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Estimates for sums of Dirichlet series
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In the article, we prove approximation theorems that allow us to estimate, with sufficient accu-
racy, the supremum modulus of a Dirichlet series by the maximal term of another Dirichlet series
associated with the given one. Using these theorems, we establish necessary and sufficient condi-
tions on the sequence of coefficients of a Dirichlet series, under which the most general asymptotic
and global estimates from above for its supremum modulus hold.
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Introduction

For an analytic function presented by a Dirichlet series with a nonnegative, increasing
to +co sequence of exponents, the following problem is classical: find conditions on the se-
quence of coefficients and the sequence of exponents of the series under which for the supre-
mum modulus of the function on a vertical line one or another estimate from above holds. This
problem is of a general nature and various approaches and methods have been proposed for
its solution in works of many authors.

In the case when the sequence of exponents of a Dirichlet series coincides with the sequence
of nonnegative integers, the considered problem is equivalent to the following problem for a
power series: find conditions on the sequence of its coefficients under which for the maximum
modulus of its sum on a circle one or another estimate from above holds. Classical methods,
that allow obtaining such conditions for a power series and are based on the technique of
its maximal term, are the Wiman-Valiron method and the Rosenbloom probabilistic method
(see [26,31,34] and [45, Chapter IX]). In works of M.M. Sheremeta (see [37] and the bibliogra-
phy there), the Wiman-Valiron method was modified to study properties of entire (absolutely
convergent in C) Dirichlet series. For the same purpose, an adaptation of the Rosenbloom
probabilistic method was carried out in the work of O.B. Skaskiv [41]. As a result, for an entire
Dirichlet series, it was possible to find necessary and sufficient conditions on the sequence of
its exponents, under which the most general estimates from above for the supremum modulus
of its sum by its maximal term are satisfied.

A typical feature of the estimates obtained by the Wiman-Valiron and Rosenbloom methods
or their modifications is that, under the conditions found for the exponents, these estimates are
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satisfied only outside certain exceptional sets. Questions about the existence and the sizes of
exceptional sets in some estimates between the modulus of the sum of a series and its maximal
term were considered, for instance, in the articles [13, 15, 16,42, 43]. Conditions, under which
the most general estimates from above for the supremum modulus of an entire Dirichlet series
by its maximal term hold without exceptional sets, are found in the works [14,36], and similar
problems for a Dirichlet series absolutely convergent in a half-plane was investigated in the
work [44].

A slightly different approach for estimating the sums of entire Dirichlet series was car-
ried out in the work of M.M. Sheremeta [38]. Actually, M.M. Sheremeta [38] established esti-
mates for the supremum modulus of an entire Dirichlet series by the maximal term of another
Dirichlet series associated with the given series (see Theorem D below). Note that the obtained
estimates hold without any assumptions about the system of exponents of the given series. An-
other important point is that the maximum term of the associated series in a certain sense well
approximates the supremum modulus of the given series. Using these facts, in [38] necessary
and sufficient conditions, under which some global estimates for the sums of entire Dirichlet
series hold, were established. The results from [38] were also applied in the works [22,28,33] to
study other properties of entire Dirichlet series. Analogs of the results from [38] for Dirichlet
series absolutely convergent in a half-plane were obtained in [23]. This article is devoted to the
development of the approach proposed in [38] and its applications.

1 Definitions and previous results

Denote by INj the set of all nonnegative integers, and by A denote the class of all non-
negative sequences A = (A;),enN, increasing to +oo.
Let A = (An)nen, be a sequence from the class A. Consider a Dirichlet series of the form

F(s) = Z a,eM, s =0+ it, (1)
n=0

and denote by 0, (F) the abscissa of absolute convergence of series (1). Put

It is easy to see that if 0,(F) > —co and ¢ < ¢, (F), then |a,|e”* — 0 as n — co. Therefore, for
such o, the maximum term

(o, F) = max {|ay|e” :n € No}

of series (1) is defined. If 0, (F) > —oo, then for each o < 0,(F) we set
M(c,F) =sup {|F(c+it)| : t € R}, M(0,F) = Y_ |anle”™.
n=0

Note that for all such o we have u(o, F) < M(c,F) < M(c, F), and M(c,F) = M(c,F) = F(0)
in the case when a,, > 0 for any n € INj.
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Suppose that series (1) is absolutely convergent at the point s = 0. Put

Ry=) |al, neNy, (2)
k=n
and along with series (1) consider the Dirichlet series
Fi(s) = Y Rye™. (3)
n=0
Then, as is well known (see, for example, [32, Theorem 1.2.8]), 0, (F) = 0.(F;). Set
n
Sn = Z ‘ak’/ ne NO/ (4)
k=0
and consider the Dirichlet series -
F(s) = Z S, (5)
n=0

If series (1) absolutely diverges at the point s = 0, then, as is well known (see, for example,
[32, Theorem 1.2.8]), 0, (F) = min{0, 0, (F)}.

For every fixed A € (—oo, +00], by D4(A) we denote the class of all Dirichlet series of the
form (1) such that 0, (F) > A and a,A,, # 0 for at least one value n € INy, and denote by D7 (A)
the class of all Dirichlet series of the form (1) for which B(F) > A and a,A,, # 0 for at least one
value n € INg. We put Dy = UpeaDa(A) and DY = Upca D3 (A).

By X we denote the class of all functions « : R — R. For a function « € X let & be the
Young conjugate function of «, i.e.

a(x) =sup{xc —a(c) :c € R}, xeR.

For each function« € X, weset Dy = {0 € R: a(0) < +oo}. If A € (—o0,+00] is fixed,
then by X4 we denote the class of all functions &« € X for which D, C (—o0, A). Note that
X100 = X. Let Q)4 be the class of all functions ® € X4 such that Dg is an interval of the form
[a,A),a < A, ® is continuous on Dg, and the following condition holds: xo — ®(0) — —o0
as 0 T A for every fixed x € R. In the case A < 400, the indicated condition is equivalent
to the condition ®(0) — +o0as ¢ — A — 0, and in the case A = +o0, it is equivalent to the
condition ®(¢)/0 — +co0as ¢ — +o0.

Necessary and sufficient conditions, under which some asymptotic estimates from above
for the supremum modulus of a Dirichlet series hold, were found in [16, 18,29, 30].

Theorem A ([29]). Let A = (Ay)neN, be a sequence from the class A, A € (—oo,+0o0],
® € Oy, and Ty > tg > 0 be arbitrary constants. For each Dirichlet series F € D 4(A) such that
Inu(o,F) < (tg+0(1))®(0) aso T A we have InM(c,F) < (Tp +0(1))®(c) aso T A if and
only if

VT>T0§|C€(1’0,T): lim — 1n1’l~
n—=cd(A,/c) — TP(A,/T)
Theorem B ([30]). Let A = (A;)neN, be a sequence from the class A, & € (O, , and
To > to > 0 be arbitrary constants. For each Dirichlet series F € Di«(A) such that
Inu(o,F) < D((tg+0(1))0) asoc — +o0 we have In M(c, F) < ®((Ty +0(1))o) as ¢ — +oo if
and only if

<1. 6)

VT>T0§|C€(1’0,T): lim = Inn

- <1 7)
1= (A /c) — B(Ay/T)
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The sufficiency of conditions (6) and (7) in Theorems A and B can be easily justified
by using the following theorem, which gives sufficient conditions in order that the most

general asymptotic estimates from above for the supremum modulus of a Dirichlet series
hold.

Theorem C ([29]). Let A = (An)uenN, be a sequence from the class A, A € (—o0, 4], and
ST €Oy If

> 1

Z D(An)—T(Ay) < oo

n=0 €

then every Dirichlet series F from the class D’ (A) such that Inu(c,F) < ®(0), ¢ € [0, A),
belongs to the class D 4 and for it we have In M (o, F) <T(0), 0 € [0, A).

An analysis of the proofs of Theorems A and B given in [29] and [30], respectively, shows
that the main and nontrivial parts in these proofs are the justifications of the necessity of
conditions (6) and (7). Actually, these justifications are of a constructive nature. It is clear
that Theorem C cannot be used for this. The following two theorems are much more effec-
tive in this regard, and their application does not require any considerations of a constructive
nature.

