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In the article, we prove approximation theorems that allow us to estimate, with sufficient accu-

racy, the supremum modulus of a Dirichlet series by the maximal term of another Dirichlet series

associated with the given one. Using these theorems, we establish necessary and sufficient condi-

tions on the sequence of coefficients of a Dirichlet series, under which the most general asymptotic

and global estimates from above for its supremum modulus hold.
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Introduction

For an analytic function presented by a Dirichlet series with a nonnegative, increasing

to +∞ sequence of exponents, the following problem is classical: find conditions on the se-

quence of coefficients and the sequence of exponents of the series under which for the supre-

mum modulus of the function on a vertical line one or another estimate from above holds. This

problem is of a general nature and various approaches and methods have been proposed for

its solution in works of many authors.

In the case when the sequence of exponents of a Dirichlet series coincides with the sequence

of nonnegative integers, the considered problem is equivalent to the following problem for a

power series: find conditions on the sequence of its coefficients under which for the maximum

modulus of its sum on a circle one or another estimate from above holds. Classical methods,

that allow obtaining such conditions for a power series and are based on the technique of

its maximal term, are the Wiman-Valiron method and the Rosenbloom probabilistic method

(see [26, 31, 34] and [45, Chapter IX]). In works of M.M. Sheremeta (see [37] and the bibliogra-

phy there), the Wiman-Valiron method was modified to study properties of entire (absolutely

convergent in C) Dirichlet series. For the same purpose, an adaptation of the Rosenbloom

probabilistic method was carried out in the work of O.B. Skaskiv [41]. As a result, for an entire

Dirichlet series, it was possible to find necessary and sufficient conditions on the sequence of

its exponents, under which the most general estimates from above for the supremum modulus

of its sum by its maximal term are satisfied.

A typical feature of the estimates obtained by the Wiman-Valiron and Rosenbloom methods

or their modifications is that, under the conditions found for the exponents, these estimates are
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satisfied only outside certain exceptional sets. Questions about the existence and the sizes of

exceptional sets in some estimates between the modulus of the sum of a series and its maximal

term were considered, for instance, in the articles [13, 15, 16, 42, 43]. Conditions, under which

the most general estimates from above for the supremum modulus of an entire Dirichlet series

by its maximal term hold without exceptional sets, are found in the works [14, 36], and similar

problems for a Dirichlet series absolutely convergent in a half-plane was investigated in the

work [44].

A slightly different approach for estimating the sums of entire Dirichlet series was car-

ried out in the work of M.M. Sheremeta [38]. Actually, M.M. Sheremeta [38] established esti-

mates for the supremum modulus of an entire Dirichlet series by the maximal term of another

Dirichlet series associated with the given series (see Theorem D below). Note that the obtained

estimates hold without any assumptions about the system of exponents of the given series. An-

other important point is that the maximum term of the associated series in a certain sense well

approximates the supremum modulus of the given series. Using these facts, in [38] necessary

and sufficient conditions, under which some global estimates for the sums of entire Dirichlet

series hold, were established. The results from [38] were also applied in the works [22,28,33] to

study other properties of entire Dirichlet series. Analogs of the results from [38] for Dirichlet

series absolutely convergent in a half-plane were obtained in [23]. This article is devoted to the

development of the approach proposed in [38] and its applications.

1 Definitions and previous results

Denote by N0 the set of all nonnegative integers, and by Λ denote the class of all non-

negative sequences λ = (λn)n∈N0
increasing to +∞.

Let λ = (λn)n∈N0
be a sequence from the class Λ. Consider a Dirichlet series of the form

F(s) =
∞

∑
n=0

anesλn , s = σ + it, (1)

and denote by σa(F) the abscissa of absolute convergence of series (1). Put

σe(F) = lim
n→∞

1

λn
ln

1

|an|
.

It is easy to see that if σe(F) > −∞ and σ < σe(F), then |an|eσλn → 0 as n → ∞. Therefore, for

such σ, the maximum term

µ(σ, F) = max
{
|an|e

σλn : n ∈ N0

}

of series (1) is defined. If σa(F) > −∞, then for each σ < σa(F) we set

M(σ, F) = sup
{
|F(σ + it)| : t ∈ R

}
, M(σ, F) =

∞

∑
n=0

|an|e
σλn .

