendre polynomials

In this section, we introduce the 2-variable g-Legendre polynomials 2VqLP S, 4(x,y) and
Ryq(x,y)/[n]4! by means of generating function involving 0" order g-Bessel Tricomi functions
and obtain their series definitions, g-differential equations and operational identities.

In view of equations (1), (2) and (11), we define the 2-variable g-Legendre polynomials
2VqLP S, 4(x,y) and Ry, 4(x,y)/[n]4! by means of the following generating functions

eq(yt) Coq(—xt?) = Z Snq(x,y) Tl ] (24)

and

= Rug(x,y) #7
Coq(xt) Coq(—yt) = ’ —, (25)
1 ) = Y T Tl
where Co 4(xt) denotes the 0'h order g-Bessel Tricomi functions, defined by equation (11).

Expanding the left hand side of equation (24), using equations (3) and (11) and then using
the series rearrangement technique, we get

x yn Zktn

[ee] /
ngg e W

Comparing the coefficients of equal powers of t from both sides of the above equation, we get
the following explicit form

'[n/Z] =2k
Sn,q(x/y) = [n]Q' k;) ([k]q' 2[11 — Zk] (26)

of S,,,4(x,y) polynomials.
Similarly, expanding the left hand side of equation (25) and using the same approaches in
acquiring (26), we obtain the following explicit form

Rug(x,y) ol no(—1)kxkynk
it et 00— R @7)

of Ry q(x,y)/[n]4!.
From equations (26) and (27), we get

Sn,q(xr —y) = (—1)"Snlq(x,y) and Rn,q(_xr —y) = (—1)"Rn,q(X,y),

respectively. Moreover, taking x = 0 and y = 0 one by one in equations (26) and (27), we get
the following boundary conditions

g (x)g" %/ ([n/2],)%, if nis even,

S O, == n/ S X, 0) =
n,q( y) y ”'q( ) {O, if n is odd,

and
Rn,q(xr()) = (—x)", Rn,q(O,y) =y,

respectively.
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The operational identity allows the representation of S, ;(x, y) as g-Laguerre and g-Hermite
polynomials of two variables by using equations (20) and (24), equation (23), for m = 2, as
follows

Snq(x,y) = [2}Ln,q(xry) = Huyq(y, Dﬁ){l}

Similarly, the polynomials Ry, 4(x,y) / [n];! can be represented as 2-variable g-Laguerre poly-
nomials by using the operational identity and equations (12) and (25) as follows

) L0, Dy 1)
n q°

As we noted earlier, the partial differential equations of ordinary 2-variable Legendre poly-
nomials give rise to real applied problems in areas such as heat condition equations and other
kinds of heat diffusion equations. To this end, we demonstrate the g-partial differential equa-
tions of 2VqLP S, 4(x,y) and R, 4(x,y) / [1n],!.

Theorem 1. The 2VqLP S, ;(x,y) and R, 4(x,y) / [n],! satisfy the following g-partial differential
equations:

LDq,xSn,q(xr y) = DLZ],yS”,q(xl y), (28)
or, alternatively,
(qxljglx — Ds,y + Dq,x)Sn,q(x, y)=0 (29)
and
Lf)q,an,q(x, y) = —LDq,an,q(x,y), (30)
or, alternatively,
(Q(XDg,x + yﬁg,y) + Dq,x + Dq,y)Rn,q(xry) =0, 31)
where
1Dgx := DgxxDg x. (32)

Proof. Operating Lf)q,x on both sides of equation (24) and using equations (32) and (15) in the
left hand side, we get

n

L t
eq(yt)Coq(—xt?) = Y 1DygxSngq(x, y>[ (33)

k=0 gt
Furthermore, operating Dq,y on both sides of equation (24), by using equation (6), we receive

oo R tn
teq(yt)Colq(—xtz) = Z Dq,ySn,q(x, y)W. (34)
n=0 :

Using equation (24) in the left hand side of equations (33) and (34), then comparing the
coefficients of equal powers of t from both sides of the resultant equation, we get

LDq,xSn,q(x, y) = [n]q[n — 1]q5n_2,q(x, y), n>2, (35)

and
DyySnq(x,y) = [ﬂ]qan,q(x,y), n>1. (36)
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Equations (35) and (36), give assertion (28).
In view of equations (5) and (7), for any function f;(t), we have the following equivalent
form

LDq,tfq(t) = (qtf)?,t + Dq,t)fq(t)- (37)

In view of equation (37), the g-partial differential equation (28) gives assertion (29).