Theorem D ([38]). Let A = (An)qeN, be a sequence from the class A, and F be a Dirichlet series
of the form (1). Then:

(i) if the series F is absolutely convergent at the points = 0, then F € D if and only if
F, € D7, where F; is the series defined by (3) and (2),

(ii) if F € D, then for arbitrary > 0 and € > 0 we have

(o, F) < M(o, F) < y(a+e,F1)‘T:f€. ®)

Theorem E ([23]). Let A = (A;),eN, be a sequence from the class A, and F be a Dirichlet series
of the form (1). Then:

(i) F € Dy if and only if F, € Dy, where F; is the series defined by (5) and (4);

(ii) if F € Dy, then for arbitrary 0 < 0 and ¢ € (0,1) we have

]/1(50', Fz)
u(o, B) <M(o, F) < (1= 3)el-0)lTho’

©)

Theorems D and E can be used to establish necessary and sufficient conditions under
which practically all estimates for sums of Dirichlet series considered in this paper hold. Then
such conditions will be conditions on the sequence of remainders (R;),cnN, and partial sums
(Sn)nen, of the series Y ;7 |ax|, respectively, and therefore these conditions, especially in the
case of entire Dirichlet series, can be difficult to verify. In the next section, we establish more
flexible theorems that will allow us to obtain conditions under which the most general esti-
mates for sums of Dirichlet series hold in a simpler form.
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2 Main results

Let ¢ > 0 be a constant, F be an arbitrary Dirichlet series of the form (1), and let

N = min{n € Ny : a, # 0}. (10)
For each n € INy we set
by=0, if n<N; b,= Y  |a|, if n>N, (11)
A <Ap<Au+c

and consider the Dirichlet series

=Y buett. (12)
n=0

Theorem 1. Let A = (A,;),eN, be a sequence from the class A, F be an arbitrary Dirichlet series
of the form (1), c > 0, and G, be the series defined by (12), (11), and (10). Then:
(i) F € Dy ifand only if G € D% ,;

(ii) if F € D4, then for arbitrary > 0 and € > 0 we have

O’—I—E,GC)( ec¢ n 0’)

eS/\N o

u(
y(U,GC>§m(UrF)§ e — 1 e

(13)
Proof. Let F € D«. Then for the series F; defined by (3) and (2), we get 0, (F;) = 0,(F) = +o0.
Since 0, (Gc) > 0¢(F1), we have 0.(G.) = 400, and, therefore, G, € D7,

Suppose that G, € D .. By this assumption, the maximal term (o, G¢) is defined for all
c € R. Letoc > 0and ¢ > 0. We prove that then the right inequality in (13) holds (this, in
particular, will imply that F € D).

Let ! > Ay be a fixed number such that the interval [I,] 4 ¢) contains at least one term of
the sequence A. We put

r=min{k € No: Ay € [,14+¢)}, p=max{keNo: A€ [,l+¢)}, (14)
and prove the inequality
A
1 p dt
Z ’Elk‘e‘f k< y(O'—FS Gc)< e +0 / eet (15)
lS)\k<l+C

This inequality is obvious if p = r. Consider the case when p > r. In this case, for each integer
m € [r, p) we sets,; = Yo |ag|. Noting that s, < by, for all integers m € [r, p], we obtain

-1

p p
Z \ak]e‘”‘k = Z \am\e‘”‘m = Z (Sm — smH)eMW +spe‘”‘P

I<Ap<l+c m=r m=r

P P
— Srea)xr + Z sm(e‘m”’ _eo)\m,l) < brea)xr + Z bm(eaAm _eo)\m,1>

m=r+1 m= r—i—l

p Am b (c+e)As Am dt
= b + 0 ) bm/ tdt< = 4 ¢ Z be ‘”8))‘”’/ —
I A eS A eet

m=r+1 m—1 m=r+1 m—1

1 P A dt Ap dt

S]J(O’—FE,GC)(s—AV—FO’ ) / 7) u(o+e, Gc)< o T / Et

€ m=r+1 Am—1 € ¢

that is, (15) holds.



Estimates for sums of Dirichlet series 47

Let us introduce for each m € INj the notation /,, = Ay + mc. Noting that [,;, 11 = I, + c for
all m € Ny, and using (15) and (14), we obtain

M(o, F) = i Yoo laleM = i Yoo lale™™

m=0 lnlg)\k<1m+1 m=0 ln,S)\k<1m+C

00 1 lms1 gt 00 1 +oo gt
SEOV(U'—FS,GC)(E—FU/ZW E) :}/l(O'—i—S,GC)(mZ::OW_}_U/AN g)

B et o\ ulo+eGe) s e o
= P‘(‘7+€'GC)<65AN(655_1) + eeeAN) - oEAN (e“—l +E>

Since the inequality M (o, F) > p(c, G.) is obvious, the theorem is completely proved. O

Remark 1. The right inequality in (8) can be obtained from Theorem 1. In fact, since
u(o,Ge) < u(o, Fp) forany c > 0, by (13) for each fixed ¢ > 0 we have

et o
Mo, F) < plo+eF) (g +7)-

It remains to direct ¢ here to +o0.

Next, we will prove an analogue of Theorem 1 for Dirichlet series absolutely convergent in
a half-plane.

Let ¢ > 0 be a constant, F be an arbitrary Dirichlet series of the form (1), and N be the
number defined by (10). For each n € IN, we set

by=0, if n<N; b,= Y  |a|, if n>N. (16)
A= <A< Ay

Theorem 2. Let A = (A,;)neN, be a sequence from the class A, F be an arbitrary Dirichlet series
of the form (1), c > 0, and G, be the series defined by (12), (16), and (10). Then:

(i) F € Dy if and only if G, € Dy;

(ii) if F € Dy, then for arbitrary 0 < 0 and € € (0, —c) we have

ulo+¢Ge) m 1 1
H(e,Ge) < Mo, F) < B2 (T4 o =) (17)

where L = L(c) := max{n € Ng: A, < Ay +c}.

Proof. Let F € Dy, i.e. 0,(F) > 0. Then by Theorem E, for the series F, defined by (5) and (4),
we obtain 0. (F,) > 0. Since 0,(Gc) > 0.(F,), we have 0,(G.) > 0, and therefore G. € D;. Note
that the inequality o, (F,) > 0 is easy to prove directly by assuming the contrary: if o.(F,) < 0,
then the series F absolutely diverges at the point s = 0, and then, as noted above, the equality
02(F) = min{0, 0.(F,) } should hold, which is impossible.

Now suppose that G, € D% ,. By this assumption, the maximal term (o, G.) is defined
forallo < 0. Letc < 0 and € € (0, —0). We prove that then the right inequality in (17) holds
(this, in particular, implies that F € D).

We fix an arbitrary number I > Ay such that the interval [/, ] + ¢) contains at least one term
of the sequence A. Define r and p by (14) and prove the inequality

Ap dt 1
Z ‘ak‘ea)\kgy(U—FS,Gc)(‘O”/Ar E—i_(z‘g—/\r’). (18)

lS)\k<l+C
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If p = r, then this inequality is obvious. Consider the case when p > r. In this case, for
each integer m € [r, p], we set s, = }' . |ax| and note that s,; < by,. Therefore

P P
Z |ak|e‘7)"< = Z |am|e‘7’\m = s,e"M + Z (Sm — sm_l)e‘ﬁ"”
lS)\k<l+C m=r m=r+1

p—1
— Z Sm (eo')\m _ eo')‘erl) + spea/\rl S Z bm(ea/\m _ eo')‘erl) + bpeUAP
m=r m=r

p_l Am p_l m dt b e(o—Jr‘C‘)AP
_ |0_| Z bm/ +1 egtdt+bpeU)Lp < |0.| Z bme(U—i-e)/\m/ +1 at bpe™ T
A
=r

et eA
)71 m e e p

)‘+dt Ap dt 1
u(oc+e Ge) (]U\Z/ o) > :H((T—l—e,Gc)(’(T\/Ar E—i_es—%)'

that is, (18) holds.
Setting I,, = AN + mc for each m € Ny and using (18) and (14), we have

H=Y ¥ lal™= T ale Y Y lale

m=0 I, <Ap<lp11 ANSA<An+c m=11,, <A <ly+c

1 © 1 dt 1
< u(o+e, GC \cr]/ el esh) +mZ::1y(cr+e,Gc) (\cr] /lm E+e‘e—1m>

1 = 1
=u(oc+e, Gc |‘7|/ eeAL +mZ::1 W)
) o] !
— ]1(0'—'—8, GC)(gee)‘N + ESAL + egAN(eSC _ 1))/

that is, the right inequality in (17) holds. Since the left inequality in (17) is trivial, the theorem
is completely proved. O

Remark 2. Leto < 0 and ¢ € (0,1) be arbitrary numbers. Pute = (1 — §)|c|. Then the right
inequality in (17) can be rewritten as

w60, Ge) /1 1 1
Mo, F) < G (705 + 0o | =dele 1) (19)

This implies the right inequality in (9). In fact, since u(éc,G.) < u(éc,F,) for any ¢ > 0, it
suffices in (19) to first replace ji(d0, G.) with u(éc, F,), and then direct ¢ to +oo.