Note that for all such σ we have µ(σ, F) ≤ M(σ, F) ≤ M(σ, F), and M(σ, F) = M(σ, F) = F(σ)

in the case when an ≥ 0 for any n ∈ N0.
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Suppose that series (1) is absolutely convergent at the point s = 0. Put

Rn =
∞

∑
k=n

|ak|, n ∈ N0, (2)

and along with series (1) consider the Dirichlet series

F1(s) =
∞

∑
n=0

Rnesλn . (3)

Then, as is well known (see, for example, [32, Theorem I.2.8]), σa(F) = σe(F1). Set

Sn =
n

∑
k=0

|ak|, n ∈ N0, (4)

and consider the Dirichlet series

F2(s) =
∞

∑
n=0

Snesλn . (5)

If series (1) absolutely diverges at the point s = 0, then, as is well known (see, for example,

[32, Theorem I.2.8]), σa(F) = min{0, σe(F2)}.

For every fixed A ∈ (−∞,+∞], by DA(λ) we denote the class of all Dirichlet series of the

form (1) such that σa(F) ≥ A and anλn 6= 0 for at least one value n ∈ N0, and denote by D∗
A(λ)

the class of all Dirichlet series of the form (1) for which β(F) ≥ A and anλn 6= 0 for at least one

value n ∈ N0. We put DA = ∪λ∈ΛDA(λ) and D∗
A = ∪λ∈ΛD

∗
A(λ).

By X we denote the class of all functions α : R → R. For a function α ∈ X let α̃ be the

Young conjugate function of α, i.e.

α̃(x) = sup{xσ − α(σ) : σ ∈ R}, x ∈ R.

For each function α ∈ X, we set Dα = {σ ∈ R : α(σ) < +∞}. If A ∈ (−∞,+∞] is fixed,

then by XA we denote the class of all functions α ∈ X for which Dα ⊂ (−∞, A). Note that

X+∞ = X. Let ΩA be the class of all functions Φ ∈ XA such that DΦ is an interval of the form

[a, A), a < A, Φ is continuous on DΦ, and the following condition holds: xσ − Φ(σ) → −∞

as σ ↑ A for every fixed x ∈ R. In the case A < +∞, the indicated condition is equivalent

to the condition Φ(σ) → +∞ as σ → A − 0, and in the case A = +∞, it is equivalent to the

condition Φ(σ)/σ → +∞ as σ → +∞.

Necessary and sufficient conditions, under which some asymptotic estimates from above

for the supremum modulus of a Dirichlet series hold, were found in [16, 18, 29, 30].

Theorem A ([29]). Let λ = (λn)n∈N0
be a sequence from the class Λ, A ∈ (−∞,+∞],

Φ ∈ ΩA, and T0 ≥ t0 ≥ 0 be arbitrary constants. For each Dirichlet series F ∈ DA(λ) such that

ln µ(σ, F) ≤ (t0 + o(1))Φ(σ) as σ ↑ A we have ln M(σ, F) ≤ (T0 + o(1))Φ(σ) as σ ↑ A if and

only if

∀ T > T0 ∃ c ∈ (t0, T) : lim
n→∞

ln n

cΦ̃(λn/c)− TΦ̃(λn/T)
< 1. (6)

Theorem B ([30]). Let λ = (λn)n∈N0
be a sequence from the class Λ, Φ ∈ Ω+∞, and

T0 ≥ t0 ≥ 0 be arbitrary constants. For each Dirichlet series F ∈ D+∞(λ) such that

ln µ(σ, F) ≤ Φ((t0 + o(1))σ) as σ → +∞ we have ln M(σ, F) ≤ Φ((T0 + o(1))σ) as σ → +∞ if

and only if

∀ T > T0 ∃ c ∈ (t0, T) : lim
n→∞

ln n

Φ̃(λn/c)− Φ̃(λn/T)
< 1. (7)
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The sufficiency of conditions (6) and (7) in Theorems A and B can be easily justified

by using the following theorem, which gives sufficient conditions in order that the most

general asymptotic estimates from above for the supremum modulus of a Dirichlet series

hold.

