References

  1. Amanov T.I. Representation and imbedding theorems for function spaces \(S^{(r)}_{p, \theta}B(\mathbb{R}_n)\) and \(S^{(r)}_{p, \theta}\ast B\), \((0 \leq x_j \leq 2\pi\); \(j = 1, \ldots, n)\). Tr. Mat. Inst. Akad. Nauk SSSR 1965, 77, 5–34. (in Russian)
  2. Belinskii E.S. Asymptotic characteristics of classes of functions with conditions on the mixed derivative (mixed difference). In: Brudnyi Y. (Ed.) Studies in the theory of functions of several real variables, Yaroslav State Univ., Yaroslavl, 1990, 22–37. (in Russian)
  3. Belinsky E.S. Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative. J. Approx. Theory 1998, 93 (1), 114–127. doi:10.1006/jath.1997.3157
  4. Carl B. Entropy numbers, \(s\)-numbers, and eigen-value problems. J. Funct. Anal. 1981, 41, 290–306.
  5. Dũng D., Temlyakov V., Ullrich T. Hyperbolic cross approximation. Adv. Courses Math. Birkhäuser, CRM Barselona, 2018.
  6. Fedunyk-Yaremchuk O.V., Hembars’kyi M.V., Hembars’ka S.B. Approximative characteristics of the Nikol’skii-Besov-type classes of periodic functions in the space \(B_{\infty,1}\). Carpathian Math. Publ. 2020, 12 (2), 376–391. doi:10.15330/cmp.12.2.376-391
  7. Hembarska S.B., Romanyuk I.A., Fedunyk-Yaremchuk O.V. Characteristics of the linear and nonlinear approximations of the Nikol’skii-Besov-type classes of periodic functions of several variables. J. Math. Sci. 2023, 274, 307–326. doi:10.1007/s10958-023-06602-y (translation of Ukr. Mat. Visn. 2023, 20 (2), 49–61. (in Ukrainian))
  8. Hembars’ka S.B., Zaderei P.V. Best orthogonal trigonometric approximations of the Nikol’skii-Besov-type classes of periodic functions in the space \(B_{\infty, 1}\). Ukrainian Math. J. 2022, 74 (6), 883–895. doi:10.1007/s11253-022-02115-0 (translation of Ukrain. Mat. Zh. 2022, 74 (6), 772–783. (in Ukrainian))
  9. Hembarskyi M.V., Hembarska S.B. Widths of the classes \(B^\Omega_{p,\theta}\) of periodic functions of many variables in the space \(B_{1,1}\). J. Math. Sci. 2018, 235 (1), 35–45. doi:10.1007/s10958-018-4056-x (translation of Ukr. Mat. Visn. 2018, 15 (1), 43–57. (in Ukrainian))
  10. Hembarskyi M.V., Hembarska S.B., Solich K.V. The best approximations and widths of the classes of periodical functions of one and several variables in the space \(B_{\infty,1}\). Mat. Stud. 2019, 51 (1), 74–85. doi:10.15330/ms.51.1.74-85
  11. Höllig K. Diameters of classes of smooth functions. In: DeVore R.A., Scherer K. (Eds.) Quantitative Approximation. Academic Press, New York, 1980, 163–176.
  12. Ismagilov R.S. Diameters of sets in normed linear spaces, and the approximation of functions by trigonometric polynomials. Russian Math. Surveys 1974, 29 (3), 169–186. (translation of Uspekhi Mat. Nauk 1974, 29 (3(177)), 161–178. (in Russian))
  13. Kashin B.S., Temlyakov V.N. On best \(m\)-term approximations and the entropy of sets in the space \(L^1\). Math. Notes 1994, 56 (5–6), 1137–1157. doi:10.1007/BF02274662 (translation of Mat. Zametki 1994, 189 (5), 57–86. (in Russian))
  14. Kashin B.S., Temlyakov V.N. Estimate of approximate characteristics for classes of functions with bounded mixed derivative. Math. Notes 1995, 58, 1340–1342. doi:10.1007/BF02304894 (translation of Mat. Zametki 1995, 58 (6), 922–925. (in Russian))
  15. Kolmogoroff A. Über die beste Annäherung von Fuktionen einer gegebenen Funktionenklasse. Ann. Math. 1936, 37 (1), 107–110. doi:10.2307/1968691
  16. Lizorkin P.I., Nikol’skii S.M. Spaces of functions of mixed smoothness from the decomposition point of view. Proc. Steklov Inst. Math. 1990, 187, 163–184. (translation of Tr. Mat. Inst. Steklova 1989, 187, 143–161. (in Russian))
  17. Romanyuk A.S. Estimates for approximation characteristics of the Besov classes \(B^r_{p,\theta}\) of periodic functions of many variables in the space \(L_q\). I. Ukrainian Math. J. 2001 53 (9), 1473–1482. doi:10.1023/A:1014314708184 (translation of Ukrain. Mat. Zh. 2001, 53 (9), 1224–1231. (in Russian))