Remark 3. Theorems 1 and 2 can be used to estimate remainders of Dirichlet series. Esti-
mates of this kind are needed, for example, when establishing Berstein-type inequalities for
the Dirichlet series and its derivative (see [6,10-12,35,40]). In particular, if F € D4, then by
Theorem 1 for arbitrary K € INg, ¢ > 0, and € > 0 we have

ec
Z|an|ew\n§l’l(0—+€/GC>< e _{_g)

eA ec
nSK etk e 1 ¢
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3 Auxiliary results

In this section, we give some simple and well-known auxiliary statements describing prop-
erties of Young conjugate functions, as well as the growth of the logarithm of the maximal
term of a Dirichlet series in terms of such functions. Using these statements, in the following
sections we give numerous applications of Theorems 1, E and 2.

First of all, we note that if « € X, then & is a convex function, i.e. for arbitrary x1,x3,x3 € R
such that x; < xp < x3, we have

w(xp)(x3 —x1) < @(xg)(xs —x2) +a(x3)(x2 — x7).

Moreover, &(0) < a(c) for all ¢ € R (see, for example, [29]).
It is also easy to see that for arbitrary functions a,y € X such that a(c) < 7(0) for all
o € R, wehave@(x) > ¥(x) for all x € R, and therefore #(¢c) < ¥(0) forall o € R.

Lemma 1 ([27]). Let « € X be a function such that D, is an interval of the real axis and « is
convex on D,. Then®(c) = a(0) forall o € D,.

Lemma 2 ([27]). Let a,v € X be functions such that D., is an interval of the real axis,
w(o) < (o) forallo € D, and « is convex on D.,. Thena(c) < ¥(c) forallo € D,.

Since 7(0) < (o) forall o € D,, Lemma 2 defines the geometric meaning of the second
Young conjugate function: among all functions & convex on D., and such that a(c) < (o)
for all ¢ € D,, the function 7 takes on the largest possible value at each point of D.,,. Actually,
using Lemmas 1 and 2 and noting that the maximum of two convex functions on some interval
is also a convex function on this interval, it is easy to substantiate the following statement by
geometric considerations.

Lemma 3. Let A € (—o0,+00], 0 € X4, Dy = (—00,A), B € Qyu, Dg = [a, A), and the functions
a and B are convex on Dy and Dy, respectively. Suppose that y(c) = a(c) for allo < a and
v(0) = max{a(c),B(c)} forallo € [a, A). Then:

(i) ify(a) = a(a), we have 3(c) = y(0) forall ¢ < A;

(ii) if y(a) > a(a), then the function k(c) = (y(c) —a(a))/(c —a), o € (a,A), takeson a
minimum value at some point oy € (a,A), and y(c) = 7(c) for all o < A such that
o ¢ (a,00),and ¥(0) = k(op) (0 — a) + a(a) forallo € [a,0p);

(i) a(c) < ¥(0) forallo < A.

Lemma 4 ([29]). Let A € (—o00,+00], ® € Oy, and ¢(x) = max{c € D¢ : x0 — D(0) = D(x)}
for all x € R. Then:

(i) ¢ is a nondecreasing function on R;
(ii) ¢ is continuous from the right on IR;
(iii) ¢@(x) — A asx — +oo;
(iv) the right-hand derivative of ®(x) is equal to ¢(x) at each point x € R;
(v) ifxg=inf{x >0:®(p(x)) > 0}, then ®(x)/x increases to A on (xg, +0);

(vi) the function a(x) = ®(¢(x)) is nondecreasing on [0, +0).
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Lemma 5 ([27]). Let A € (—o0, +00], ¥ € Q4, ¢(x) be the right-hand derivative of ¥ (x) at each
point x € R, and T be the second Young conjugate function of ¥. Then (x) is the right-hand
derivative of T'(x), I'((x)) = ¥(¢(x)), and I"_((x)) < x <TI’ (¢(x)) at each pointx € R.

Lemma 6 ([27]). Let A € (—o0, +0c0], and functions «,y € Q4 be such that a(c) = (o) for all
o € [o0q,A) with some 01 < A. Then there exist numbers xy € R and 0» € [07, A) such that

&(x) = §(x) forallx > xg and &(c) = ¥(c) forall o € [0y, A).

Lemma 7 ([27]). Let A € (—o0,+00], v € Qy, and F € DY be a Dirichlet series of the form (1).
Then the following conditions are equivalent:

(i) there exists oy € D., such thatIn (o, F) < (o) forallo € |01, A);
(i) there exists oy € D, such thatIn (o, F) < (o) forall o € [0y, A);
(iii) there exists ny € Ny such thatIn|a,| < —%(Ay) for all integers n > ny.

Lemma 8 ([23]). Let A € (—oo, +0], v € X4, and F € D’ be a Dirichlet series of the form (1).
Then the following conditions are equivalent:

(i) Inpu(o,F) < (o) foralloc < A;
(ii) In |a,| < —%(Ay) for alln € Nj.

Lemma 9. Let A € (—o0, 40|, ® € X4, a and b be positive constants, and ¢, d, and k be real
constants. Then for the function p(c) = a®(bo + c) +do + k, o € R, we have B € X4y and

B(x) = a&)(xc;d) - C(xb_d) —k xeR

Proof. The fact that B € X 43 is obvious. Furthermore, using the notation y = bo + ¢, for all
x € R we get

B(x) = sup(xo —adP(bo +c) —do — k) = sup (%(y —c) —ad(y) — g(y —c)— k)

ceR yER
B x—d c(x—d) = rx—d c(x—d)
—“;‘;g( 5 Vo) k= (55 .
and therefore, the lemma is proved. O

4 Asymptotic estimates for the sums of Dirichlet series

Let F € Dy4. In this section, we establish asymptotic estimations from above for In (o, F),
provided that an asymptotic estimation from above for the logarithm of the maximal term of
an associated series is known. In quite general situations, the form of an asymptotic estimation
for InM(c, F) will be the same as the form of an asymptotic estimation for the logarithm of the
maximal term of the associated series. In some of these situations, applying Lemma 7 to the
associated series, we establish conditions on its coefficients that are necessary and sufficient to
satisfy the corresponding asymptotic estimation. First, we consider the case of entire Dirichlet
series.
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Theorem 3. Let ¥ € (), F € Do be a Dirichlet series of the form (1), ¢ > 0, and G, be the
series defined by (12), (11), and (10). If

dope Dy Vo >op: Inu(o,G.) <Y¥(0), (20)
then for every ¢ > 0 we have
InM(o,F) —¥(c+¢) —Inoc — —oo, 0 — +oo. (21)

Proof. Let T be the second Young conjugate function of ¥. ThenI'(¢) < ¥(0) forall o € R.
Since I' € Q4 and T is convex on Dy, we obtain I, (¢) * +o0 as ¢ 1T +oo, and for all
01,02 € Dy wehave I'(07) — I'(02) > (01 — 02)I”,_(02). In addition, by Lemma 7, the condition
(20) is equivalent to the condition

Jdoy € Dy Vo >o0p: Inu(o,G.) <T(0). (22)
Let e > 0. Fixing some ¢ € (0, ¢), we obtain
T(c+e)—T(c+d) > (e—6)I (c+d), o€ Dy. (23)
Using Theorem 1 and (22), we have
InM(o,F) <Inp(c+6,G;) +Inc+0(1) <T(c+6)+Inc+0O(1), o— +oo.
This and (23) imply (21). O

Theorem 4. Let ¥ € (), F € Do be a Dirichlet series of the form (1), ¢ > 0, and G, be the
series defined by (12), (11), and (10). Then the following conditions are equivalent:

(i) 3e>03d0q e RVo > o1:InM(0, F) < Y¥(0 +¢)+eo;
(i) 36 >03m e RVo > op: Inp(o,G.) < ¥(o +9) + do;
(iii) 36 > 03ng € NgVn > ng: In|by| < —F (A, — ) +6(A, — 6).