Theorem C ([29]). Let λ = (λn)n∈N0
be a sequence from the class Λ, A ∈ (−∞,+∞], and

Φ, Γ ∈ ΩA. If
∞

∑
n=0

1

eΦ̃(λn)−Γ̃(λn)
< +∞,

then every Dirichlet series F from the class D∗
A(λ) such that ln µ(σ, F) ≤ Φ(σ), σ ∈ [σ1, A),

belongs to the class DA and for it we have ln M(σ, F) ≤ Γ(σ), σ ∈ [σ2, A).

An analysis of the proofs of Theorems A and B given in [29] and [30], respectively, shows

that the main and nontrivial parts in these proofs are the justifications of the necessity of

conditions (6) and (7). Actually, these justifications are of a constructive nature. It is clear

that Theorem C cannot be used for this. The following two theorems are much more effec-

tive in this regard, and their application does not require any considerations of a constructive

nature.

Theorem D ([38]). Let λ = (λn)n∈N0
be a sequence from the class Λ, and F be a Dirichlet series

of the form (1). Then:

(i) if the series F is absolutely convergent at the point s = 0, then F ∈ D+∞ if and only if

F1 ∈ D∗
+∞, where F1 is the series defined by (3) and (2);

(ii) if F ∈ D+∞, then for arbitrary σ ≥ 0 and ε > 0 we have

µ(σ, F1) ≤ M(σ, F) ≤ µ(σ + ε, F1)
σ + ε

ε
. (8)

Theorem E ([23]). Let λ = (λn)n∈N0
be a sequence from the class Λ, and F be a Dirichlet series

of the form (1). Then:

(i) F ∈ D0 if and only if F2 ∈ D∗
0 , where F2 is the series defined by (5) and (4);

(ii) if F ∈ D0, then for arbitrary σ < 0 and δ ∈ (0, 1) we have

µ(σ, F2) ≤ M(σ, F) ≤
µ(δσ, F2)

(1 − δ)e(1−δ)|σ|λ0
. (9)

Theorems D and E can be used to establish necessary and sufficient conditions under

which practically all estimates for sums of Dirichlet series considered in this paper hold. Then

such conditions will be conditions on the sequence of remainders (Rn)n∈N0
and partial sums

(Sn)n∈N0
of the series ∑

∞
k=0 |ak|, respectively, and therefore these conditions, especially in the

case of entire Dirichlet series, can be difficult to verify. In the next section, we establish more

flexible theorems that will allow us to obtain conditions under which the most general esti-

mates for sums of Dirichlet series hold in a simpler form.
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2 Main results

Let c > 0 be a constant, F be an arbitrary Dirichlet series of the form (1), and let

N = min{n ∈ N0 : an 6= 0}. (10)

For each n ∈ N0 we set

bn = 0, if n < N; bn = ∑
λn≤λk<λn+c

|ak|, if n ≥ N, (11)

and consider the Dirichlet series

Gc(s) =
∞

∑
n=0

bnesλn . (12)

Theorem 1. Let λ = (λn)n∈N0
be a sequence from the class Λ, F be an arbitrary Dirichlet series

of the form (1), c > 0, and Gc be the series defined by (12), (11), and (10). Then:

(i) F ∈ D+∞ if and only if Gc ∈ D∗
+∞;

(ii) if F ∈ D+∞, then for arbitrary σ ≥ 0 and ε > 0 we have

µ(σ, Gc) ≤ M(σ, F) ≤
µ(σ + ε, Gc)

eελN

( eεc

eεc − 1
+

σ

ε

)
. (13)

Proof. Let F ∈ D+∞. Then for the series F1 defined by (3) and (2), we get σe(F1) = σa(F) = +∞.

Since σe(Gc) ≥ σe(F1), we have σe(Gc) = +∞, and, therefore, Gc ∈ D∗
+∞.

Suppose that Gc ∈ D∗
+∞. By this assumption, the maximal term µ(σ, Gc) is defined for all

σ ∈ R. Let σ ≥ 0 and ε > 0. We prove that then the right inequality in (13) holds (this, in

particular, will imply that F ∈ D+∞).