Similarly, operating ; Dy and D, , one by one on both sides of equation (25) and using
equations (15) and (25) in the left hand side of the resultant equations, then comparing the
coefficients of equal powers of t from both sides of the resultant equations, we find

—1DgxRug(x,y) = [n]gRu-14(x,y), n>1, (38)
and
LDgyRuqg(x,y) = [n]gRu—14(x,y), n>1, (39)
respectively.
Equations (38) and (39) give assertion (30). Therefore, g-partial differential equation (30)
gives assertion (31). O

Remark 1. In view of equations (12), (24) and (25), we have

n

eq(yt) eq(qutz){l} = i)sn,q(xr]/) [Vf]q!

and
e (DY) e (tD-1y {1} =y Rna(®y) "
q( th,x) q(th/y){l} HZ::O [n]q! [n]q!'

Using equation (15) in equations (24) and (25) and then simplifying, we get

d R
q,l Sn,q(x,y) = LDq,xSn,q(xry)r (40)
anq,x
d .
—%Rn,q(xz]/) = LDq,an,q(xz]/)/ (41)
anq,x
and 3
3 quan,q(xr]/) = LDq,an,q(x/y)r (42)
=49y
respectively.
Also, in view of equations (28) and (40), we have
il Snq(x,y) = D; Snq(x,y)
—12mq\t .y ng\ts
anq,x

and in view of equations (30), (41) and (42), we get

d d
9 9
7 Rug(0y) = == Rug(x,y)-
1 ng —114
a‘i Dq/x aq D 9.y
In the next section, we discuss the g-monomiality characteristics and operational identities
for 2VGLP S, 4(x,y) and Ry, q(x,y)/ [n]4!.
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2 Quasi-monomiality characteristics

The extension of quasi-monomials treatment to g-special functions has provided a tool
for investigating the characteristics of g-special functions and g-polynomial families, such as
g-multiplication and g-derivative operators, integro-differential equations and other important
identities. In this section, we establish that the 2-variable g-Legendre polynomials are quasi-
monomials and obtain their operational identities.

The mathematical framework of g-Legendre polynomials can be developed by utilizing the
formalism associated with the extension of the concept of quasi-monomiality. We define the
following g-multiplicative Mq,s and g-derivative pq,s operators of 2VLP S, 4(x, ).

Theorem 2. The 2VqLP S, ;(x,y) are quasi monomials with respect to the following g-multi-
plicative and g-derivative operators:

Mys =y -+ D»;;f)q,yTy(l +qTx), (43)
or, alternatively,
M5 := yTx + Dy 3Dy y(1+qTyx) (44)
and
Pgs = Dyy. (45)

Proof. Differentiating both sides of equation (24) partially with respect to t by using equation
(7), we get

o0 tnfl N .
le Snq(X%,Y) 7[11 1,1 = eq(qyt) Dq,tCO,q(—xtz) + Dy req (yt)Co,q(—xtz). (46)
n=

In view of equations (12) and (21), we have
DysCag( =) = Dyseg(Dg) (1} = Dyl ey(D )1} + Dy DY
= Dyt Coq(—xt?) +qD, vt Coq(—qxt?).

Using equations (6) and (47) in the right hand side of equation (46), we get
i Sn—i-l,q(x/ y)t"
n=0 [ﬂ]q !

In view of equation (34), using equation (24) in the right hand side of aforementioned equation,
we get

= Dyt eq(qyt)Coq(—xt*) 4+ gDy it eq(qyt)Coq(—qxt®) + yeq(yt)Coq(—xt2).

e} t}’l

Sn+1,4(x, V)W = Dq_,a}Dq,y X%)Sn,q(xz ‘7]/)[
n=

n

n=0 n]q!

n n

—1 A > t = t
+qDgxDqy Z_:O Sma (4 0Y) g+ X_:O Snalx ) gy

Using equation (22) and then comparing the coefficients of equal powers of t from both sides
of the above equation, we get assertion (43).

Similarly, differentiating both sides of equation (24) with respect to t by using equation (7)
for f;(t) = eq(yt) and g4(t) = Coq(—xt?), then using equations (22) and (24) and comparing
the coefficients of equal powers of t from both sides of the resultant equation, we obtain an
alternate form of g-multiplicative operator of S, 4(x, ), given by equation (44).