Proof. The equivalence of conditions (i) and (ii) follows from Theorem 3. Furthermore, if § € IR
and B(0) = ¥Y(oc + ) + do forall o € R, then by Lemma 9 we have f(x) = ¥(x — ) — 5(x — )
for all € R, and therefore the equivalence of conditions (ii) and (iii) follows from Lemma 7. [

The following theorem can be proved analogously to Theorem 4.

Theorem 5. Let ¥ € (), F € Do be a Dirichlet series of the form (1), ¢ > 0, and G, be the
series defined by (12), (11), and (10). Then the following conditions are equivalent:

(i) Ve>0doqa e RVo > o1:InM(0, F) <Y¥(0+¢)+eo;
(i) V6 >03m e RVo > op: Inp(o,G.) <¥(o+9) + do;
(iii) V6 > 03ng € NoVn > ng: In|by| < =¥ (A, — ) + 5(A, — 6).

Theorem 6. Let ¥ € (), I' be the second Young conjugate function of ¥, F € D, be a
Dirichlet series of the form (1), c > 0, and G, be the series defined by (12), (11), and (10).
If (20) holds, then for each ¢ > 0 we have

Ino ) — —00, O — o0, (24)

lnim((r,F) —F<0'+€+ m
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Proof. For some 0 € Dy we have

Ino

(o+e+ 7Ty
M A

) —T(c+¢) >Ino, o> o0 (25)

In addition, by Lemma 7 condition (20) is equivalent to condition (22), and therefore by Theo-

rem 3 we have InO(c, F) —T'(0 +¢) —Ino — —o0 as ¢ — +o0. This and (25) imply (24). O
The following theorem is a direct consequence of Theorem 6.

Theorem 7. Let ¥ € O i«, F € D1« be a Dirichlet series of the form (1), c > 0, and G,
be the series defined by (12), (11), and (10). If (20) holds, then for each 6 > 0 we have
InM(o,F) —¥(c+dInc) - —o0 as o — +oo.

Let¥ € X, p > 0,and B(0) = ¥(po) forall o € R. Then B(x) = ¥(x/p) for all x € R by
Lemma 9. Taking this into account, and also using Theorem 7 and Lemma 7, it is easy to prove
the following two theorems (they can also be derived from Theorem 4).

Theorem 8. Let ¥ € (), F € D« be a Dirichlet series of the form (1), ¢ > 0, and G, be the
series defined by (12), (11), and (10). Then the following conditions are equivalent:

(i) 3g>13d0p e RVo > o1: InM(0, F) < ¥(q0);
(i) 3p > 13 € RVo > op: Inu(o,G.) < ¥(po);
(i) Ip >13Ing € NgVn > ng: In|by| < —F(Au/p).

Theorem 9. Let ¥ € (), F € Do be a Dirichlet series of the form (1), ¢ > 0, and G, be the
series defined by (12), (11), and (10). Then the following conditions are equivalent:

(i) Vg>130 € RVo > o1: In9M(0, F) <¥(q0);
(i) Vp>13op € RVo > op:Inp(o,G.) <¥(po);
(iii) Vp >13ng € NoVn > ng: In|b,| < —F(A,/p).
Theorem 10. Let ¥ € O, F € D1« be a Dirichlet series of the form (1), ¢ > 0, G, be the
series defined by (12), (11), and (10), and let
So= lim clno/¥ (o). (26)

o—+00

If 5o < +o0 and (20) holds, then for every 6 > 0 we have
InM(c,F) —¥(c+dp+0) = —o0, 0 — +00.

Proof. Let 6 > 0 be a fixed number, and I be the second Young conjugate function of ¥. Using
Lemma 2, we see that in (26) we can replace ¥ with I'. Then, using the convexity of the function
T on R, it is easy to prove that dy = limy_, o Ino /T, (¢). It remains to apply Theorem 6 with
some fixed ¢ € (0,9). O

If¥ € X,6 € R,and B(0) = ¥(c 4 6) for all ¢ € R, then B(x) = ¥(x) — dx forall x € R
by Lemma 9. Taking this into account, as well as Theorem 10 and Lemma 7, we obtain the
following two theorems.
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Theorem 11. Let ¥ € )4, dp be the quantity defined by (26), F € D be a Dirichlet series
of the form (1), c > 0, and G, be the series defined by (12), (11), and (10). If 6y < oo, then the
following conditions are equivalent:

(i) de>030q e RVo > o01:InM(0, F) <Y¥(o+e),;
(i) 36 >03m e RVo > op: Inp(o,Ge) < Y¥(o+9);
(iii) 36 > 03ng € N Vn > ng: In |by| < —F(A,) + A,

Theorem 12. Let ¥ € ()., dy be the quantity defined by (26), F € D be a Dirichlet series
of the form (1), ¢ > 0, and G, be the series defined by (12), (11), and (10). If 5o = 0, then the
following conditions are equivalent:

(i) Ve>03dog e RVo >o1:InM(0, F) <Y¥(o+e),;
(i) V6 >03dm e RVo > op:Inpu(o,Ge) < Y¥(o+9);
(iii) V6 > 03ng € Ng Vn > ng: In |by| < —=F(A,) + oA,

Theorem 13. Let ¥ € O, «, §(x) be the right-hand derivative of ¥(x) at each point x € R,
h be a nondecreasing, continuous, unbounded from above function in some neighborhood of
the point oo, F € D be a Dirichlet series of the form (1), c > 0, and G, be the series defined
by (12), (11), and (10). If

dxp € R;Vx>xp: Inx < h(¥(y(x))) (27)
and (20) holds, then for every 6 > 0 we have
InM(o,F) <Y¥(o)+h(¥(c) +6)+Inc+6—1Ind+0(1), o — +oo. (28)

Proof. Let I' be the second Young conjugate function of ¥. By Lemma 7, condition (20) is
equivalent to condition (22). Using Lemma 5, it is easy to prove that condition (27) is equivalent
to the condition

Joy € Dy Vo >0y : Inl’, (o) < h(T(0)). (29)

Let & > 0 be a fixed number. We also fix 03 € Dy such that I, (¢3) > 0 and for each ¢ > 03
we denote by ¢(0) that positive value of ¢ for which eI’ (0 +¢) < ¢ < eI’ (0 + ¢). Note that

T(oc+e(o))—T(0) <e()(c+e(0)) <6, o> o0s. (30)
Using Theorem 1 with € = ¢(0) and taking into account (22), (30), and (29), we have

1+e(o)c+oc

InM(c,F) <T(c+¢e(0)) +1In e(@)c

T(o+e(0)) + lne%) +o(1)
[(c+¢(0)) +Ino+InT (0c+¢(0)) —Ind+o(1)
<TI(o)+dé+Inc+h(I'(c)+0J)—Ind+o(1)

as 0 — +oo. This implies (28). O
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The following theorem is a direct consequence of Theorem 13.

Theorem 14. Let ¥ € O, ¥(x) be the right-hand derivative of ¥ (x) at each point x € R,
F € D, be the Dirichlet series of the form (1), c > 0, G be the series defined by (12), (11),
and (10), and

A= lim Inx/¥(y(x)). (31)

X——+00

If A < +o0 and (20) holds, thenInM(c,F) < (14+A+0(1))¥(c) aso — +oo.

IfY € X, p >0, and (o) = p¥(0) forall o € R, then B(x) = p¥(x/p) for all x € R by
Lemma 9. Therefore, from Theorem 14 and Lemma 7 we obtain the following two theorems.