Let l ≥ λN be a fixed number such that the interval [l, l + c) contains at least one term of

the sequence λ. We put

r = min{k ∈ N0 : λk ∈ [l, l + c)}, p = max{k ∈ N0 : λk ∈ [l, l + c)}, (14)

and prove the inequality

∑
l≤λk<l+c

|ak|e
σλk ≤ µ(σ + ε, Gc)

( 1

eελr
+ σ

∫ λp

λr

dt

eεt

)
. (15)

This inequality is obvious if p = r. Consider the case when p > r. In this case, for each integer

m ∈ [r, p] we set sm = ∑
p
k=m |ak|. Noting that sm ≤ bm for all integers m ∈ [r, p], we obtain

∑
l≤λk<l+c

|ak|e
σλk =

p

∑
m=r

|am|e
σλm =

p−1

∑
m=r

(sm − sm+1)e
σλm + speσλp

= sreσλr +
p

∑
m=r+1

sm(e
σλm − eσλm−1) ≤ bre

σλr +
p

∑
m=r+1

bm(e
σλm − eσλm−1)

= bre
σλr + σ

p

∑
m=r+1

bm

∫ λm

λm−1

eσtdt ≤
bre(σ+ε)λr

eελr
+ σ

p

∑
m=r+1

bme(σ+ε)λm

∫ λm

λm−1

dt

eεt

≤ µ(σ + ε, Gc)
( 1

eελr
+ σ

p

∑
m=r+1

∫ λm

λm−1

dt

eεt

)
= µ(σ + ε, Gc)

( 1

eελr
+ σ

∫ λp

λr

dt

eεt

)
,

that is, (15) holds.
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Let us introduce for each m ∈ N0 the notation lm = λN + mc. Noting that lm+1 = lm + c for

all m ∈ N0, and using (15) and (14), we obtain

M(σ, F) =
∞

∑
m=0

∑
lm≤λk<lm+1

|ak|e
σλk =

∞

∑
m=0

∑
lm≤λk<lm+c

|ak|e
σλk

≤
∞

∑
m=0

µ(σ + ε, Gc)

(
1

eεlm
+ σ

∫ lm+1

lm

dt

eεt

)
= µ(σ + ε, Gc)

( ∞

∑
m=0

1

eε(λN+mc)
+ σ

∫ +∞

λN

dt

eεt

)

= µ(σ + ε, Gc)
( eεc

eελN(eεc − 1)
+

σ

εeελN

)
=

µ(σ + ε, Gc)

eελN

( eεc

eεc − 1
+

σ

ε

)
.

Since the inequality M(σ, F) ≥ µ(σ, Gc) is obvious, the theorem is completely proved.

Remark 1. The right inequality in (8) can be obtained from Theorem 1. In fact, since

µ(σ, Gc) ≤ µ(σ, F1) for any c > 0, by (13) for each fixed σ ≥ 0 we have

M(σ, F) ≤ µ(σ + ε, F1)
( eεc

eεc − 1
+

σ

ε

)
.

It remains to direct c here to +∞.

Next, we will prove an analogue of Theorem 1 for Dirichlet series absolutely convergent in

a half-plane.

Let c > 0 be a constant, F be an arbitrary Dirichlet series of the form (1), and N be the

number defined by (10). For each n ∈ N0, we set

bn = 0, if n < N; bn = ∑
λn−c<λk≤λn

|ak|, if n ≥ N. (16)

Theorem 2. Let λ = (λn)n∈N0
be a sequence from the class Λ, F be an arbitrary Dirichlet series

of the form (1), c > 0, and Gc be the series defined by (12), (16), and (10). Then:

(i) F ∈ D0 if and only if Gc ∈ D∗
0 ;

(ii) if F ∈ D0, then for arbitrary σ < 0 and ε ∈ (0,−σ) we have

µ(σ, Gc) ≤ M(σ, F) ≤
µ(σ + ε, Gc)

eελN

( |σ|
ε

+
1

eε(λL−λN)
+

1

eεc

)
, (17)

where L = L(c) := max{n ∈ N0 : λn < λN + c}.

