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Entire functions of minimal growth with prescribed zeros

Andrusyak L.V.™, Filevych P.V.

Let I be a positive continuous increasing to +co function on IR. For a positive non-decreasing on
R function i, we found sufficient and necessary conditions under which, for an arbitrary complex
sequence ({,) such that {, — coasn — oo and Inn(r) > I(Inr) for all sufficiently large r, there
exists an entire function f whose zeros are the {, (with multiplicities taken into account) satisfying

InInM(r) = o(I" Y (Inn(r)) Inng (r)h(Inn(r))), r¢E, r— +oo,

where E C [1,+00) is a set of finite logarithmic measure. Here, n(r) is the counting function of the
sequence ({,), and M(r) is the maximum modulus of the function f.

Key words and phrases: entire function, maximum modulus, Nevanlinna characteristic, zero,
counting function.
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Introduction and results

Let Z be the class of all complex sequences { = ({,) such that 0 < |{7| < |{2| < ... and
{n — o0 asn — oo. For any sequence { = ({) belonging to Z, by £ we denote the class of
all entire functions whose zeros are precisely the (,;, where a complex number that occurs m
times in the sequence { corresponds to a zero of multiplicity m, and, for every r > 0, let

ng(r) = Z\Cn\ﬁr 1

be the counting function of this sequence.

If x € R, then we put exp;(x) = exp(x) = e* and let exp, ;(x) = exp,(e*) for every
integer n > 1. For all x > 0 we set Inj x = Inx, and let In, 1 x = In, Inx for every integer
n > 1and any x > exp, (0).

By H denote the class of all positive continuous non-decreasing functions on R. If the
integral [ du_ converges (respectively, diverges) for some value of uy € R, then it converges

o ¢u)
(respectively, diverges) for every other value of ug € IR, and in this case we write

© du
< +o00, (1)
/ ¢(u)
© du
/ ¢(u)
respectively.
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For an arbitrary entire function f and each r > 0, we denote by M (r) and T¢(r) the maxi-
mum modulus and the Nevanlinna characteristic of the function f, respectively, i.e.

My(r) =max{lf()] : 2l =7}, Tyr) = 5 [ In*[f(re) o

W. Bergweiler [10], answering a question of A.A. Gol’dberg [19], proved the following two
results.

Theorem A ([10]). Let ¢ € H be a function for which (1) holds. Then for any sequence { € Z
satisfying

1
im ) 3)

ro+e In7

there exist an entire function f € £; and a set E C [1,4c0) of finite logarithmic measure such
that
Iny M¢(r) = o(In? ng(r)e(lngng(r)), r¢&E, r— Hoo.

Theorem B ([10]). Let ¢ € H be a function for which (2) holds and, moreover, we have
da>0dug>0Vu>ug: ¢@u) <u” 4)
Then, for every b > 0, there exists a sequence { € Z satisfying

lim 70 )

rotoeo N7

such that, for any entire function f € £;, we have
In® g (r)p(Ing n(r)) = o(Iny Mg(r)), 1€ F(f), r— oo,
where F(f) C [1,4o0) is a set of infinite logarithmic measure.

W. Bergweiler [10] also suggested that condition (4) is probably not necessary in Theorem B.
Note also that the function ¢ € H in Theorem B is considered fixed and therefore Theorem B
does not indicate the dependence of the sequence { and the set F(f) on ¢. In addition to ¢,
the set F(f) in Theorem B also depends, generally speaking, on f. This is indicated by the
following result, a simple justification of which is also given in [10].

Theorem C ([10]). Suppose that{ € Z is a sequence satisfying (3) and G C [1, +o0) is an arbi-
trary unbounded set. Then there exist an entire function f € &; and an unbounded sequence
(r¢) of points from the set G such that

Iny My (1) = o(In? ng(re)), k — oo.
This result, in some sense, cannot be improved.

Theorem D ([10]). Let b > 0 and let € be a function decreasing to 0 on R. Then there exist a
sequence { € Z satisfying (5) and a set G C [1, +c0) of upper logarithmic density 1 such that,
for any function f € &;, we have

In? ng(r)e(lnng(r)) = o(lng Ms(r)), r€ G, r— +oo.
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By L we denote the class of all positive continuous increasing to 4-oco functions on R. The
following two results, which are proved in [4], generalize Theorems C and D to the case of an
arbitrary growth for the function n¢(r).