Theorem 15. Let ¥ € ()1, A be the quantity defined by (31), F € D, be a Dirichlet series
of the form (1), ¢ > 0, and G, be the series defined by (12), (11), and (10). If A < +oo, then the
following conditions are equivalent:

(i) 3g>030q3 € RV > oy1: In9M(0, F) < q¥(0);
(i) 3p >030p € RVo > op: Inp(o,G.) < p¥(0);
(iii) Ip > 03ng € NgVn > ng: In|by| < —p¥(Au/p).

Theorem 16. Let ¥ € (), A be the quantity defined by (31), F € D, be a Dirichlet series
of the form (1), c > 0, and G, be the series defined by (12), (11), and (10). If A = 0O, then the
following conditions are equivalent:

(i) Vg>130q € RVo > o1: InM(0, F) < q¥(0);
(i) Vp>13oy € RVo > op:Inp(o,G.) < p¥(0);
(iii) Vp >13ng € NgVn > ng: In|by| < —p¥(Au/p).

Let us now turn to the case of Dirichlet series absolutely converging in a half-plane.
Consider the function y : [0, +00] — [0, 1], defined as follows:

Vvg+1-1

y(q) = q € [0, +o0]; (32)

= Vit

here, of course, y(+00) = 1. Note that this function is continuous, increasing on [0, +o0], and
the interval [0, 1] is its range.

Theorem 17. Let ¥ € Qq, (x) be the right-hand derivative of ¥ (x) at each point x € R,
F € Dy be a Dirichlet series of the form (1), F, be the series defined by (5) and (4), and
q=1im, ., o[¢(x)|x. Ifqg>0and

Jdoy € Dy Vo€ [07,0): Inu(o, F) < ¥(0), (33)
then for every n € (0,y(q)), where y(q) is defined by (32), there exists oo € Dy such that

InM(c,F) <¥(yo), o€ [0m,0). (34)
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Proof. Let I be the second Young conjugate function of ¥. Using Lemma 5, it is easy to prove
that g = lim ,4( |o|T"; (o). From properties of the function y it follows that there exists a unique
number p < g for which # = y(p). Then there exists 03 € Dy such that |o|I”_(¢) > p for all

o € [03,0). Setting 6 = (\/p+1—1)//p+1, we get

b—n 0
P=1"y

C(0) — T(60) > (6 — )lo|T, (60) > 7 € [03,0). (35)

Next, we note that condition (33), according to Lemma 7, is equivalent to the condition
doy € Dy Vo € [04,0): Inu(o, F) <T(0). (36)

Setting 0, = max{o3, 04} and using Theorem E, (36), and (35), for all o € [03,0) we have

InM(e, F) < In (0, By) +ln% < T(60) + % < T(yo) < ¥(y0),

and therefore, the theorem is proved. O

Using Theorem 17 and Lemmas 9 and 7, we obtain the following two results.

Theorem 18. Let ¥ € Q, (x) be the right-hand derivative of ¥(x) at each point x € R,
F € Dy be a Dirichlet series of the form (1), and F, be the series defined by (5) and (4).
Iflim,_, . |$(x)|x > 0, then the following conditions are equivalent:

(i) 36 € (0,1) Joy <0V € [09,0): InM(0, F) < ¥(d0);
(i) 37 € (0,1) 3o <0V € [02,0): Inpu(o, Fr) < ¥(yo);
(iii) 37 € (0,1) Ing € Ng V1 > np: In|S,| < —=F (A /7).

Theorem 19. Let ¥ € Qq, (x) be the right-hand derivative of ¥(x) at each point x € R,
F € Dy be a Dirichlet series of the form (1), and F, be the series defined by (5) and (4).
If |(x)|x — 400 as x — oo, then the following conditions are equivalent:

(i) Vo€ (0,1) Ioy < 0¥ € [07,0): InM(c, F) < ¥(60);
(i) Vi € (0,1) op <0V 0 € [02,0): Inu(o, F) < ¥(yo);
(iii) Vi € (0,1) Ing € NoVn > ny: In|S,| < —F (A, /7).

Theorem 20. Let ¥ € Q, (x) be the right-hand derivative of ¥(x) at each point x € R,
F € Dy be a Dirichlet series of the form (1), c > 0, G, be the series defined by (12), (16), and
(10), and g = lim ,_, ., [(x)|x/In(1/|¢p(x)|). If g > 1 and the condition

dop € Dy Vo € [07,0) : Inu(o,G.) < ¥(0) (37)
holds, then for every positivej < (q — 1)/q there exists 0> € Dy such that we have (34).

Proof. Let I' be the second Young conjugate function of ¥. Using Lemma 5, it is easy to
prove that ¢ = lim .o |o|T”, (¢)/In(1/]c|). From the condition ¢ > 1 and the inequality
n < (g —1)/q it follows that there exist numbers § € (y,1) and p € (1,9) such that
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n/6 < (p—1)/p. Letus fix some r € (p,q). Then there exists 03 € Dy such that o3 > —1 and
lo]T’, (0) > rIn(1/|c|) for all o € [03,0). Therefore,
1

o—1 1 r
— > — / > _ > - — .
1—'(170—) ]‘—‘(50—) = (5 17)’0—‘1—‘4-(50—) = (5 rln5|0_| - p ln |0_|r S [0—310) (38)

Furthermore, we note that by Lemma 7, condition (37) is equivalent to the condition
doy € Dy Vo € [04,0) : Inu(o,G;) <T(0). (39)

Using Theorem 2 (see Remark 2), condition (39), the inequality r/p > 1, and (38), we obtain

InM(o, F) < In (60, Ge) + In % +0(1) < T(60) + %m %

as o 10, that is, (34) holds for some > € Dy. The theorem is proved. O

<T(no) <¥(y0)

Using Theorem 20 and Lemmas 9 and 7, we obtain the following two theorems.

Theorem 21. Let ¥ € Q, (x) be the right-hand derivative of ¥(x) at each point x € R,
F € Dy be a Dirichlet series of the form (1), c > 0, and G, be the series defined by (12), (16),
and (10). If lim ., |¢(x)|x/In(1/]¢(x)|) > 1, then the following conditions are equivalent:

(i) 36 € (0,1) Joy <0V € [09,0): InM(0, F) < ¥(do);
(ii) 3 € (0,1) 3o, <0V € [07,0): Inu(c, G.) < ¥(yo);
@iii) Iy € (0,1) Ing € NoVn > ny: In|b,| < —F (A, /7).

Theorem 22. Let ¥ € Q, (x) be the right-hand derivative of ¥(x) at each point x € R,
F € Dy be a Dirichlet series of the form (1), ¢ > 0, and G, be the series defined by (12),
(16), and (10). If |¢(x)|x/In(1/|p(x)| — 400 as x — oo, then the following conditions are
equivalent:

(i) V6 € (0,1) Joy <0V € [01,0): InM(c, F) < ¥(60);
(i) Y € (0,1) Jon <0V 0 € [02,0): Inu(o, G:) < ¥(yo),;
(iii) ¥V € (0,1) Ing € Ng V1 > ng: In|b,| < —=F(An /7).