Proof. Let F ∈ D0, i.e. σa(F) ≥ 0. Then by Theorem E, for the series F2 defined by (5) and (4),

we obtain σe(F2) ≥ 0. Since σe(Gc) ≥ σe(F2), we have σe(Gc) ≥ 0, and therefore Gc ∈ D∗
0 . Note

that the inequality σe(F2) ≥ 0 is easy to prove directly by assuming the contrary: if σe(F2) < 0,

then the series F absolutely diverges at the point s = 0, and then, as noted above, the equality

σa(F) = min{0, σe(F2)} should hold, which is impossible.

Now suppose that Gc ∈ D∗
+∞. By this assumption, the maximal term µ(σ, Gc) is defined

for all σ < 0. Let σ < 0 and ε ∈ (0,−σ). We prove that then the right inequality in (17) holds

(this, in particular, implies that F ∈ D0).

We fix an arbitrary number l ≥ λN such that the interval [l, l + c) contains at least one term

of the sequence λ. Define r and p by (14) and prove the inequality

∑
l≤λk<l+c

|ak |e
σλk ≤ µ(σ + ε, Gc)

(
|σ|

∫ λp

λr

dt

eεt
+

1

eελp

)
. (18)
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If p = r, then this inequality is obvious. Consider the case when p > r. In this case, for

each integer m ∈ [r, p], we set sm = ∑
m
k=r |ak| and note that sm ≤ bm. Therefore

∑
l≤λk<l+c

|ak |e
σλk =

p

∑
m=r

|am|e
σλm = sreσλr +

p

∑
m=r+1

(sm − sm−1)e
σλm

=
p−1

∑
m=r

sm(e
σλm − eσλm+1) + speσλp ≤

p−1

∑
m=r

bm(e
σλm − eσλm+1) + bpeσλp

= |σ|
p−1

∑
m=r

bm

∫ λm+1

λm

eσtdt + bpeσλp ≤ |σ|
p−1

∑
m=r

bme(σ+ε)λm

∫ λm+1

λm

dt

eεt
dt +

bpe(σ+ε)λp

eελp

≤ µ(σ + ε, Gc)

(
|σ|

p−1

∑
m=r

∫ λm+1

λm

dt

eεt
dt +

1

eελp

)
= µ(σ + ε, Gc)

(
|σ|

∫ λp

λr

dt

eεt
+

1

eελp

)
,

that is, (18) holds.

Setting lm = λN + mc for each m ∈ N0 and using (18) and (14), we have

M(σ, F) =
∞

∑
m=0

∑
lm≤λk<lm+1

|ak |e
σλk = ∑

λN≤λk<λN+c

|ak|e
σλk +

∞

∑
m=1

∑
lm≤λk<lm+c

|ak |e
σλk

≤ µ(σ + ε, Gc)
(
|σ|

∫ l1

λN

dt

eεt
+

1

eελL

)
+

∞

∑
m=1

µ(σ + ε, Gc)

(
|σ|

∫ lm+1

lm

dt

eεt
+

1

eεlm

)

= µ(σ + ε, Gc)
(
|σ|

∫ +∞

λN

dt

eεt
+

1

eελL
+

∞

∑
m=1

1

eε(λN+mc)

)

= µ(σ + ε, Gc)
( |σ|

εeελN
+

1

eελL
+

1

eελN(eεc − 1)

)
,

that is, the right inequality in (17) holds. Since the left inequality in (17) is trivial, the theorem

is completely proved.

Remark 2. Let σ < 0 and δ ∈ (0, 1) be arbitrary numbers. Put ε = (1 − δ)|σ|. Then the right

inequality in (17) can be rewritten as

M(σ, F) ≤
µ(δσ, Gc)

e(1−δ)|σ|λN

( 1

1 − δ
+

1

e(1−δ)|σ|(λL(c)−λN)
+

1

e(1−δ)|σ|c − 1

)
. (19)

This implies the right inequality in (9). In fact, since µ(δσ, Gc) ≤ µ(δσ, F2) for any c > 0, it

suffices in (19) to first replace µ(δσ, Gc) with µ(δσ, F2), and then direct c to +∞.