Theorem E ([4]). Let! € L. Then for any sequence { € Z satisfying
Inng(r) > I(Inr), 1> 1, (6)

and for every unbounded set G C [1,+00) there exist a function f € £; and an unbounded
sequence (ry) of points from the set G such that

Iny My (1) = o(I" (Inng(ry)) Inng(ry)), k — co.
Theorem F ([4]). Let! € L and let € be a positive function on R such that

o 000D
X—>+00 Inx
Then there exist a sequence { € Z, for which (6) holds and Inn(r —0,{) = I(Inr) on an
unbounded from above set of values r, and a set G C [1,+o0) of upper logarithmic density 1
such that, for any function f € &;, we have

I (Inng(r))e(Inng(r)) = o(Iny M¢(r)), 1€G, r— +oo.

An attempt to generalize Theorems A and B to the case of an arbitrary growth for the
function r;(r) was made in [2].

Theorem G ([2]). Let! € L. Then for any sequence { € Z satistying (6) there exist an entire
function f € & and aset E C [1, +c0) of finite logarithmic measure such that, for every 6 > 0,
we have

Iny M¢(r) = o(I"(Inng(r)) In'*+? ng(r)), r¢E, r— Hoo.

Theorem H ([2]). Let | € L. Then there exists a sequence { € Z such that (6) holds,
Inn;(r —0) = I(Inr) on an unbounded from above set of values of r, and, for any function
f € &, we have

I (Inng(r)) Inng (r) = o(lny Mg¢(r)), 1€ F(f), r— oo,
where F(f) C [1,40) is a set of infinite logarithmic measure.

For every entire function f and each r > 0 we have T¢(r) < In" M #(r). Therefore, in The-
orems A, C, E, and G, we can replace Inp M¢(r) by In T¢(r). The same substitution is possible
in Theorems B, D, F, and H, which is easy to see by analyzing the proofs of these results given
in [2,4,10].

Theorems G and H are far from exact analogues of Theorems A and B in the case of ar-
bitrary growth for the function n;(r). In particular, Theorems A and B do not follow from
Theorems G and H, respectively. However, Theorems G and H together with Theorems C and
D allow us to make conclusions about the form of direct analogues of Theorems A and B in
the case of arbitrary growth for the function n; (). In a certain sense, the following two results
are such analogues.
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Theorem 1. Let | € L and let ¢ € H be a function satisfying (1). If for a function« € L and a
constant c; > 0 we have

o Ha(x) +c1) = O(xa(x) " L(x)), x— +oo, (7)

then for any sequence { € Z satisfying (6) there exist an entire function f € &; and a set
E C [1, +00) of finite logarithmic measure such that

Ing M4(r) = o (rl(lnng(r)) In g (r) @ (a(In ndr)))) . r¢E, r— +oo. (8)
Theorem 2. Let [ € L. If for a function « € L and a constant c; > 0 we have
xa(x) 71 (x) = O(a Ha(x) +¢c2)), x— +oo, 9)

and also

1,1
lim : (_oi (_yl +2))
yoteo IHaH(y)
then there exists a sequence { € Z such that (6) holds, Inn;(r — 0) = I(Inr) on an unbounded
from above set of values of r, and, for every function ¢ € H satisfying (2) and any function
f € &, we have

>1, (10)

l_l(lnng(r)) Inng(r)p(a(Inng(r))) = o(In Tf(r)), reF(e, f), r— +oo, (11)
where F(¢, f) C [1,+00) is a set of infinite logarithmic measure.

Letb > 0,c >0, l(u) = bu for all u > ug, and a(x) = Iny x for each x > x(. Then, for all
sufficiently large x, we get

o (a(x) +c) = xOP0O), xa(x)71(x) = x*Iny x/b.

Therefore, if ¢ < In2, then condition (7) is satisfied and we obtain Theorem A from
Theorem 1. If ¢ > In2, then conditions (9) and (10) are satisfied and we obtain Theorem B
from Theorem 2; moreover, condition (4) in Theorem B turns out to be redundant and the
sequence ( can be chosen to be independent of ¢.

Below we give some other consequences from Theorems 1 and 2.

We note that some related problems regarding the description of the minimal growth of
entire functions with a given sequence of zeros { € Z have been considered in many works.
In particular, by conditions from above on the growth of n¢(r), relations between In M¢(r)
and n;(r), which describes the minimal growth of functions f from the class & and hold
along some increasing to +co sequence of values of r, were established in [3,9,22]. Without
any conditions on the growth of 1z (r), similar relations for Ng(r) = [; nz(t)d(Int) instead of
ng(r) were obtained in [1]. Analogues of Theorems E and F for N;(r) instead of n;(r) were
established in [6].