In view of equations (17) and (36), we get assertion (45). O
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Moreover, we obtain the following g-multiplicative Mq,R and g-derivative ﬁq,R operators of
2VqLP Ry q(x,y)/ [n]g!.

Theorem 3. The 2VqLP R, 4(x,y)/[n],! are quasi-monomials with respect to the following
g-multiplicative and q-derivative operators:

Myr = —D, T, + D, ], (48)
or, alternatively,
Mg i= —Dy}+ Dy T, (49)
and
qu = —quxf)qx - ’ (50)
' 9gDgx
or, alternatively, 3
. A A q
Py,r = DgyyDy,y 3,D; ] G

Proof. Differentiating both sides of equation (25) with respect to t, by using equation (7), we
get
i Ruqg(xy) #71

= (n],! [n—1]4!

Using equation (15) in the right hand side of aforementioned equation, we obtain

= Dy+Coq(xt)Coq(—qyt) + Coq(xt)DygCoq(—yt).

d Rn 1, (xry) tn
)3 [;—:1],1' ]! = —xCoq(xt)Coq(—qyt) +yCoq(xt)Coq(—yt).
n=0 : :

Using equations (14) and (25) in the right hand side of the above equation, we get

5 Rutrgloy) 0 15> Rug(ray) #0155 Rug(6y)

t
= n+1] [n]g! il SR 1 L L P W= nlg [n]g!
which on using equation (22) and then comparing the coefficients of equal powers of ¢ from
both sides, gives assertion (48).
Similarly, differentiating both sides of equation (25) with respect to ¢ by using equation
(7) for fa(t) = Co4(—yt) and g4(t) = Co4(xt), then using equations (22), (25), comparing
the coefficients of equal powers of t from both sides of the resultant equation, we obtain an
alternate form of g-multiplicative operator of R, 4(x, y), given by equation (49).
From equations (17), (38) and (40), we get assertion (50). Similarly, in view of equations (17),
(39) and (41), we get assertion (51). O

n

In the next theorem, we will see how the g-Legendre polynomials S, 4(x,y) can be ex-
pressed as operational identities.

Theorem 4. The 2-variable q-Legendre polynomials S, 4(x,y) satisfy the following operational
identities:

Snq(x,y) = eg(Dy D7 ) {y"}, (52)
Snq(x,y) = Co,q(—xf?ﬁ,y){y" | (53)

and
Eq(=DgxDjy)Snq(x,y) = {y"}. (54)
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Proof. In view of equation (5), we have

N2k o [n]q! n—2k
PV = =¥

Using aforementioned equation in the right hand side of equation (26), we get

00 kaZkyn
Sng(x,y) = —_
() = L2

Using equations (3) and (14) in the right hand side of the above equation, we obtain assertion
(52). In view of equations (12) and (52), assertion (53) follows.

Operating Eq(—D,; 1 D?,y) on both sides of equation (52) then using equation (4) in the re-
sultant equation, we get assertion (54). O

Now, we obtain the operational identities for R, 4(x,v)/[n]4!.

Theorem 5. The 2-variable g-Legendre polynomials R, 4(x, y) satisfy the following operational
identities:

0
_ q

Rn,q (x’ y) - CO/Q <x aq qu}} > {yn }’ (55)

or, equivalently,
d
Rn,q(x/ y) =é( — Dt;; 11_1 {yn} (56)
( a‘i Dq/?/ )

and 5

Eq(Dgi=—i7 ) Rug(x,y) =" (57)

q q,x 1 n,q 7 7
< anW)

respectively.

Proof. From equation (16), we have

0
9 _
Coa (557 ) Coal=3) = Cog(x1)Coa(-).

Using equations (11) and (25) in the right hand side and then comparing the coefficients of
equal powers of ¢t from both sides of the resultant equation, we get assertion (55). In view of
equations (12) and (55), assertion (56) follows. Operating

Ey( - D"’;aanqq,}})

on both sides of equation (56) and then using equation (4) in the resultant equation, we get
assertion (57). O

Applying the same technique that leads to proof of Theorem 5, we derive the following
operational identities of 2-variable g-Legendre polynomials R, 4(x, ).
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Theorem 6. The 2-variable q-Legendre polynomials R, 4(x,y) satisfy the following equivalent
operational identities:

)
Ruq(x,y) = Coq(¥5— ) {(=0)"},
< anW})
or, equivalently,
R — D 1 aq _ n
nq(X,y) = ¢ qyia {(=x)"}
‘7
d
- E D 1 aq R n
i waq—) na(%,y) = (=x)",
respectively.