Remark 3. Theorems 1 and 2 can be used to estimate remainders of Dirichlet series. Esti-

mates of this kind are needed, for example, when establishing Berstein-type inequalities for

the Dirichlet series and its derivative (see [6, 10–12, 35, 40]). In particular, if F ∈ D+∞, then by

Theorem 1 for arbitrary K ∈ N0, σ ≥ 0, and ε > 0 we have

∑
n≥K

|an|e
σλn ≤

µ(σ + ε, Gc)

eελK

( eεc

eεc − 1
+

σ

ε

)
.
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3 Auxiliary results

In this section, we give some simple and well-known auxiliary statements describing prop-

erties of Young conjugate functions, as well as the growth of the logarithm of the maximal

term of a Dirichlet series in terms of such functions. Using these statements, in the following

sections we give numerous applications of Theorems 1, E and 2.

First of all, we note that if α ∈ X, then α̃ is a convex function, i.e. for arbitrary x1, x2, x3 ∈ R

such that x1 < x2 < x3, we have

α̃(x2)(x3 − x1) ≤ α̃(x1)(x3 − x2) + α̃(x3)(x2 − x1).

Moreover, ˜̃α(σ) ≤ α(σ) for all σ ∈ R (see, for example, [29]).

It is also easy to see that for arbitrary functions α, γ ∈ X such that α(σ) ≤ γ(σ) for all

σ ∈ R, we have α̃(x) ≥ γ̃(x) for all x ∈ R, and therefore ˜̃α(σ) ≤ ˜̃γ(σ) for all σ ∈ R.

Lemma 1 ([27]). Let α ∈ X be a function such that Dα is an interval of the real axis and α is

convex on Dα. Then ˜̃α(σ) = α(σ) for all σ ∈ Dα.

Lemma 2 ([27]). Let α, γ ∈ X be functions such that Dγ is an interval of the real axis,

α(σ) ≤ γ(σ) for all σ ∈ Dγ, and α is convex on Dγ. Then α(σ) ≤ ˜̃γ(σ) for all σ ∈ Dγ.

Since ˜̃γ(σ) ≤ γ(σ) for all σ ∈ Dγ, Lemma 2 defines the geometric meaning of the second

Young conjugate function: among all functions α convex on Dγ and such that α(σ) ≤ γ(σ)

for all σ ∈ Dγ, the function ˜̃γ takes on the largest possible value at each point of Dγ. Actually,

using Lemmas 1 and 2 and noting that the maximum of two convex functions on some interval

is also a convex function on this interval, it is easy to substantiate the following statement by

geometric considerations.

Lemma 3. Let A ∈ (−∞,+∞], α ∈ XA, Dα = (−∞, A), β ∈ ΩA, Dβ = [a, A), and the functions

α and β are convex on Dα and Dβ, respectively. Suppose that γ(σ) = α(σ) for all σ < a and

γ(σ) = max{α(σ), β(σ)} for all σ ∈ [a, A). Then:

(i) if γ(a) = α(a), we have ˜̃γ(σ) = γ(σ) for all σ < A;

(ii) if γ(a) > α(a), then the function k(σ) = (γ(σ) − α(a))/(σ − a), σ ∈ (a, A), takes on a

minimum value at some point σ0 ∈ (a, A), and ˜̃γ(σ) = γ(σ) for all σ < A such that

σ /∈ (a, σ0), and ˜̃γ(σ) = k(σ0)(σ − a) + α(a) for all σ ∈ [a, σ0];

(iii) α(σ) ≤ ˜̃γ(σ) for all σ < A.

Lemma 4 ([29]). Let A ∈ (−∞,+∞], Φ ∈ ΩA, and ϕ(x) = max{σ ∈ DΦ : xσ − Φ(σ) = Φ̃(x)}

for all x ∈ R. Then:

(i) ϕ is a nondecreasing function on R;

(ii) ϕ is continuous from the right on R;

(iii) ϕ(x) → A as x → +∞;

(iv) the right-hand derivative of Φ̃(x) is equal to ϕ(x) at each point x ∈ R;

(v) if x0 = inf{x > 0 : Φ(ϕ(x)) > 0}, then Φ̃(x)/x increases to A on (x0,+∞);

(vi) the function α(x) = Φ(ϕ(x)) is nondecreasing on [0,+∞).
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Lemma 5 ([27]). Let A ∈ (−∞,+∞], Ψ ∈ ΩA, ψ(x) be the right-hand derivative of Ψ̃(x) at each

point x ∈ R, and Γ be the second Young conjugate function of Ψ. Then ψ(x) is the right-hand

derivative of Γ̃(x), Γ(ψ(x)) = Ψ(ψ(x)), and Γ′
−(ψ(x)) ≤ x ≤ Γ′

+(ψ(x)) at each point x ∈ R.