For many relations between the characteristics of analytic functions, as well as for relation
(8), it is typical that they are guaranteed to hold only outside certain exceptional sets. In this
connection, M.M. Sheremeta [24] (see also [18]) established a relation between In M f (r) and
ng(r), which describes the minimal growth of functions f from the class £ and holds for all
sufficiently large values of r (that is, without an exceptional set). A.A. Gol’dberg [19] proved
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that for an arbitrary sequence { € Z there exists an entire function f € &; such that the
relation Iny M (r) = o(Nz(r)) holds as r — +oc0 outside an exceptional set of finite logarithmic
measure. The existence of an exceptional set in this relation was justified in [1]; in addition, in
[1], the estimate of this set obtained in [19] has been significantly improved. An exact estimate
of an exceptional set in another relation of such kind was found in [5].

Finally, we mention other investigations related to establishing the existence of exceptional
sets and obtaining exact estimates for these sets in relations between characteristics of analytic
functions. In particular, such investigations were carried out for Wiman's asymptotic equality
between the maximum modulus and the maximum of the real part of entire functions (see
[8,17,25]), for the Borel relation between the maximum modulus and the maximal term of
entire functions presented by power series (see [13, 15, 16]), for the lemma on the logarithmic
derivative (see [14]), for inequalities of the Wiman-Valiron type or Kovari type between the
maximum modulus and the maximal term of analytic functions presented by power series
(see [25,26]), for inequalities of the Wiman-Valiron type between the maximum modulus and
the maximal term of multiple power series (see [12,21]), for asymptotic equalities between
the maximal term and the sum of entire Dirichlet series, multiple Dirichlet series or Taylor-
Dirichlet series (see [7,11,27,28]).

1 Auxiliary results

Letz € C, and let p > 0 be an integer. By E(z, p) we denote the usual Weierstrass primary
factor, i.e.

1_Z, ifp:OI
p

E(z,p) = Z"
(zp) (1-2z exp(Z ), ifp>1.

To prove Theorem 1, we need the following two lemmas.

Lemma 1 ([2]). Let { € Z. Then there exists a nonnegative sequence (A,) with the following
properties:

(i) Ap ~Inn/In|l,| asn — oo;

(ii) for any sequence (p,) of non-negative integers such that p, > [A,] for all sufficiently
large n, the series

ad ro\Pntl
n; <W> (12)

converges for every r > 0, and the product

H E(z ) (13)

converges uniformly and absolutely to an entire function f € &; on any compact subset
of C, and for allr > 0 we have In M¢(r) < G(r), where G(r) is the sum of series (12).
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Lemma 2. Letry > 1, u be a non-decreasing unbounded on [ry, +o0) function, and € H be a

function such that p
® du
— < H4o0. (14)
9 )

Then, for each fixed number ¢ > 0, the set

E= {r > 1 u<rexp (w(ul(r))» > u(r) +c}

has finite logarithmic measure.

Note that Lemma 2 is a version of the classical Borel-Nevanlinna theorem (see, for example,
[20, p.90]) and can be easily deduced from this theorem.

2 Proof of Theorems

Proof of Theorem 1. Suppose that [,x € L and the functions « and [ satisfy condition (7) with
some constant ¢; > 0. Let ¢ be a function for which (1) holds. Then it is easy to prove that
there exists a function ¢ € H satisfying (14) such that

Y(u) = o(g(u)), u— +eo. (15)

Note also that condition (1) implies the relation
u=o(p(u)), u— +oo. (16)
Let { € Z be an arbitrary sequence such that (6) holds. Fix some ry > |{y| and, for all

r > rp, we put

1
s=s(r)=rexp|(———~)-
(r) p(tp((x(lnng(r))))
We also put p, = [2¢(a(Inn))Inn] for every integer n > 1 and consider product (13). By
Lemma 1 this product defines an entire function f € & such that

h’le(T’) < il <ﬁ>ﬁn+l = 51(1’) + 52(1’) + 53(1’), (17)

where, for all r > ry, we used notation

ro\Pntl 7o\ Putl 7 o\ Patl
S1(r) = Z (m) , So(r) = Z (m) , S3(r) = Z <m) .

[Cn|<r " r<|Cn|<s " |Cnl>s "

Let us prove that (8) holds for the function f with a set E C [1,+00) of finite logarithmic
measure. Let us evaluate each of the sums S i (r),j =1,2,3, assuming that r > r.

