References
- Butzer P.L., Nessel R.J. Fourier analysis and approximation: One-dimensional theory. Birkhäuser Verlag, Basel-Stuttgart, 1971.
- Chaichenko S., Savchuk V., Shidlich A. Approximation of functions by linear summation methods in the Orlicz-type spaces. J. Math. Sci. (N.Y.) 2020, 249 (5), 705–719. doi:10.1007/s10958-020-04967-y
- Hembars’ka S.B. Tangential limit values of a biharmonic poisson integral in a disk. Ukrainian Math. J. 1997, 49 (9), 1317–1323. doi:10.1007/BF02487338
- Hembars’ka S.B., Zhyhallo K.M. Approximative properties of biharmonic Poisson integrals on Hölder classes. Ukrainian Math. J. 2017, 69 (7), 1075–1084. doi:10.1007/s11253-017-1416-5
- Kal’chuk I.V., Kharkevych Yu.I. Approximating properties of biharmonic Poisson integrals in the classes \({W}_{\beta}^{r}H^{\alpha}\). Ukrainian Math. J. 2017, 68 (11), 1727–1740. doi:10.1007/s11253-017-1323-9
- Kal’chuk I.V., Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of functions by conjugate Poisson integrals. Carpathian Math. Publ. 2020, 12 (1), 138–147. doi:10.15330/cmp.12.1.138-147
- Kharkevych Yu.I., Stepaniuk T.A. Approximate properties of Abel-Poisson integrals on classes of differentiable functions defined by moduli of continuity. Carpathian Math. Publ. 2023, 15 (1), 286–294. doi:10.15330/cmp.15.1.286-294
- Prestin J., Savchuk V., Shidlich A. Approximation on hexagonal domains by Taylor-Abel-Poisson means. J. Math. Anal. Appl. 2024, 529 (2), 127536. doi:10.1016/j.jmaa.2023.127536
- Prestin J., Savchuk V., Shidlich A. Approximation theorems for multivariate Taylor-Abel-Poisson means. Stud. Univ. Babeş-Bolyai Math. 2019, 64 (3), 313–329. doi:10.24193/subbmath.2019.3.03
- Prestin J., Savchuk V.V., Shidlich A.L. Approximation of \(2\pi\)-periodic functions by Taylor-Abel-Poisson operators in the integral metric. Reports of the National Academy of Sciences of Ukraine 2017, 1, 17–20. doi:/dopovidi2017.01.017
- Prestin J., Savchuk V.V., Shidlich A.L. Direct and inverse theorems on the approximation of \(2\pi\)-periodic functions by Taylor-Abel-Poisson operators. Ukrainian Math. J. 2017, 69 (5), 766–781. doi:10.1007/s11253-017-1394-7
- Savchuk V.V. Approximation of holomorphic functions by Taylor-Abel-Poisson means. Ukrainian Math. J. 2007, 59 (9), 1397–1407. doi:10.1007/s11253-007-0094-0
- Savchuk V.V., Chaichenko S.O., Shydlich A.L. Extreme problems of weight approximation on the real axis. J. Math. Sci. (N.Y.) 2024, 279 (1), 104–114. doi:10.1007/s10958-024-06991-8
- Savchuk V.V, Shidlich A.L. Approximation of functions of several variables by linear methods in the space \({S}^{p}\). Acta Sci. Math. (Szeged) 2014, 80 (3–4), 477–489. doi:10.14232/actasm-012-837-8
- Shutovskyi A.M. Some applied aspects of the Dirac delta function. J. Math. Sci. (N.Y.) 2023, 276 (5), 685–694. doi:10.1007/s10958-023-06790-7
- Stepanets A.I. Methods of approximation theory. Walter de Gruyter, Berlin, 2005.
- Timan M.F. Approximation and properties of periodic functions. Naukova Dumka, Kyiv, 2009. (in Russian)
- Timan M.F., Shavrova O.B. Approximation of periodic functions of many variables by operators of polyharmonic type in \({S}^{p}_{m}\) spaces. Bulletin of Donetsk University. Mathematics 2009, 1, 32–36. (in Russian)
- Zhyhallo K.M., Kharkevych Yu.I. On some approximate properties of biharmonic Poisson integrals in the integral metric. Carpathian Math. Publ. 2024, 16 (1), 303–308. doi:10.15330/cmp.16.1.303-308