Lemma 6 ([27]). Let A ∈ (−∞,+∞], and functions α, γ ∈ ΩA be such that α(σ) = γ(σ) for all

σ ∈ [σ1, A) with some σ1 < A. Then there exist numbers x0 ∈ R and σ2 ∈ [σ1, A) such that

α̃(x) = γ̃(x) for all x ≥ x0 and ˜̃α(σ) = ˜̃γ(σ) for all σ ∈ [σ2, A).

Lemma 7 ([27]). Let A ∈ (−∞,+∞], γ ∈ ΩA, and F ∈ D∗
A be a Dirichlet series of the form (1).

Then the following conditions are equivalent:

(i) there exists σ1 ∈ Dγ such that ln µ(σ, F) ≤ γ(σ) for all σ ∈ [σ1, A);

(ii) there exists σ2 ∈ Dγ such that ln µ(σ, F) ≤ ˜̃γ(σ) for all σ ∈ [σ2, A);

(iii) there exists n0 ∈ N0 such that ln |an| ≤ −γ̃(λn) for all integers n ≥ n0.

Lemma 8 ([23]). Let A ∈ (−∞,+∞], γ ∈ XA, and F ∈ D∗
A be a Dirichlet series of the form (1).

Then the following conditions are equivalent:

(i) ln µ(σ, F) ≤ γ(σ) for all σ < A;

(ii) ln |an| ≤ −γ̃(λn) for all n ∈ N0.

Lemma 9. Let A ∈ (−∞,+∞], Φ ∈ XA, a and b be positive constants, and c, d, and k be real

constants. Then for the function β(σ) = aΦ(bσ + c) + dσ + k, σ ∈ R, we have β ∈ XAb+c and

β̃(x) = aΦ̃
(x − d

ab

)
−

c(x − d)

b
− k, x ∈ R.

Proof. The fact that β ∈ XAb+c is obvious. Furthermore, using the notation y = bσ + c, for all

x ∈ R we get

β̃(x) = sup
σ∈R

(xσ − aΦ(bσ + c)− dσ − k) = sup
y∈R

(x

b
(y − c)− aΦ(y) −

d

b
(y − c)− k

)

= a sup
y∈R

(x − d

ab
y − Φ(y)

)
−

c(x − d)

b
− k = aΦ̃

(x − d

ab

)
−

c(x − d)

b
− k,

and therefore, the lemma is proved.

4 Asymptotic estimates for the sums of Dirichlet series

Let F ∈ DA. In this section, we establish asymptotic estimations from above for lnM(σ, F),

provided that an asymptotic estimation from above for the logarithm of the maximal term of

an associated series is known. In quite general situations, the form of an asymptotic estimation

for lnM(σ, F) will be the same as the form of an asymptotic estimation for the logarithm of the

maximal term of the associated series. In some of these situations, applying Lemma 7 to the

associated series, we establish conditions on its coefficients that are necessary and sufficient to

satisfy the corresponding asymptotic estimation. First, we consider the case of entire Dirichlet

series.
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Theorem 3. Let Ψ ∈ Ω+∞, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, and Gc be the

series defined by (12), (11), and (10). If

∃ σ0 ∈ DΨ ∀ σ ≥ σ0 : ln µ(σ, Gc) ≤ Ψ(σ), (20)

then for every ε > 0 we have

lnM(σ, F)− Ψ(σ + ε)− ln σ → −∞, σ → +∞. (21)

Proof. Let Γ be the second Young conjugate function of Ψ. Then Γ(σ) ≤ Ψ(σ) for all σ ∈ R.