  18. Romanyuk A.S. Estimates for approximation characteristics of the Besov classes \(B^r_{p,\theta}\) of periodic functions of many variables in the space \(L_q\). II. Ukrainian Math. J. 2001, 53 (10), 1703–1711. doi:10.1023/A:1015200128349 (translation of Ukrain. Mat. Zh. 2001, 53 (10), 1402–1408. (in Russian))
  19. Romanyuk A.S. Diameters and best approximation of the classes \(B^{\boldsymbol{r}}_{p,\theta}\) of periodic functions of several variables. Anal. Math. 2011, 37, 181–213. doi:10.1007/s10476-011-0303-9
  20. Romanyuk A.S. Approximative charecteristics of the classes of periodic functions of many variables. In: Samoilenko A.M. (Ed.) Proc. of the Institute of Mathematics, 93. National Academy of Sciences of Ukraine, Kyiv, 2012. (in Russian)
  21. Romanyuk A.S. Entropy numbers and widths for the classes \(B^{r}_{p,\theta}\) of periodic functions of many variables. Ukrainian Math. J. 2017, 68 (10), 1620–1636. doi:10.1007/s11253-017-1315-9 (translation of Ukrain. Mat. Zh. 2016, 68 (10), 1403–1417. (in Russian))
  22. Romanyuk A.S., Romanyuk V.S. Approximating characteristics of the classes of periodic multivariate functions in the space \(B_{\infty, 1}\). Ukrainian Math. J. 2019, 71 (2), 308–321. doi:10.1007/s11253-019-01646-3 (translation of Ukrain. Mat. Zh. 2019, 71 (2), 271–282. (in Ukrainian))
  23. Romanyuk A.S., Romanyuk V.S. Estimation of some approximating characteristics of the classes of periodic functions of one and many variables. Ukrainian Math. J. 2020, 71 (8), 1257–1272. doi:10.1007/s11253-019-01711-x (translation of Ukrain. Mat. Zh. 2006, 71 (8), 1102–1115. (in Ukrainian))
  24. Romanyuk A.S., Romanyuk V.S. Approximative characteristics and properties of operators of the best approximation of classes of functions from the Sobolev and Nikol’skii-Besov spaces. J. Math. Sci. 2021, 252 (4), 508–525. doi:10.1007/s10958-020-05177-2 (translation of Ukr. Mat. Visn. 2020, 17 (3), 372–395. (in Ukrainian))
  25. Romanyuk A.S., Romanyuk V.S., Pozharska K.V., Hembars’ka S.B. Characteristics of linear and nonlinear approximation of isotropic classes of periodic multivariate functions. Carpathian Math. Publ. 2023, 15 (1), 78–94. doi:10.15330/cmp.15.1.78-94
  26. Romanyuk A.S., Yanchenko S.Ya. Estimates of approximating characteristics and the properties of the operators of best approximation for the classes of periodic functions in the space \(B_{1,1}\). Ukrainian Math. J. 2022, 73 (8), 1278–1298. doi:10.1007/s11253-022-01990-x (translation of Ukrain. Mat. Zh. 2021, 73 (8), 1102–1119. (in Ukrainian))
  27. Romanyuk A.S., Yanchenko S.Ya. Approximation of the classes of periodic functions of one and many variables from the Nikol’skii-Besov and Sobolev spaces. Ukrainian Math. J. 2022, 74 (6), 967–980. doi:10.1007/s11253-022-02110-5 (translation of Ukrain. Mat. Zh. 2022, 74 (6), 857–868. (in Ukrainian))
  28. Temlyakov V.N. The widths of some classes of functions of several variables. Dokl. AN SSSR 1982, 267 (2), 314–317. (in Russian)
  29. Temlyakov V.N. Approximation of functions with bounded mixed derivative. Proc. Steklov Inst. Math. 1989, 178, 1–121. (translation of Tr. Mat. Inst. Steklova 1986, 178, 3–113. (in Russian))
  30. Temlyakov V.N. Estimates of the asymptotic characteristics of classes of functions with bounded mixed derivative or difference. Proc. Steklov Inst. Math. 1990, 189, 161–197. (translation of Tr. Mat. Inst. Steklova 1989, 189, 138–168. (in Russian))
  31. Temlyakov V.N. Approximation of periodic function. Nova Science Publishes, Inc., New York, 1993.
  32. Temlyakov V.N. An inequality for trigonometric polynomials and its application for estimating the Kolmogorov widths. East J. Approx. 1996, 2, 253–262.
  33. Temlyakov V.N. Multivariate approximation. Cambridge University Press, Cambridge, 2018.
  34. Tikhomirov V.M. Diameters of sets in function spaces and the theory of best approximations. Russian Math. Surveys 1960, 15 (3), 75–111. (translation of Uspekhi Mat. Nauk 1960, 15 (3(93)), 81–120. (in Russian))
  35. Trigub R.M., Belinsky E.S. Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, Dordrecht, 2004.