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Extending of partial metrics
Mykhaylyuk V.12, Myronyk V.2

We investigate the following question: does there exist a compatible extension of a given com-
patible partial metric p : A> — R on a closed subset A of a partially metrizable space X?
We obtain a positive answer to this question in the case when the corresponding quasi-metric
qp(x,y) = p(x,y) — p(x,x) has an extension that generates a weaker topology on X (in particu-
lar, if g, is bounded). Moreover, we give an example which shows that in general the answer to the
question is negative.
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Introduction

The notion of a partial metric space, as a certain weakening of the notion of metric space,
was introduced by S.G. Matthews [13] in 1992. This notion is quite widely used in research
from the Fixed Point Theory (see, for example, [9] and the literature given there). At the same
time, the topological and metric properties of partial metric spaces are studied [5,11,12]. In
connection with this, the following question naturally arises: which of the results of the theory
of metric spaces are transferred without change to the case of partial metric spaces or have
their own analogues? It was proved in [16] that similarly to metrizable spaces, compactness,
countable compactness, and sequential compactness are equivalent for the class of partially
metrizable spaces. Moreover, necessary and sufficient conditions for the metrizability of par-
tial metric spaces are established in [17].

In [6], the following well-known result was proved by F. Hausdorff (see also [3,7,8]).

Theorem ([6]). Let X be a metrizable space, A C X be a closed subset and d 4 : A? = R be
a compatible metric on A. Then there exists a compatible metricd : X*> — R on X such that
d(x,y) =da(x,y) forevery x,y € A.

Notice that this result was developed and generalized by many mathematicians (see, for
example, [1,2,18,20] and the literature given there).
This article is devoted to the research of the following question.

Question 1. Let X be a partially metrizable space, A C X be a closed subset of X and
p : A2 — R be a compatible partial metric on A. Does there exist a compatible partial metric
p on X such that p(x,y) = p(x,y) forevery x,y € A?
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First, we investigate a similar question on the extending of a given quasi-pseudometric g
from a given closed subset A of a quasi-metrizable space X to the entire space X. In Section 2,
we apply Bing’s approach to the proof of Hausdorff’s Theorem from [3] and prove the pos-
sibility of such an extension of g in the case when g is upper bounded by some compatible
quasi-pseudometric on X. In Section 3, we introduce a notion of weakly compatible quasi-
pseudometrics and show that the existence of a compatible extension of g is equivalent to the
existence of a weakly compatible extension q. In particular, it implies that every bounded
quasi-pseudometric has a compatible extension. In Section 4, we obtain a positive answer
to Question 1 in the case when the corresponding quasi-metric g, has a weakly compatible
extension (in particular, if g, is bounded) using the result on the extending of quasi-metric.
In Section 5, we give an example that shows the essentiality of the existence of a weakly com-
patible extension for extending of quasi-pseudometric and partial metric. This example, in
particular, shows that in general the answer to Question 1 is negative.

1 Basic notions and denotations

A function g : X?> — [0, +00) is called a quasi-pseudometric on a set X (see [10,19]) if
(q1) q(x,x) =0,
(92) q(x,2z) < q(x,y) +49(y,2)
forall x,y,z € X. A pair (X, q), where X is a set and g is a quasi-pseudometric on X, is called

a quasi-pseudometric space.
Let (X, q) be a quasi-pseudometric space. For every x € X the balls

By(x,e) ={ye X:q(x,y) <e}, €>0,

form a base of the quasi-pseudometric topology T, at the point x.
A quasi-pseudometric g : X?> — [0, +00) is called a quasi-metric on X (see [14]) if
(q3) x=y = q(xy) =q(y,x) =0
for every x,y € X (this means that (X, q) is a Ty-space); and an asymmetric metric on X (see [4])
if
(q4) x=y = q(x,y) =0
for every x,y € X (this means that (X, q) is a T;-space).
A function p : X? — [0, +00) is called a partial metric on X (see [14]) if
() x=y < pxx)=ply) =rlyy)
(p2) p(x,x) < p(x,y),
(p3) p(xy) = p(y, %),
(pa) p(x,2) < p(xy) +p(y,2) = p(v,Y)
forall x,y,z € X. A pair (X, p), where X is a set and p is a quasi-pseudometric on X, is called

a partially metric space.
For any partial metric p : X* — [0, +-00) the function g, : X* — [0, +-00) defined by

p
p

gp(x,y) = p(x,y) —p(x,x), (x,y) € X?,

is a quasi-metric on X and the topology of the partial metric space (X, p) is the topology of the
quasi-metric space (X, q,) (see [14, Theorem 4.1]).
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Moreover, the function d,, : X? — [0, +00) defined by

dp(x,y) =2p(x,y) — p(x,x) — p(y,y), (x,y) € X2,

is a metric on X.