For the first sum we have

r Pn (r)+1
S0 < ) (777)
and therefore, taking into account (15), we get
In$y1(r) < Inng(r) + (pu, ) +1) lnﬁ < 3¢p(a(Inng(r))) Inng(r) Inr (8

=o(I ' (Inng(r)) Inng (r)p(a(Inng(r)))), r— +oo.
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Further, noting that |{,| > r for all integers n > n;(r), we have S>(r) < Y 1 < ng(s).
r<|Cnl<s

By Lemma 2 with u(r) = a(Inng(r)) for all ¥ > rg, the set
E={r>ro:a(lnng(s)) > a(lnng(r)) +c1}
has finite logarithmic measure. According to (7) and (16), outside the set E we get

InSy(r) <Inng(s) < a H(a(lnng(r)) +c1)
= O(Inng(r)a(Inng(r) " (Inng(r))) (19)
=o(I" (Inng(r)) Inng(r)e(a(Inng(r))), r— +o.

In addition, for all integers n > n;(s) we have |{,| > s, and hence

1 1
rcnr <exp (- ¢<a<lnng<r>>>> <exp (- ¢<a<lnn>>)'

This implies that
pn+1 1 1
S(n< ¥ exp{--FPri-_1c< 1oyl (20)
n>%(s) { P(a(ln n))} n>%(s) e2Inn an:z 2
Therefore, from (17)—(20) we get (8). Theorem 1 is proved. 0

Proof of Theorem 2. Suppose that functions [,&« € L and a constant c; > 0 satisfy conditions (9)
and (10). We can assume without loss of generality that c; = 1, since otherwise we can put
ao(x) = a(x)/cp for all x € R and write g instead of « everywhere below.

It follows from conditions (9) and (10) with c; = 1 that there exist constants e > 0and g > 1
such that, for all sufficiently large y, we have

oMy +1) > e (y)yl (a7 (y)), (21)
P a Ny +1) > gl (@ (). (22)

From (21) we see that the length of the interval [exp(a~1(y)),exp(a~1(y + 1))] goes to +oo
as y — +oo. Therefore, for all sufficiently large y, say for y > yo > 0, each such interval
contains an integer. For an arbitrary integer k > 1, we choose some integer in the interval
[exp(a=t(yo + 3k — 1)), exp(a~!(yo + 3k))], which we denote by 1y, and set t; = a(In n;). Note
that

Yo +3k—1 <t <yp+ 3k (23)

We put my = ny, r; = 1, and let my 1 = ngq — ng and 11 = exp(I~'(Inny)) for all
integers k > 1. Since, by (21),

Innmq > a Hyo+3k+2) > ea (yo + 3k +1)(yo + 3k + 1)1 (& H(yo + 3k +1)) >
> e (yo +3K) (yo +3K)* (17 (a (yo + 3k)))* > & Inmy - (yo + 3k)* (17 (Inmy) )2,

we have Inmj ~ Inn; as k — oo and

Inmgyq > 4Inng - (yo +3k)*1 (Inny), k> k. (24)
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Also it is easy to see that
k=o(Inlnmy), k— +oo. (25)

In addition, according to (22) and (23) for all integers k > 2, we have
I =1 a1 (6) > 1@ (1 +2) > @ e (b)) = Plare. (26)
Let us form the sequence { = () as follows

i, 1,72, sV, e e oy koo oy Ty o oy
N N N’

my times  mp times my times

that is, we set {, = r for all integers n € (1 — my, n] and k > 1. Then n(r,{) = 0 for all
r€[0,1). If r € [rg, rey1) for some integer k > 1, then

k
ng(r) = Z;mj =np =exp(l(Inrgr1)) > exp(l(Inr)).
=

Therefore, the sequence  satisfies (6). In addition, In#n; (7,1 — 0) = Inny = [(Inrey4) for all
integers k > 1.

Now let ¢ € H be a function satisfying (2) and let f € &;. Let us prove that (11) holds with
aset F(¢, f) C [1,4+00) of infinite logarithmic measure.

It is easy to prove that there exists a function ¢ € H such that

+oo dy
_— OO, 27
pw )
and also
p(u) =o(yp(u)), u— +oo. (28)

For all integers k > 1, we put s; = ryexp(—1/(2¢(t;))). Using (26), we get

Insg 1 =1Inrg g — >qlnrg, k> ko. (29)

-
2¢(trs1)

Let kg = max{ky, ky, k3}. Fix an arbitrary integer jo > ko/2. Since, by (23), we have

tri < Yo+ 6j for each integer j > 1, then from (27) we obtain jZ} lP(}Zj) = 4o00. Hence, if |
=Jo

is the set of all integers j > jj satisfying the inequality 9 (t,) < j?, then

1
L (i)

The function f has no zeros in the open unit disk, and therefore there exists an analytic in
this disk function g(z) = Y ,z" such that f(z) = exp(g(z)), if |z| < 1. For every fixed r > 0
n=0

let ¢, (r) be the p-th Fourier coefficient of the function In |f(re'?)|, i.e.