Theorem 23. Let ¥ € O, §(x) be the right-hand derivative of ¥ (x) at each point x € R, h be
a nondecreasing, continuous, unbounded from above function in some neighborhood of the
point +co, F € Dy be a Dirichlet series of the form (1), and F, be the series defined by (5) and
(4). If conditions (27) and (33) hold, then there exists 0; € Dy such that for each > 0 and all
o € [0r,0) we have

InM(o, F) <Y¥(o) +n|o| +h(¥(oc+ylo]) —Iny. (40)

Proof. Let I' be the second Young conjugate function of ¥. By Lemma 7, condition (33) is
equivalent to condition (36). Using Lemma 5, it is easy to prove that condition (27) is equivalent

to the condition
Jo3 € Dy Vo € [03,0) : InT", (0) < h(T(0)). (41)
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Since I' € )y and T are convex on Dy, then I ()  +oo as ¢ 1 0. We choose 0, < 0
such that the inequalities I'”_(0») > 0, 0» > 03, and 02 > 04 hold, where 0y is the number from
condition (36). We fix arbitrary 7 > 0 and ¢ € [03,0). Consider the functions y; = 1 — J and
y2 = 11/T"_(60) of the variable J, defined on the interval (0, 1]. On this interval the function y;
is continuous, decreasing, and takes all values from [0, 1), and the function y; is nondecreasing
with (0 +0) = 0and y2(1) = /T’ () > 0. So, as is easy to see, on the interval (0,1) there
exists a unique number § = §(c) such that #/I"_(d0) <1— 5 <5 /I"_(é0). Note that

[(60) —T(0) < (1-8)|o|r"_(50) < ylo]. @2)

Using Theorem E and taking into account (36), (42) and (41), we have

InM(o, F) <T(é0) —In(1 —9)
<TI(0)+nlo] —Iny + InT’ (60)
<T(0)+nlo] —Iny +h(T(c +7|o|).
This implies (40). O

Theorem 24. Let ¥ € O, ¢(x) be the right-hand derivative of ¥ (x) at each point x € R, h be
a nondecreasing, continuous, unbounded from above function in some neighborhood of the
point +co, F € Dy be a Dirichlet series of the form (1), c > 0, and G, be the series defined by
(12), (16), and (10). If conditions (27) and (37) hold, then for each ¢ > 0 we have

InM(o,F) <Y¥(o)+h(¥(c)+¢)+e—Ine—Inc+o0(1), o10. (43)

Proof. Let I' be the second Young conjugate function of ¥. By Lemma 7, condition (37) is
equivalent to condition (39), and by Lemma 5, condition (27) is equivalent to condition (41).
Let also 03 and o4 be the numbers from conditions (41) and (39), respectively, and € > 0 be a
fixed number.

We choose 0, < 0 such that the inequalities I (02) > 0, 0o > 03, and 0» > 04 hold. Let
o € [02,0). Asis easy to see, on the interval (0, 1) there exists a unique number § = §(c) such
that (1 —6)|o|I"_(60) < e < (1—6)|o|I’ (é0). Note that

I'(60) —T(0) < (1-08)|o|T"_(60) < e. (44)

Using Theorem 2 (see Remark 2) and taking into account (39), (44), and (41), we have

1 1
In9(c, F) < T(é0) +1n<1 —5 1t (1 _5)ya\c>

I'(6c) +1In . +o(1)

1
(1-9)|e]
(60) + InT’ (60) —Ine —Inc +0(1)
(0)+e+h(T(c)+¢e) —Ine—Inc+o0(1)

= =

<
as o 1 0. This implies (43). O

The following theorem is a direct consequence of Theorem 24.
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Theorem 25. Let ¥ € Q, (x) be the right-hand derivative of ¥(x) at each point x € R,
A be the quantity defined by (31), F € Dy be a Dirichlet series of the form (1), ¢ > 0, and
G be the series defined by (12), (16), and (10). If A < 400 and condition (20) holds, then we
havelnM(o,F) < (14+A+0(1))¥(c) aso 1 0.

Using Theorem 25 and Lemmas 9 and 7, we obtain the following two statements.

Theorem 26. Let ¥ € Q, ¢(x) be the right-hand derivative of ¥ (x) at each point x € R, A be
the quantity defined by (31), F € Dy be a Dirichlet series of the form (1), c > 0, and G, be the
series defined by (12), (16), and (10). If A < +oo, then the following conditions are equivalent:

(i) 3g>0303 <0Vo € [07,0): InM(0, F) < g¥(0);
(i) 3p>030p <0V € [0,0): Inpu(c,G.) < p¥(0);
@iii) Ip > 03ng € NgVn > ng: In|by| < —p¥(Au/p).

Theorem 27. Let ¥ € O, ¥(x) be the right-hand derivative of ¥ (x) at each point x € R, A be
the quantity defined by (31), F € Dy be a Dirichlet series of the form (1), c > 0, and G, be the
series defined by (12), (16), and (10). If A = 0, then the following conditions are equivalent:

(i) Vg>130 <0Vo € [oq,0): InM(0, F) < q¥(0);
(i) Vp>130p, <0V € [0,0): Inpu(c,G.) < p¥(0);
(iii) Vp >13ng € NgVn > ng: In|by| < —p¥(Au/p).

Note that estimates of the type obtained above are often used to study the growth of ana-
lytic functions (see, for example, [5,8,9,21,24,25]). In particular, such estimates are necessary
to describe the minimal growth of analytic functions with given zeros (see [14,7,20,39]).

5 Global estimates for sums of Dirichlet series

Conditions, under which some global estimates for the sum of a series F € D4 hold, are
found in the works [23,38]. Here we supplement the results from [23,38], and also investigate
other global estimates.

By ()’ we denote the class of all continuously differentiable, positive on R functions ® such
that @’ is an increasing, positive on R function. Let () be the class of all continuous, positive,
increasing on R functions @ such that ®(¢) /o — +o0as ¢ — +oo. Itisclear that ) C O C X.

Let F € D« be a Dirichlet series of the form (1). M.M. Sheremeta [38], in the case when
¥ € (Y, indicated a condition on the sequence (|ax|)sen, (in terms of the sequence (R,)nen,
defined by (2)), which is necessary and sufficient in order that for every g > 1 there exists a
constant B € IR such that

InM(o, F) <¥(q0)+B, ceR (45)

In [23], this result is extended to the case when ® € (). In the general case, that is, for an
arbitrary function ® € X, we have the following theorem.
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Theorem 28. Let ¥ € X, qo > 0, F € D« be a Dirichlet series of the form (1), c > 0, and
(bn)nen, be the sequence defined by (11) and (10). Then for every q > qq there exists a constant
B € R such that (45) holds if and only if for every p > qo there exists a constant C € R such
that

Inb, < -¥(A\,/p) +C, n € Ny. (46)

Proof. Let N be the number defined by (10), and G, be the series defined by (12). Note that
the functions (o, F) and u(c, G¢) are continuous and positive on R, and for all ¢ from some
neighborhood of the point —co we have (o, F) = |an|e"N and u(c, G;) = bye”N. It is also
clear that (v, F) ~ |an|e”*N as ¢ — —oo. Let us fix some number oy > 0. From what has
been said it immediately follows that there exist constants ¢c; € (0,1) and ¢; > 1 such that
c1p(o, Ge) <M(o, F) < cpu(o, Ge) for all o < oy.

Sufficiency. Suppose that for every p > g there exists a real constant C = C(p) such that
(46) holds, and let ¢ > g be a fixed number. We put p; = g and fix some py € (go,q). If
j € {1,2}, then Inb, < —‘T’(An/pj) + C; for all n € No, where C; = C(p;), and therefore by
Lemmas 8 and 9 we have

Inu(o,G) <¥(pjo)+Cj, ceR (47)
Since M(c, F) < cop(o, G.) for all o < 0y, then, using (47) with j = 1, we obtain
InM(o,F) <Y¥(go) +C1 +1Incy, o < op. (48)

Next, for each o > 0p we set e(0) = (g9 — p2)o/p2 and let eg = €(0p). Then by Theorem 1 for all
o > 0y we have

eSoC o qo— eSoC pz
< = — = .

Mo, F) < plo+ 8(0)’Gc)<e806 -1 N 8(0)> C3V<P2'GC>' €7 e —1 * q— P2

So, using (47) with j = 2, we get
InM(o, F) <Y¥(go) + Cr+1Incs, o > op. (49)
Taking B = max{C;j +Incp, C; + Inc3}, from (48) and (49) we see that (45) holds.

Necessity. Suppose that for every q > gp there exists a real constant B = B(g) such
that (45) holds. Let p > go be a fixed number and B; = B(p), i.e. for all ¢ € R we have
InM(o, F) < ¥(po) + By. Let also ¢q be the constant defined above. By the definition of the
constant ¢ and by Theorem 1 for all ¢ € R we have c1p(0, G.) < (0, F), and therefore

Inu(o, Ge) <InM(o, F) —Inc; < ¥(po) + By —Inc;, o €R.