Quasi-pseudometrics p and g on a set X are called equivalent if the topologies 7, and 7,
coincide.

Let X be a topological space and A C X. We say that a quasi-pseudometric (partial metric)
p on A is compatible if p generates on A the topology of the subspace A of X. A topological space
X is quasi-pseudometrizable (quasi-metrizable, partially metrizable) if X has a compatible quasi-
pseudometric (quasi-metric, partial metric) on X.

Let AC X, p:X?— [0,+00) and g : A%2 — [0, +00) be quasi-metrics (partial metrics). We
say that p is an extension of q if p(x,y) = q(x,y) for every x,y € A.
2 Extending of bounded quasi-pseudometric

We can prove the following proposition analogously as [3, Theorem 5] (see also [8, Theo-
rem 24]).

Proposition 1. Let (X, r) be a quasi-pseudometric space, A C X and (A, q) be a quasi-pseudo-
metric space such that

(i) A is T-closed,
(ii) q(x,y) <r(x,y) forevery x,y € A,
(iii) the quasi-pseudometrics r and q are equivalent on A.
Then there exists a quasi-pseudometric § on X such that
(w) g is an extension of g,
(B) G(x,y) <r(x,y) forevery x,y € X,
() the quasi-pseudometrics r and § are equivalent on X.

Proof. Consider the following function § : X> — R, defined by
§(x,y) = min {r(x,y),a,lbréfA (r(x,a) +q(a,b) +r(b,y)) }
Clearly, § satisfies (). Moreover, since the quasi-pseudometrics g and r satisfy (ii), we have
1(x,y) = min {r(x,y), inf (a(x,b) +r(b,y)) } = inf (q(x,b) +r(b,Y))

foreveryx € Aandy € X,

i(x,y) = min {r(x,), inf (r(x,a) +q(a,y)) } = inf (r(x,0) +q(a,y))
foreveryx € Xandy € A,
(x,y) = q(x,y)

q
for every x,y € A. That is, j satisfies («).
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Show that § is a quasi-pseudometric on X. The condition (g7) is obvious. Let us show (g5).
Let x,y,z € X. We consider the following four cases.
Case 1. Let §(x,y) = r(x,y) and §(y,z) = r(y,z). Then
q(x,y) +q(y,2) = r(xy) +r(y,z) = r(x,2) = q(x,2).
Case 2. Let §(x,y) = r(x,y) and §(y, z) = iban (r(y,a) +g(a,b) +r(b,z)). Then
abe

T00y) +4(y,2) = inf (r(x,y) +r(y,a) +q(a,b) +r(b,2))
> inf (r(x,a) +q(a,b) +r(b,z)) > 4(x,z).

a,bcA

Case 3. Let §(x,y) = (r(x,a) +q(a,b) +r(b,y)) and §(y,z) = r(y,z). Then

inf
abcA
10y) +00,2) = iné (r(50) + 9(a,) +r(5,9) +1(3,)
> inf (r(x,a) +q(a,b) +r(b,z)) > §(x,z).

a,bcA
Case 4. Let
q(x,y) = inf (r(x,a)+q(a,b)+r(by))
a,beA
and

10,2) = inf, (r(y,) +q(a,) + r(6,2).