Now, we obtain g-integro-differential equations of g-Legendre polynomials S, 4(x,y) and
Ry4(x,y)/[n]y! by utilizing the formalism associated with the extension of the quasi-mono-
miality.

Theorem 7. The following g-integro-differential equations for Sy 4(x,y) and Ry4(x,y)/[n],;!
hold true:

X R X R N
q/ D?ﬂuan(”fy )d ”+/ Dsysn q(”f]/)dq” = ([”]q _]/TxDq,y)Sn,q(xz]/)/ (58)
/ unanuydu+/ uD wRig(u,y)dqu

(59)
Y ~ N
= [n]4Ruq(x,y) —|—/0 (qTxDyx + xTnglx)Rn,q(x,v)dqv,

and
X A ~ Y A A
/0 DgyyDgyRuq(u,y)dgu = /0 Dy,0vDguRnq(x,v)dgv — [n]qRnq(x, y). (60)
Proof. In view of equations (19), (44) and (45), we have

(yTx + D%;Dq,y(l + qTX))Dq,ysn,q(x/ y) = [nlgSnq(x,y),

or, equivalently,
(yTxDq,y + Da;;Dg,ySn,q(xz y)+ qu_,;Dg,yszn,q(x/ y) = [nlgSnq(x,y),

which, in view of equation (13), gives assertion (58).
In view of equations (19), (49) and (50), we have

( D + D 1Tx)(_Dq,xxDq,x)Rn,q(x,y) — [ﬂ]an,q(X,y).
From equation (37) we get
(_Du;; + Da;lex)(_qu,x - xqu,x)Rn,q(x, y) = [n]gRnq(x,y),

which, in view of equation (13), gives assertion (59).
Similarly, in view of equations (19), (48), (51), and (13), we get assertion (60). O

Remark 2. For g — 17, equations (24) and (25) lead to the generating functions of 2VLP
Su(x,y) and Ry, (x,y) /n! given by equations (1) and (2) respectively. Further, forq — 1~, equa-
tions (43) —(51) lead to the respective multiplicative and derivative operators of 2VLP S,(x,y)
and R, (x,y) /n! (see [4]).
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3 Conclusions

The approach of monomiality for g-polynomials paved the way for the development of
an original notion while working within the constraints of the theory of g-special functions.
This approach can be utilized in order to investigate certain characteristics for some g-special
polynomials. It is astonishing that this was the spark for the discovery the monomiality prop-
erties for certain g-polynomials such two-variable g-Laguerre polynomials and two-variable
g-Hermite based Appell polynomials, as well as further research into their properties [3,11].
In this context, we have introduced the 2-variable g-Legendre polynomials from the view point
of 0 order g-Bessel Tricomi functions and study their properties. Also, we have established
quasi-monomiality properties for these polynomials and studied their characteristics. We want
to learn more about the recently introduced quasi-monomiality properties for g-polynomials
in order to examine their possible applications in mathematics, science and engineering.
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Y with poboTi BUKOPMCTOBYIOTHCSI METOAM OTIepalliifHoro popManrismMy Ta po3IIMpeHHSs KBasiMo-
HOMIB AASI OTIVICY Ta peanisaril moaiHOMIB g-AexxaHapa 3 2 3miEHNMY. BBeAeHO reHepyrouy pyHKIIi0
g-moAiHOMIB AeXXaHApa 3 ABOMa 3MiHHUMM B KOHTeKCTi g-Becceast Tpikomi dpyHKIIN HYABOBOrOro
MIOPSIAKY Ta OTPMMAHO IX BAACTMBOCTI, TaKi sIK BM3HAUeHHs PSIAY Ta §-AMdpepeHIiaAbHi PiBHIHHSL.
BcTaBOBAGHO §-MyABTUIIAIKATMBHIOL i §-TIOXIAHWMIA OIlepaTOpy IMX IOAIHOMIB Ta OTPMMAaHO omepa-
TOpPHI 306pa’keHHsI §-ITOAIHOMIB Ae>XkaHApa BiA ABOX 3MiHHMX.

Kntouosi cnoea i ppasu: KBaHTOBe UMCAEHHS, TIOAHOM AeXaHAPa, PO3IIPeHHS KBa3iMOHOMiaAb-
HOCTI, OIlepaTop §-AMAaTallii.