Then, taking C = By — Incy, by Lemmas 8 and 9 we obtain (46). O

Let ¥ € O, and F € D, be a Dirichlet series of the form (1). M.M. Sheremeta [38] also
considered the following problem posed by B.V. Vynnyts'kyi: find a condition on the sequence
(|an|)nen, that is necessary and sufficient in order that there exist positive constants g and B
such that

InM(o,F) <q¥(c+B), ceR. (50)

The result in [38], which gave such a condition (in terms of the sequence (R;),cn, defined by
(2)), contained a minor inaccuracy, which was corrected in [23]. In addition, in [23], a solution
to the formulated problem was obtained for the case when ¥ € (). In the general case, that is,
in the case of arbitrary ¥ € X, this problem is open. However, we succeeded in proving the
following theorem.
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Theorem 29. Let ¥ € X, g0 > 0, F € D, be a Dirichlet series of the form (1), N be the
number defined by (10), 0 < ¢ < An41 — An, and (by),en, be the sequence defined by (11).
If Ay > 0, then for every q > qo there exists a constant B € R such that (50) holds if and only
if for every p > qo there exists a constant C € R such that

Inb, < —p‘?’(An/p) + CA,, n € Np. (51)

Proof. Let G, be the series defined by (12). Since 0 < ¢ < Any1 — Ay, then by = |ay|, and
therefore there exists 01 < 0 such that u(c, G.) = u(c, F) = |ay|e”N < M(o, F) forall o < o7.
Furthermore, since Ay > 0 and M (0, F) ~ |an|e”V as ¢ — —oo, there exists 05 < 0 such that
M(c, F) < |ay|el W < (o +1,G.) forall o < oo.

Sufficiency. Suppose that for every p > g there exists a real constant C = C(p) such that
(51) holds, and let g > g¢ be a fixed number. We put p; = g and fix some py € (qo,4q). If
j € {1,2}, thenInb, < —pj‘?(An/pj) + CjAy for all n € INp, where C; = C(p;), and therefore
by Lemmas 8 and 9 we have

Inu(o,Ge) <pj¥(c+Cj), ceR (52)

Using Theorem 1, we obtain In9(c, F) < Inu(c + 1, G.) + 21Ino for all sufficiently large
o > 0. Since Inu(o,G;) > In|ay| + oAy for all o € R, there exists a number 03 > 0 such that
InM(o, F) <gqlnp(c+1,G.)/py forall o > o3. Then for all o € [03, 03] we have

InM(c, F) < InM(o3, F) < pilny(ag +1,G,) < pilny((r—l— 03— 03 +1,G).
2 2
Put B = max{1+ Cy,03 —» + 1+ C3}. If ¢ < 09, then using the monotonicity of the
function p(o, G.), the inequality 1 < B — Cy, and (52) with j = 1, we obtain
InM(o,F) <Inu(c+1,G;) <Inu(c+ B—Cy,G.) <q¥(c+ B).

Similarly, using the inequalities 1 < 03 —0» +1 < B — C and (52) with j = 2, for all o > 0, we
have

InM(o, F) < piln]/l(U’—i-O'g —n+1,G) < —Inp(c+B—Cy,G.) < q¥(c+ B).
2

4
p2
Therefore, (50) holds.

Necessity. Suppose that for every q > gp there exists a real constant B = B(g) such
that (50) holds. Let p > go be a fixed number and B; = B(p), i.e. for all ¢ € R we have
InM(o,F) < p¥(c + By). Let C = —0q + By, where 07 < 0 is the number defined above.
Using the definition of the number ¢7 and Theorem 1, as well as the inequality 0 < C — B; and
the monotonicity of the function M(c, F), for all o ¢ [0y, 0] we have

Inu(o, Ge) <In9M(o, F) <InM(c +C— By, F) < p¥(c+C).
Similarly, for all o € [07, 0] we obtain

In (o, Ge) < Inu(0,Ge) < In(0, F)
<InM(c -0y, F) =InM(c+C— By, F) < p¥(oc+C).

Therefore, In yu (o, Gc) < p¥(c + C) for all ¢ € R. Hence, by Lemmas 8 and 9, (51) holds. O
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Remark 4. A detailed analysis of the proof of the following theorem shows that in Theorem 29
the condition c < Any1 — AN can be omitted, but then (51) must be replaced by

Inb, < —p¥(A,/p) +In(lay|/bn) + CAy, 1 € N.

Theorem 30. Let ¥ € X, Jy be the quantity defined by (26), F € D, be a Dirichlet series of
the form (1), N be the number defined by (10), ¢ > 0, and (b,)ncN, be the sequence defined
by (11). If Ay > 0 and dp < +oo, then there exists a constant ¢ € R such that

InM(o,F) <Y¥(c+e), ceR, (53)
if and only if there exists a constant § € R such that
Inb, < —¥(A,) +In(lan|/by) + 6A,, 1 € No. (54)

Proof. Let G, be the series defined by (12).

Necessity. Suppose that for some constant ¢ € R we have (53). Reasoning as in the proof of

Theorem 28, for some 07 < 0 and all ¢ < 07 we have the inequality |Z_IAV]|V(‘T' G:) <M(o, F). By

Theorem 1 this inequality also holds for all ¢ > 0. Therefore, for each ¢ € R we have
Inu(o,Ge) <InM(c — oy, F) —In(lany|/bn) < Y¥(o — 01 +¢€) — In(|an]|/bn)-

Taking 6 = —07 + ¢, by Lemmas 8 and 9 we obtain (54).
Sufficiency. Suppose that there exists a constant 6 € IR such that (54) holds. Then by Lem-
mas 8 and 9 we obtain

Inu(o,Ge) <¥(0c+96) —In(lan|/bn), o €R. (55)

Reasoning as in the proof of Theorem 29, for some ¢» < 0 and all ¢ < 0, we have
M(o,F) < |Z—IAV" #(oc +1,G.). Furthermore, according to the condition dy < +oo, there exist
constants 03 > 0 and # > 0 such that for all ¢ > 03 we have ¥(¢) > nolno.

Without loss of generality, we can assume that ¥ is nondecreasing, convex, and takes fi-
nite values on R (otherwise we set y(0) = Inu(c —6,G.) + In(lay|/by) for all ¢ < o3,
v(0) = max{Inpu(c — 6, G.) + In(lan|/bn), noInc} for all ¢ > 03, and, using Lemma 3, every-
where below instead of ¥ we consider the function ':y/).

Using the convexity of the function ¥, it is easy to prove the existence of a number 03 > 03
such that ¥, () > 1no for all ¢ > 0y. Let us fix a number { such that ({ —1 — d)n > 2. Then
we obtain

Y(o+0)—Y(+146)>(-1-6)Y, (c+1+46) >2Ino, o> 05, (56)

with some 05 > 04 — 1 — 6. Therefore using Theorem 1 and relations (55) and (56) for some
positive g > 05 and all ¢ > 0 we have

InM(o, F) <Inu(c+1,G;) +In(jay|/bn) +2Inc < ¥(o + ).
If o < 0y, then using (55) we get
InM(o, F) < In(lan|/bn) +Inp(c +1,G.) <¥(o+1+9).
If o € [0, 09], then using the monotonicity of the function ¥ we have
InM(o, F) < InM(os, F) <¥(o6+ ) <Y¥(c+06—02+0).

As a result, we see that (53) holds with ¢ = 04 — 02 + {, and Theorem 30 is proved. O
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The following three theorems can be proved by similar considerations.

Theorem 31. Let ¥ € X, &y be the quantity defined by (26), F € D, be a Dirichlet series of
the form (1), ¢ > 0, and (b,),eN, be the sequence defined by (11) and (10). If 5y < +oo, then
there exist real constants ¢ and B such that

InM(o,F) <¥(c+e)+B, oceR, (57)
if and only if there exist real constants 6 and C such that
Inb, < —¥(Ay)+6A, +C, neNy. (58)

Theorem 32. Let ¥ € X, dy be the quantity defined by (26), F € D« be a Dirichlet series
of the form (1), ¢ > 0, and (bu)nenN, be the sequence defined by (11) and (10). If 6y < +oo,
then for every B > 0 there exists a constant ¢ € R such that (57) holds if and only if for every
C > In(lan|/bn) there exists a constant § € R such that (58) holds.

Theorem 33. Let ¥ € X, dy be the quantity defined by (26), F € D, be a Dirichlet series of
the form (1), ¢ > 0, and (by),eN, be the sequence defined by (11) and (10). If &y = 0, then for
every ¢ > 0 there exists a constant B € R such that (57) holds if and only if for every § > 0
there exists a constant C € R such that (58) holds.