Then according to (ii), we have
Gg(x,y)+4(y,z) = . bicndfeA (r(x,a) +q(a,b) +r(by) +r(y,c) +q(c,d) +r(d z))

> inf (r(x,a)+q(a,d)+r(d,z)) > §(x,z).
a,deA
What is left is to show (7). According to (B), we have 7; C 7,. It remains to verify that
T; 2 Tr. Let xp € X and & > 0. To show that there exists § > 0 such that B;(xo,6) € B/(xo, €)
we consider the following two cases.
Case A. Let xg € A. According to (iii), there exists d; > 0 such that for every x € A we have

g(xo,x) <61 = r(xp,x) < %

We set § = min {61,5}. Let x € Bj(xo, ). Since §(xo, x) = ;251 (r(xo,a) +r(a,x)), there exists
ana € A such that

qg(xo,a) +7(a,x) <4.
Then g(xo,a) < 1 and r(a,x) < 5. Therefore,

r(x0,x) < r(xp,a) +71(a,x) < % + % = ¢

Case B. Let xp € X \ A. Since A is 7,-closed, there exists a positive number ¢ < ¢ such that
B,(xp,0) N A = @. Notice that
q 7 =i f 7 ’ > (5
(x0,%) = inf (r(x0,0) +g(a,x)) >

for every x € A. Then for every x € B;(xo,d) we have

€ >0 > §(xp,x) = min {r(xo,x), (r(x0,a) +q(a,b) + r(b,x))} = r(x0, x).

inf
a,bcA
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3 Weakly compatible and bounded quasi-pseudometric

In this section, we investigate the existence of a compatible quasi-pseudometric r on a quasi-
pseudometrizable space, which for a given quasi-pseudometric g satisfies condition (ii) from
Proposition 1.

We say that a quasi-pseudometric 4 on a topological space (X, T) is weakly compatible
ift, C 1.

Proposition 2. Let X be a quasi-pseudometrizable space, A C X be a closed subset of X and
q be a bounded compatible quasi-pseudometric on A. Then there exists a weakly compatible
quasi-pseudometric § on X such that §(x,y) = q(x,y) forevery x,y € A.

Proof. Choose C > 0 such that g(x) < C for every x € A and consider the function§ : X*> — R,
defined by

q(x,y), ifxy €A,
q(x,y) =10, ifxcXandye X\ A4,
C, ifxe X\ Aand y € A.

Clearly, 4 is an extension of g that satisfies (g1). Show that j is a quasi-pseudometric on X,
that is, § satisfies (4). Let x,y,z € X. We consider the following four cases.

Ifze X\ A thenj(x,z) =0<4(xy) +4(y,z).

Ifze Aandy € X\ A, thenj(x,y) +4(y,z) > §(y,z) = C > §(x,2).

Ifye Aandx € X\ A, then j(x,y) +§(y,z) > §(x,y) = C > §(x,2).

Finally, if x,y,z € A, then §(x,y) +4(y,z) = q(x,y) +q(y,z) > q(x,z) = §(x,z).

Let T be the topology of X. Since g is compatible on the T-closed set A and §(x,y) = 0 for
every x € Xand y € X\ A, we have

>
>

;={(X\A)UB:Bertg}u{a}Cr
Thus, § is weakly compatible on X. O

Proposition 3. Let p and q be quasi-pseudometrics on a set X such that t, C 1;. Then the
functionr = p + q is a quasi-pseudometric on X such that T, = 1,.

Proof. Clearly, r is a quasi-pseudometric on X. Moreover, since g < r, we get T; € Tp. It remains
to show that 7, C 7;. Let xo € X be a fixed point, ¢ > 0 and U = {x € X :r(xg,x) < e}.
Consider the 7;-neighbourhood U; = {x € X : q(xg,x) < §} of xy and T,-neighbourhood
U, = {x € X : p(xo,x) < 5} of xp. Since 7, C 75, Uy N Uy is a 7y-neighbourhood of xp.
Moreover, Uy NU, C U. Thus, U is a 7y-neighbourhood of xp and 7 C 1. O

Proposition 4. Let X be a quasi-pseudometrizable space, A C X be a closed subset of X
and q be a bounded compatible quasi-pseudometric on A. Then the following conditions are
equivalent:

(i) there exists a compatible quasi-pseudometric § on X such that §(x,y) = q(x,y) for every
X,y €A,

(ii) there exists a weakly compatible quasi-pseudometric § on X such that §(x,y) = q(x,y)
forevery x,y € A.
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Proof. The implication (i) = (ii) is obvious.