27 . .
¢(r) = % /0 e 1n |f(re®)|d6, p € Z.
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Since all the {,, are positive, we have (see, for example, [20, p. 7])

o=+ 4 % () (%)) o

2p€<

for each integer p > 1. Using (31), for R > r > 0 we obtain the following equality

o (5 on=5; B (@)~ I ()

2P r<|Zn|<R Tul<

Tn\?
(%))
Both terms in the right-hand side of the above equality are non-negative, and thus we obtain

@I+ (3) 105 ¥ ((2) - (G)): (32)

r<|Cq|<R

It is also well known (see, for example, [20, p. 62]) that, for all > 0 and all integers p, we
have

ep(r)| < 2T4(r). (33)

Letusputé = (9 —1)/(59), and let j € J and k = 2j — 1. Consider the following two
possible cases.
Case 1: there exists an integer p such that

In [cp(skp1)] > 0171 (Inmg) Inmg - p(a(Inny)), (34)

Case 2: inequality (34) does not hold for any integer p.
Let F; = [sg41,7x+1) in Case 1 and let Fj = [s, r¢] in Case 2. Note that, if m = korm = k+1,

then p . .
"m dr Tm
&I > .
/Sm r Sm le(tm> N le(t2]>

Let us put F = F(¢, f) = UjjF;. Using (29), we see that for arbitrary j, j € J such that j’ < ;"
the inequality max Fy < min Fj» holds, and therefore

/ _Z/F r —]Equz fz;)

J€]

It follows from this and from (30) that the set F has infinite logarithmic measure.
Using (33) and (34), in Case 1, for all r € F; = [sy41, 7¢41), we have

InTg(r) > InTr(sgr1) > oI (Inng (r)) Inng (r)p(a(Inng(r)) — In2. (35)
Now let us consider Case 2. Let p = [¢(a(Inny)) Inmy|. Then
In [cp(sgr1)| < 61 (Inng) Inny - p(a(Inny)). (36)

Using (32) with R = s;;1 and r = s, as well as taking into account (29), we get

o+ (52 = 3 (52 - (2)) 2 505 @

Sk+1 4p
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for all j large enough, say j > j;. Since, according to (29),

Skv1 o 91 1
In—/>"1——1 =51 =56(1 T —
n= 2 p nsgyp =50Insgy =5 < N7t 2¢(tk+1)>'

then, using (36), for j > j, we have

m S p _
In (4—;‘(’;—:1) ) > Inmy — In(4p) +4pdInresq > 3pdInreyq = 3pdl~ 1 (Inny)

> 261 (Inny) Inng - Y(a(Inng)) > Infcy(sgi1)| +In2.

From this and (37) we see that

(52 lep(a0)] = 0 ()" = lep(oran)| = 5 (2)

and therefore, taking into account that
P(te—1) < p(te) < Plten) = (k) <7 = (k+1)%/4,
and using (25) and (24), for j > j3 we obtain

In|cp(sk)| > In <Z—; C—i)p) > Inmy — In(8¢(a(Inny)) Inmy) + (a(Inng)) Inmy lni—i

=Inm; —In(8Inmy) — Iny(t;) — %lnmk > %lnmk —Iny(ty)
> %lnmk —2Ink > ilnmk > Inny_q - (yo + 3k —3)21 1(Inny_,)
> 1 (Inmgq) Inme_q9(tq) = I (Inmg_q) Inng_qip(a(Inmg_q)).
This implies that in Case 2, for all ¥ € F; = [sy, 74| and j > jz, we have
InT¢(r) > InTg(sk) > Infcp(sp)| —In2 > I Y(Inng(r)) Inng (r)p(a(lnng(r))) —In2.  (38)
Therefore, if j is sufficiently large, then for all 7 € F; we have (35) or (38). Recalling (28), we
see that (11) holds. Theorem 2 is proved. O

3 Consequences of Theorems

In this section, we give examples of functions /,x € L for which all the conditions of
Theorems 1 and 2 are simultaneously satisfied, and we formulate the corresponding conse-
quences of these theorems.

We start with the following simple statement.