Let F € Diw be a Dirichlet series of the form (1). If a, > 0 for any n € Ny, then
M(o,F) = 9M(o,F) for all ¢ € R, and therefore in the estimates from Theorems 28-33
we can replace M(c, F) with M(c, F). In the general situation, for all ¢ € R we have
M(o,F) < 9M(c,F), and therefore the mentioned theorems give only sufficient conditions
for the corresponding estimates to hold for M(c, F). The question regarding the necessity of
these conditions remains open and does not seem simple, since M (o, F) can grow relative to
M(o,F) as ¢ — +oo arbitrarily fast (see, for example, [17, 19]). However, under additional
conditions on the sequence of exponents A = (An)ne]NO of the series F, it is already possible to
establish necessary and sufficient conditions, under which some general estimates from above
for M(c, F) hold. In fact, let N be the number defined by (10) and t(A) = lim oo In1/ Ay,
If T(A) < +oo, then for each ¢ > T(A) we have B(e) := Y5y e~ < +00, and therefore

(e 9]

u(o,F) < M(0,F) <M(0,F) = Y |agle"tme 2 < Be)u(o +¢,F), c€R.  (59)
n=N

Using (59) and Lemmas 8 and 9, it is easy to prove, for example, the following two theorems.

Theorem 34. Let ¥ € X, A = (Ay)nenN, be a sequence from the class A such that T(A) < +co,
and F € D, « be a Dirichlet series of the form (1). Then there exist real constants € and B such
that

InM(c,F) <¥(c+¢)+B, c€R, (60)

if and only if there exist real constants 6 and C such that
In|a,| < —¥(Ay) +6A, +C, n € Np. (61)

Theorem 35. Let ¥ € X, A = (Ay)neN, be a sequence from the class A such that T(A) = 0, and
F € D« be a Dirichlet series of the form (1). Then for every ¢ > 0 there exists a real constant
B such that (60) holds if and only if for every § > 0 there exists a real constant C such that (61)
holds.
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Now we turn to Dirichlet series absolutely convergent in a half-plane. Let ¥ € X, F € Dy
be a Dirichlet series of the form (1), and (S,),cnN, be the sequence defined by (4). In [23], it is
proved that for every g € (0, 1) there exists a constant B € R such that

InM(o,F) <Y¥(gqo)+B, o¢<0, (62)
if and only if for every p € (0,1) there exists a constant C € R such that
InS, < -¥(A,/p) +C, neNy, (63)

and also it is proved that there exist constants g € (0,1) and B € R such that (62) holds if and
only if there exist constants p € (0,1) and C € R such that (63) holds. Here we supplement
these results with the following theorem.

Theorem 36. Let ¥ € Xy, F € Dy be a Dirichlet series of the form (1), and (S;)nenN, be the
sequence defined by (4). Then for every B > 0 there exists a constant q € (0,1) such that (62)
holds if and only if for every C > 0 there exists a constant p € (0,1) such that (63) holds.

Proof. Let F, be the series defined by (5).

Necessity. Suppose that for every B > 0 there exists a constant g = g(B) € (0,1) such
that (62) holds, and let C > 0. Put p = g(B). Using Theorem E, for all ¢ < 0 we have
Inu(o, F) <InM(o, F) < ¥(po) + C. Then by Lemmas 8 and 9 we obtain (63).

Sufficiency. Suppose that for every C > 0 there exists a constant p = p(C) € (0,1) such
that (63) holds, and let B > 0. We fix some Cy < B and set pg = p(Cp). Then we have
InS, < —‘T’(An /po) + Cop for each n € Ny, and therefore by Lemmas 8 and 9 for all ¢ < 0
we obtain In (o, F,) < ¥(poo) + Cp. Put 6 = 1 — e“~B. Noting that § € (0,1), and using
Theorem E, for all ¢ < 0 we get

InM(o, F) <Inu(éo, F) + lnllTé < Y¥(podo) + Co + lnﬁ = Y(podo) + B,
i.e. (62) holds with p = pgd. O

By additional assumptions regarding the growth of the function ¥ € X, the condition on
(Sn)nen, in Theorem 36 can be replaced by a simpler one.

Theorem 37. Let ¥ € Xy, F € Dy be a Dirichlet series of the form (1), c > 0, and (b, )nenN, be
a sequence detined by (16) and (10). If

lim |o|¥(c)/ In(1/]c|) >0, (64)
o10

then for every B > 0 there exists a constant q € (0,1) such that (62) holds if and only if for
every C > 0 there exists a constant p € (0,1) such that (46) holds.

Proof. Let G, be the series defined by (12).

Necessity. Suppose that for every B > 0 there exists a constant g = g(B) € (0,1) such
that (62) holds, and let C > 0. We put p = g(B). Using Theorem 2, for all ¢ < 0 we have
Inu(o, Ge) <InM(o, F) < ¥(po) + C. Then by Lemmas 8 and 9 we obtain (46).
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Sufficiency. Suppose that for every C > 0 there exists a constant p = p(C) € (0,1) such
that (46) holds, and let B > 0. Let us fix some Cy < B and set pg = p(Cp). Then we have
Inb, < —‘T’(An /po) + Co for each n € Ny, and therefore by Lemmas 8 and 9 for all ¢ < 0 we
obtain In u(c, G;) < ¥(poo) + Cop. Without loss of generality, we can assume that the function
¥ is nondecreasing, convex, and takes finite values on (—oo,0) (see the proof of Theorem 30).

Let N be the number defined by (10). Since by = |ay/|, there exists 07 < —1 such that
u(o,Ge) = (o, F) for all ¢ < ¢q. Furthermore, M (o, F) ~ |ay|e”*N as ¢ — —oo. Hence, there
exists 0y < 07 such that

InM(c, F) <Inu(c,G.)+B—Co <¥(poo)+ B, o <om. (65)

Now let us fix arbitrary 6 € (0,1) and dp € (0,6). Since ¥(0) — +o0 as ¢ T 0 by the
condition (64) and ¥ is convex on (—oo,0), we have ¥/, (¢) /¥ (0) — +o0 as ¢ 1 0. Then from
(64) it follows that |o|¥’/, (0)/(—1In|o|) — +oco as o T 0. Therefore, there exists 03 € (—1,0)
such that ¥ (opoo) — ¥(dpoo) > (6o — d)poc¥’ . (¢) > —3In|o|, ¢ € (03,0). Then, using
Theorem 2 (see Remark 2), for some 03 € (03,0) we obtain

InM(o, F) <Inu(do,G:) —2In|o| < ¥ (dpor) —3In|o| < ¥(dopoo) + B, o € [04,0). (66)
Finally, if o € |07, 04], then we have
InM(o, F) < InM(0y, F) < ¥(dopoos) + B < ¥(dopolos|o/|oz|) + B.

This, together with (65) and (66), shows that (62) holds with p = dypo|os|/|02]- O
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Y poboTi A0OBeAEHO TeopeMl allpOKCHMALIITHOTO XapaKTepy, IO AO3BOASIIOTh 3 AOCTaTHBOIO TO-
UHICTIO OILIHWUTHU CYyIIpeMyM MOAYAS psIAy Aipixae uepe3 MakCMMaAbHWMIL YA€H iHIIOro psay Aipi-
XAe, TIOB'SI3aHOTO 3i 3aAaHMM. 3a AOIIOMOTOO IIMX TeOpeM AAsL PsIAy Aipixae OTpMMaHO YMOBM Ha
ITOCAIAOBHICTb MOAYAIB 110T0 KOedpillieHTiB, sIKi € HeOOXiAHMMM Ta AOCTATHIMI AAST BUKOHAHHS Haif-
3aTaAbHIIINX aCMMITTOTMYHMX Ta TAOGAABHIX OLIHOK 3BEPXY AASI MOTO CYTIPEMYMY MOAYASI.

Kntouosi croea i ppasu: aHariTMuHa PyHKILS, Hira PYHKIIS, psa Aipixae, CyIpeMyM MOAYAS,
abcmyca abCOAIOTHOI 361KHOCTI, MaKCMMaABHII UA€H, crpsiKeHa 3a IOHroM pyHKIis.