(ii) = (i). Let g1 be a compatible quasi-pseudometric and g, be a weakly compatible
quasi-pseudometric on X such that g»(x,y) = g(x,y) for every x,y € A. By Proposition 3 the
function r = g1 + g7 is a compatible quasi-pseudometric on X. Moreover, q(x,y) < r(x,y) for
every x,y € A. According to Proposition 1, there exists a compatible quasi-pseudometric § on
X such that §(x,y) = q(x,y) for every x,y € A. O

Corollary 1. Let X be a quasi-pseudometrizable space, A C X be a closed subset of X and
q be a bounded compatible quasi-pseudometric on A. Then there exists a compatible quasi-
pseudometric § on X such that §(x,y) = q(x,y) for every x,y € A.

4 Extending of partial metric

In this section, we obtain the main result of our paper, which gives a positive answer to
Question 1 using Corollary 1 and the following well-known McShane’s result on the extending
of a Lipschitz function.

Proposition 5 ([15, Theorem 1]). Let (X, d) be a metric space, A C X beasubsetand f : A — R
be a Lipschitz function with a constant C > 0. Then there exists a Lipschitz functiong : X — R
with the constant C such that g(x) = f(x) for every x € A.

Proposition 6. Let (X, p) be a partial metric space. Then the function f : X — R, defined by
f(x) = p(x,x), is a 1-Lipschitz function with respect to the metric d,,.

Proof. The statement follows immediately from the next inequality
f(x) = fy) = p(x,x) = p(y,y) = dp(x,y) =2(p(x,y) — p(x, %)) < dp(x,y).
O

Proposition 7. Let (X,d) be a metric space and f : X — [0,+00) be a 1-Lipschitz function.
Then the function p : X? — R, defined by

1
p(xy) = 5(d(xy) + f(x) + f(v),
is a partial metric on X such thatd = dp and p(x,x) = f(x) forevery x € X.

Proof. Clearly, p(x,x) = f(x) for every x € X. It remains to verify (p1) — (pa).
(p1) The following implications

x=y & dxy)=0 < prx)=pry) =prlyy)
are obvious.
(p2) Since f is 1-Lipschitz, f(y) > f(x) — d(x,y) for every x,y € X. Then

p(x,y) —p(x,x) Z%(d(x,y)—f( ) +fW) = 1( d(x,y) = f(x) + f(x) —d(x,y)) =

Condition (p3) is obvious.
(pa) For every x,y,z € X we have

(d(x,y) + f(x) + f(y) +d(y,2) + f(y) + f(2))
(d(x,2) + f(x) + f(2)) + f(y) = p(x,2) + p(y, ).

p(x,y) +plyz) =

NIk DN~

>
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The following theorem is the main result of the paper.

Theorem 2. Let X be a partial metrizable space, A C X be a closed subset of X and p : A> —+ R
be a compatible partial metric on A such that the quasi-metric q, is bounded. Then there exists
a compatible partial metric j : X> — R on X such that pi(x,y) = p(x,y) for every x,y € A.

Proof. 1t follows from Corollary 1 that there exists a compatible quasi-pseudometric § on X
such that §(x,y) = q,(x,y) for every x,y € A. Since X is partial metrizable, X is a Tp-space.
Therefore, the compatible quasi-pseudometric 4 is a quasi-metric.

Consider the metric d : X> — R, defined by d(x,y) = 4(x,y) + §(y,x). Clearly, d is an
extension of d,. It follows from Proposition 6 that the function f : (A,d,) — R, defined
by f(x) = p(x,x), is an 1-Lipschitz function. According to Proposition 5, there exists an
1-Lipschitz function f : (X,d) — [0,+oc0) such that f|4 = f. It remains to consider the
function f : X? = R, defined by

- 1 z z
plry) = 5(dlxy) + f(x) + f(v),
which is a partial metric according to Proposition 7. Clearly, p is an extension of p. Moreover,

since g5 = {, p is compatible on X. O

5 Examples and questions

The following example shows the essentiality of the existence of a weakly compatible ex-
tension in Theorem 2 and Corollary 1. This example shows that, in general, the answer to
Question 1 is negative.

