References

  1. Butzer P.L., Nessel R.J. Fourier analysis and approximation: One-dimensional theory. Birkhäuser Verlag, Basel-Stuttgart, 1971.
  2. Chaichenko S., Savchuk V., Shidlich A. Approximation of functions by linear summation methods in the Orlicz-type spaces. J. Math. Sci. (N.Y.) 2020, 249 (5), 705–719. doi:10.1007/s10958-020-04967-y
  3. Hembars’ka S.B. Tangential limit values of a biharmonic poisson integral in a disk. Ukrainian Math. J. 1997, 49 (9), 1317–1323. doi:10.1007/BF02487338
  4. Hembars’ka S.B., Zhyhallo K.M. Approximative properties of biharmonic Poisson integrals on Hölder classes. Ukrainian Math. J. 2017, 69 (7), 1075–1084. doi:10.1007/s11253-017-1416-5
  5. Kal’chuk I.V., Kharkevych Yu.I. Approximating properties of biharmonic Poisson integrals in the classes \({W}_{\beta}^{r}H^{\alpha}\). Ukrainian Math. J. 2017, 68 (11), 1727–1740. doi:10.1007/s11253-017-1323-9
  6. Kal’chuk I.V., Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of functions by conjugate Poisson integrals. Carpathian Math. Publ. 2020, 12 (1), 138–147. doi:10.15330/cmp.12.1.138-147
  7. Kharkevych Yu.I., Stepaniuk T.A. Approximate properties of Abel-Poisson integrals on classes of differentiable functions defined by moduli of continuity. Carpathian Math. Publ. 2023, 15 (1), 286–294. doi:10.15330/cmp.15.1.286-294
  8. Prestin J., Savchuk V., Shidlich A. Approximation on hexagonal domains by Taylor-Abel-Poisson means. J. Math. Anal. Appl. 2024, 529 (2), 127536. doi:10.1016/j.jmaa.2023.127536
  9. Prestin J., Savchuk V., Shidlich A. Approximation theorems for multivariate Taylor-Abel-Poisson means. Stud. Univ. Babeş-Bolyai Math. 2019, 64 (3), 313–329. doi:10.24193/subbmath.2019.3.03
  10. Prestin J., Savchuk V.V., Shidlich A.L. Approximation of \(2\pi\)-periodic functions by Taylor-Abel-Poisson operators in the integral metric. Reports of the National Academy of Sciences of Ukraine 2017, 1, 17–20. doi:/dopovidi2017.01.017
  11. Prestin J., Savchuk V.V., Shidlich A.L. Direct and inverse theorems on the approximation of \(2\pi\)-periodic functions by Taylor-Abel-Poisson operators. Ukrainian Math. J. 2017, 69 (5), 766–781. doi:10.1007/s11253-017-1394-7
  12. Savchuk V.V. Approximation of holomorphic functions by Taylor-Abel-Poisson means. Ukrainian Math. J. 2007, 59 (9), 1397–1407. doi:10.1007/s11253-007-0094-0
  13. Savchuk V.V., Chaichenko S.O., Shydlich A.L. Extreme problems of weight approximation on the real axis. J. Math. Sci. (N.Y.) 2024, 279 (1), 104–114. doi:10.1007/s10958-024-06991-8
  14. Savchuk V.V, Shidlich A.L. Approximation of functions of several variables by linear methods in the space \({S}^{p}\). Acta Sci. Math. (Szeged) 2014, 80 (3–4), 477–489. doi:10.14232/actasm-012-837-8
  15. Shutovskyi A.M. Some applied aspects of the Dirac delta function. J. Math. Sci. (N.Y.) 2023, 276 (5), 685–694. doi:10.1007/s10958-023-06790-7
  16. Stepanets A.I. Methods of approximation theory. Walter de Gruyter, Berlin, 2005.
  17. Timan M.F. Approximation and properties of periodic functions. Naukova Dumka, Kyiv, 2009. (in Russian)
  18. Timan M.F., Shavrova O.B. Approximation of periodic functions of many variables by operators of polyharmonic type in \({S}^{p}_{m}\) spaces. Bulletin of Donetsk University. Mathematics 2009, 1, 32–36. (in Russian)
  19. Zhyhallo K.M., Kharkevych Yu.I. On some approximate properties of biharmonic Poisson integrals in the integral metric. Carpathian Math. Publ. 2024, 16 (1), 303–308. doi:10.15330/cmp.16.1.303-308