Lemma 3. Let ¢ > 0 and let B be a positive continuous function on [a, +0). If

. Blx+c)
A )

=A>1, (39)

then
In B(x) S InA

lim
x—+too X ¢

(40)
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Proof. We fix an arbitrary g4 € (1,A). From (39) for some xp € R and all x > xp we
have B(x +¢) > gB(x). Put m = min{B(x) : x € [xo,x0+c]} and let x > x;. Then
xo 4+ nc < x < xg + (n + 1)c for some integer n > 0, and therefore

B(x) > q"B(x — nc) > q"m > g0/ gLy,

So,
lim In B(x) > hn_q
x—4oo X c
Since g € (1,A) is arbitrary, we have (40). O

Letl,a € L and ¢, > 0. If condition (9) is satisfied, then a ~'(y + c2) /(a1 (y)y) — +oo as
y — +oo. We put B(y) = a~'(y)e ¥!"¥/ for all y > 0. Then

-1 -1
i Pl ) o a (y+c) ~ fim Y Wte)

yoteo BY) yortoo 1 (y)elyre2) In(y+ez)—yIny)/c2 T = 1(y)ey

By Lemma 3 we have In(y)/y — +o0 as y — +oo. It is easy to see that this implies the
relation yIny = O(Ina~!(y)) as y — +oo, which is equivalent to the relation

a(x) =O0(Inx/Inp x), x — +o0. (41)
In addition, if (10) holds, then by Lemma 3 we have

i M)

> 0. 42
x—+00 y (42)

Therefore, we will not be able to use Theorem 2 if at least one of conditions (41) or (42) is not
satisfied.

Let us now consider special cases of functions & € L for which (41) is satisfied.

Case 1: a(x) = Inx/ Iny x for all x > xo. Then Ina~!(y) ~ yIny as y — oo, and therefore
Inpa(y) =Iny+Inpy + o(1) asy — +o0. Let ¢ > 0. Then

(y+¢)lIny ofl(y +c¢)—ylny ofl(y) <clny oc_l(y +¢)=c(lny+Inyy) +0(1),
(y+o)Ima(y+c¢) —ylnpa(y) > clnga™ ' (y) = c(Iny +Ingy) +o(1)

as y — +o0. So we obtain

a Ny+o)/ (@ (y)y) =exp((y+c)Ima (y+c) —ylnoaa ' (y)) /y ~ y* 'Iny, y — +oo.
(43)

From (43) we see that if c; < 1, then condition (7) is satisfied for an arbitrary function! € L,
and therefore we have the following consequence of Theorem 1.

Corollary 1. Let! € L and let ¢ € H be a function satistying (1). Then for any sequence { € Z
satisfying (6) there exist an entire function f € £; and a set E C [1,+00) of finite logarithmic
measure such that

Ing M¢(r) = o(I" (Inng(r)) Inng (r)@(Ing ng (r) / Ing ng (r)), r & E, r — +oo.
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From (43) we also see that if c; > 1, then, for some function [ € L, condition (9) can be
satisfied, but Theorem 2 cannot be applied, since it follows from (9) that (42) cannot be satisfied.
In fact, if (9) holds for some c; > 1, then, using (43), we get [ "' (a~!(y)) = O(y>~1In?y) as
y — +0o0, and this contradicts (42).

Case 2: a(x) = In°® x for some fixed § € (0,1) and all x > xg. Then a~*(y) = exp(y*/?) for
all y > yp, and for each ¢ > 0 we have

My +e)/(a y)y) = exp((y +0)° = y"°) Jy = exp((1+0(1)ey"=07%), y — +eo.
(44)
Let | € L. From (44) we see that (7) and (9) are satisfied simultaneously with some positive
constants ¢; and cy, respectively, if and only if there exist positive constants d; and d; such that

exp(diy1=97%) < 17N a"Y(y)) < exp(day1=97%), y >y (45)

It follows from (45) that (42) holds if and only if (1 —0)/6 > 1,1ie. § € (0,1/2]. Rewriting
(45) in the form exp(dyIn' 7 x) < I71(x) < exp(daIn'"x), x > xy, for each 6 € (0,1/2] we
can easily choose a function I € L satisfying (10) with some constant c; > 0. For example,
if I(y) = exp((alny + b)1/(1-9)) for some constants @ > 0 and b € R and all y > v, then
I71(x) = exp(AIn'=° x 4+ B) for all x > x,, where A = 1/a and B = —b/a, and therefore for
each ¢ > 0 we have

Y a Yy +0)) /17 @~ (y)) = exp(A(y + ¢) (17078 — ay(1=0)/0)
=exp ((140(1))Ac(1 - 5)y(1—25)/5/5), Y — oo

This implies (10) with an arbitrary constant c; > 0. Hence, in the case when ¢ € (0,1/2] all
the conditions of Theorems 1 and 2 hold for the given function /, and therefore we have the
following consequence of these theorems.