Proposition 8. There exist a partial metric space (X, p), a 7y,-closed set A C X and a partial
metricr on A such that

(1) qp and q, are equivalent on A,
(2) 13, £ 14, for every extension s of r on X.

Proof. Let X = {x, : n =0,1,2,...} be any countable set, where x,, # x for any distinct n, k,
and let p : X? — R be a function defined by

0, ifx=vy=nux,
1, if x =y # xo,
X, Y) = LX) =
p(xy) =py, x) L ity =
2

, otherwise.

We show that p is a partial metric on X. It is enough to verify condition (p4) for the case of
distinct x, y,z € X. If y = x¢ then

ply) +plyz) =1+1=p(xz) = p(xz) +py,y).
If y # xo then p(x,y) = 2 or p(y,z) = 2. Therefore,

p(x,y) +ply,z) 22+1>p(x,z) +p(yy).
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Thus, p satisfies (p4) and p is a partial metric on X.
Notice that
0, if x=yory=x,

ap(x,y) = {

Consider the set A = {x;, : n € N}. Clearly, A is a 75, -closed discrete subset of X.
Consider the metric  : A> — R defined by

1, otherwise.

r(xp, x;) = |n —k|.

It is obvious that g, = r and g, are equivalent on A. Assume that a partial metrics : X*> — R
is an extension of r such that 7;, C 7;,. Then g5 is an extension of 4, = r on X. Since xyp € G
for every nonempty G € 15, xo € G for every nonempty G € 1,,. Therefore, g5(xu, xo) = 0 for
every n € IN and

qs(x0, x1) = gs(xn, X0) + gs(x0, 1) > gs(xn, x1) = 1(x4,x1) =n—1
for every n € IN, a contradiction. O

Corollary 2. There exists a quasi-metrizable space X, a closed subset A of X and a compatible
quasi-metric q on A such that q cannot be extended to a compatible quasi-metric on X.

Proof. 1t is enough to consider the space X, the set A and the quasi-metric g = g, from
Proposition 8. O

Notice that the partial metrizable space X from Proposition 8 is not a Tq-space, that is, X
has no compatible asymmetric metric. Therefore, the following questions naturally arise.

Question 3. Let X be a partially metrizable T1-space, A C X be a closed subset of X and
p : A2 — R be a compatible partial metric on A. Does there exist a compatible partial metric j
on X which is an extension of p?

Question 4. Let X be a quasi-metrizable Ti-space, A C X be a closed subset of X and
q : A2 — R be a compatible quasi-metric on A. Does there exist a compatible partial
metric § on X which is an extension of q?
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Y CTaTTi AOCAIAXKYyeTbCsl Take MUTAHHS: UM KOXHY 4acTKOBY MeTpuky p : A% — R, sika Bu-
3HaueHa Ha 3aMKHeHill MAMHOXIMHI A 4acTKOBO MeTPM30BHOIO IpocTopy X i y3roaXkeHa 3 yoro
TOIOAOTi€I0 Ha A, MOXXHa IIPOAOBXWTH Ha BeCh IPOCTip 31 36epe’KeHHSIM TOIIOAOTiUHOI CTPYKTY-
pn? OTpuMaHO MO3UTHBHY BiAIIOBiAb Ha Ile IIMTaHHS y BMIIAAKY, KOAM BiAIIOBiAHA KBas3iMeTplMKa
9p(x,y) = p(x,y) — p(x,x) Mae MPOAOBXKEHHS, sKe OPOAXKYE CAabIITy TOMOAOTIIO Ha IpocTopi X
(3oxpema, K110 4, 06MexeHa). KpiM Toro, mobyAoBaHO IPUKAAA, KM y 3araAbHOMY BUTIAAKY Ad€
HeraTVBHY BiAIOBiAb Ha cpOpMyAbOBaHe BUIIIE ITMTAHHS.

Kntouosi cnoea i ppasu: dacTkoBa MeTpUKa, KBa3iMeTpyKa, YaCTKOBO MEeTPM30BHII IPOCTip, Me-
TPM30BHUIA IPOCTipP, IPOAOBXEHHST MeTPUKI, IPOAOBXEHHS KBa3iMeTPUKM, MPOAOBXeHHS 4aCTKO-
BOI METPMKI, TOHOAOTiUHII IIPOCTIp.