Corollary 2. Letd € (0,1/2],a > 0, and b € R. Then:
(i) for every function ¢ € H satisfying (1) and any sequence { € Z satisfying
Iny ng(r) > (alnyr + p)V =0 >, (46)

there exist an entire function f € & and a set E C [1,+4-c0) of finite logarithmic measure
such that

Inp Mg(r) = o(exp(lng~° ng(r)/a)In ng(r)go(lng ng(r))), réE, r— +oo;

(ii) there exists a sequence { € Z such that (46) holds, Iny n;(r —0) = (alnyr + b)1/(1=9) on
an unbounded from above set of values of r, and, for every function ¢ € H satisfying (2)
and any function f € &;, we have

exp(ln%_d ng(r)/a)ln ng(r)go(lng ng(r)) = o(In Tf(r)), reF(e,f), r— +oo,

where F(¢, f) C [1,+00) is a set of infinite logarithmic measure.
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Case 3: a(x) = Inj x for some fixed § > 1 and all x > a. Then a~!(y) = exp,(y'/?) for all
y > b, and for each ¢ > 0 we have

o Ha(x) +c)/(xa(x)) = exp (e(lr‘g x+e) —Inx —$Inz x)
=exp ((1+0(1))clnx/(6In 1 x)), x — +oo.

1/ delta

(47)

Let us consider a function I € L such that I='(x) = exp(Alnx/Ind ' x) for all x > xo,
where A is some positive number, and we choose the constants ¢; and c; sothat 0 < ¢; <é6/A
and ¢p > 0/ A. Then from (47) we see that (7) and (9) are satisfied. In addition, if ¢ > 0, then
we have

Il (y +e) = Int @ (y) = A(WHI/ (y )N ey D)
N Aceyl/é/((syz(&—l)/é), y — 400,
and therefore (10) holds. Noting that the inequality Inn;(r) > I(Inr) from condition (6) is

!
equivalent, for all sufficiently large r, to the inequality I~ (Inn;(r)) > Inr, which in our case
after double logarithmization takes the form

lnA—i-lnl/‘sng(r) —(0—=1)Inpng(r)/6 > Ingr, (48)
we can formulate the following consequence of Theorems 1 and 2.
Corollary 3. Letd > 1, and A > 0. Then:

(i) for every function ¢ € H satisfying (1) and any sequence { € Z satisfying (48) for all
r > ry there exist an entire function f € &; and a set E C [1,+00) of finite logarithmic
measure such that

Iny M¢(r) = o (exp(A Iny nz(r)/ In§ ne(r)) lnng(r)q)(lng ng(r))) , r&E r— 4oo;

(ii) there exists a sequence { € Z such that inequality (48) holds for all r > r, the equality
In A +In'/? ng(r—0) — (6 —1)Inyng(r —0) /8 = Ing r holds on an unbounded from above
set of values of r, and, for every function ¢ € H satisfying (2) and any function f € &,
we have
exp(Alnyng(r)/ In§ ng(r))In ng(r)go(lng ng(r)) = o(InTe(r)), re€F(p,f), r— +oo,
where F(¢, f) C [1,4+0) is a set of infinite logarithmic measure.

Case 4: a(x) = Inp x for all x > a. Then for each ¢ > 0 we have
o (a(x) +c)/(xa(x)) = exp (“Inx —Inx — Ingx) = x(IFOINE=D 4 oo (49)
Consider an arbitrary function / € L for which there exist positive constants d; and d; such
that y™ < I(y) < y%2,y > y,. Putting b; = 1/d, and by = 1/dy, from the latter inequalities we
have
1< l_l(x) <xb2, x> x. (50)
Using (50), for each c > 0 we get
Inl"Y(a Yy +c) —Inl"Ha"y)) > byIna "y +c) —bylna(y)
=¥ (b1 —bp), y>uy1.
From (49), (50), and (51) we see that if some constants ¢; and c; satisfy the inequalities

0 < ¢ <In(l+4b1)and ¢ > max{In(1+ by),In(b2/b1)}, then all the conditions of Theorems 1
and 2 are satisfied, and therefore we have the following corollary of these theorems.

(51)
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Corollary 4. Let | € L be a function satisfying (50) with some positive constants by and b;.
Then:

(i) for every function ¢ € H satistying (1) and any sequence { € Z satisfying (6) there exist
an entire function f € £ and a set E C [1,4-0c0) of finite logarithmic measure such that

Ing M(r) = o(I" ' (Inng(r)) Inng (r)p(Ingng (r))), r ¢ E, r— +oo;

(ii) there exists a sequence { € Z such that (6) holds, Inn;(r —0) = I(Inr) on an unbounded
from above set of values of r, and, for every function ¢ € H satisfying (2) and any
function f € &, we have

I (Inng (r)) Inng (r)p(Ing nz (r)) = o(In T¢(r)), re€F(o f), r— +oo,
where F(¢, f) C [1,+00) is a set of infinite logarithmic measure.

Finally, we consider a rather general case, which concerns functions « from a wide sub-class
of the class L.

We recall (see, for example, [23]) that a positive measurable function B, defined on [a, +0),
is called slowly varying if for every fixed ¢ > 0 we have B(ct) ~ B(t) as t — +oo. It is well
known that for every slowly varying function p we have In (t) = o(Int), t — +o00. Moreover,
if a function B is positive continuously differentiable on [a, +0), then this function is slowly
varying if and only if

tB'(t)/B(t) — 0, t— +oo. (52)

Consider an arbitrary function « € L and put
B(t) = exp(ale)), tER (53)

If B is slowly varying, then relation In f(t) = o(Int), t — +c0, holds, and this relation can be
rewritten in the form
a(x) =o(lnpx), x — oo (54)

Note that in all the cases considered earlier, condition (54) is not satisfied.

Case 5: « € L is such that the function  defined by (53) is slowly varying. Note that if &
is a continuously differentiable function on [b, +c0), then condition (52) is equivalent to the
condition &’ (x)x Inx — 0 as x — +oo. Using this fact, it is easy to show that our case includes,
for example, functions & € L such that for all x > xo we have a(x) = Inj x, where 6 € (0,1) is
a fixed number, or a(x) = In{ x, where 4 is a fixed positive number and k > 3 is a fixed integer.

Lete > 0 and g > 1 be arbitrary fixed numbers. Then In B(qt) < InB(t) + ¢ for all t > ¢,
ie. a l(y+e) > (a'(y))T forally > yo. Hence, if c > d > 0, then, in view of (54), for all
sufficiently large y we have

a My +o)/(a M yy) >a (y+c)/(a () = (y+4d).

This shows, that if I € L, then (7) and (9) are satisfied simultaneously with some positive
constants ¢; and cy, respectively, if and only if there exist positive constants d; and d; such that

o HNa(x) +dy) <THx) <aMalx) +dy), x> xq. (55)
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In particular, if (55) holds and c; > d», then (9) holds and, in addition,

11 -1
lim I (_oi Elercz)) > lim « (_y1+cz+d1)
y—+oo I (OC (]/)) y—+oo & (]/ + dZ)

= +OO,

that is, (10) is satisfied. Therefore, since (55) can be rewritten as

v (a(y) —d2) <I(y) <a”l(aly) —d1), ¥ >0, (56)
we have the following corollary of Theorems 1 and 2.

Corollary 5. Leta, ! € L be functions such that the function B defined by (53) is slowly varying
and (56) holds with some positive constants d; and d,. Then:

(i) for every function ¢ € H satisfying (1) and any sequence { € Z satisfying (6) there exist
an entire function f € £; and a set E C [1, +00) of finite logarithmic measure such that
(8) holds;

(i) there exists a sequence { € Z such that (6) holds, Inn;(r —0) = I(Inr) on an unbounded
from above set of values of r, and, for every function ¢ € H satisfying (2) and any
function f € &, we have (11), where F(¢, f) C [1,+) is a set of infinite logarithmic
measure.
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Hexait | — aoaaTHa, HellepepBHa, 3pocTaioua A0 +oo Ha R ¢pyHkis. 3HalaeHO AOcTaTHI Ta
HeobXiAHI yMOBM Ha AOAATHY, HecmmaaHY Ha IR ¢pyHKIIifO /1, 32 sIKMX AASI AOBIABHOI KOMIIAEKCHOI
OCAiAOBHOCTI ({}) Taxoi, wo {,; — 00, Ao 1 — 0o, ilnn(r) > I(Inr) AAS BCiX AOCTaTHBO BEAUKIX
7, icHye 1ina yHKUIS f 3 HyASIMM B TOUKaX {; 1 AMITle B HUX (3 ypaxyBaHHSIM KpaTHOCTI), AAST SIKOT
MaeMo

Inln M(r) = o(I" Y(Inn(r)) Inn(r)h(Inn(r))), r¢E, r— +oo,
Ae E C [1,40c0) — mHOXMHA cKiHueHOI Aorapudpmiunol Mipn. TyT n(r) — AlumabHa dpyHK1is 1I0-
cainoBHOCTI ({), @ M(r) — MakcuMyM MOAYASI pyHKIIT f.

Kontouosi cnoea i ppasu: 1ira pyHKITiSI, MAKCMMYM MOAYASI, XapakTepuctuka HeparniaaN, HyAD,

AlumMAbHa (pyHKIIiSL.