Since Γ ∈ Ω+∞ and Γ is convex on DΨ, we obtain Γ′
+(σ) ր +∞ as σ ↑ +∞, and for all

σ1, σ2 ∈ DΨ we have Γ(σ1)− Γ(σ2) ≥ (σ1 − σ2)Γ
′
+(σ2). In addition, by Lemma 7, the condition

(20) is equivalent to the condition

∃ σ1 ∈ DΨ ∀ σ ≥ σ1 : ln µ(σ, Gc) ≤ Γ(σ). (22)

Let ε > 0. Fixing some δ ∈ (0, ε), we obtain

Γ(σ + ε)− Γ(σ + δ) ≥ (ε − δ)Γ′
+(σ + δ), σ ∈ DΨ. (23)

Using Theorem 1 and (22), we have

lnM(σ, F) ≤ ln µ(σ + δ, Gc) + ln σ + O(1) ≤ Γ(σ + δ) + ln σ + O(1), σ → +∞.

This and (23) imply (21).

Theorem 4. Let Ψ ∈ Ω+∞, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, and Gc be the

series defined by (12), (11), and (10). Then the following conditions are equivalent:

(i) ∃ ε > 0 ∃ σ1 ∈ R ∀ σ ≥ σ1: lnM(σ, F) ≤ Ψ(σ + ε) + εσ;

(ii) ∃ δ > 0 ∃ σ2 ∈ R ∀ σ ≥ σ2: ln µ(σ, Gc) ≤ Ψ(σ + δ) + δσ;

(iii) ∃ δ > 0 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −Ψ̃(λn − δ) + δ(λn − δ).

Proof. The equivalence of conditions (i) and (ii) follows from Theorem 3. Furthermore, if δ ∈ R

and β(σ) = Ψ(σ + δ) + δσ for all σ ∈ R, then by Lemma 9 we have β̃(x) = Ψ̃(x − δ)− δ(x − δ)

for all ∈ R, and therefore the equivalence of conditions (ii) and (iii) follows from Lemma 7.

The following theorem can be proved analogously to Theorem 4.

Theorem 5. Let Ψ ∈ Ω+∞, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, and Gc be the

series defined by (12), (11), and (10). Then the following conditions are equivalent:

(i) ∀ ε > 0 ∃ σ1 ∈ R ∀ σ ≥ σ1: lnM(σ, F) ≤ Ψ(σ + ε) + εσ;

(ii) ∀ δ > 0 ∃ σ2 ∈ R ∀ σ ≥ σ2: ln µ(σ, Gc) ≤ Ψ(σ + δ) + δσ;

(iii) ∀ δ > 0 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −Ψ̃(λn − δ) + δ(λn − δ).

Theorem 6. Let Ψ ∈ Ω+∞, Γ be the second Young conjugate function of Ψ, F ∈ D+∞ be a

Dirichlet series of the form (1), c > 0, and Gc be the series defined by (12), (11), and (10).

If (20) holds, then for each ε > 0 we have

lnM(σ, F)− Γ
(

σ + ε +
ln σ

Γ′
+(σ + ε)

)
→ −∞, σ → +∞. (24)
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Proof. For some σ2 ∈ DΨ we have

Γ
(

σ + ε +
ln σ

Γ′
+(σ + ε)

)
− Γ(σ + ε) ≥ ln σ, σ ≥ σ2. (25)

In addition, by Lemma 7 condition (20) is equivalent to condition (22), and therefore by Theo-

rem 3 we have lnM(σ, F)− Γ(σ + ε)− ln σ → −∞ as σ → +∞. This and (25) imply (24).

The following theorem is a direct consequence of Theorem 6.

Theorem 7. Let Ψ ∈ Ω+∞, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, and Gc

be the series defined by (12), (11), and (10). If (20) holds, then for each δ > 0 we have

lnM(σ, F)− Ψ(σ + δ ln σ) → −∞ as σ → +∞.

Let Ψ ∈ X, p > 0, and β(σ) = Ψ(pσ) for all σ ∈ R. Then β̃(x) = Ψ̃(x/p) for all x ∈ R by

Lemma 9. Taking this into account, and also using Theorem 7 and Lemma 7, it is easy to prove

the following two theorems (they can also be derived from Theorem 4).

Theorem 8. Let Ψ ∈ Ω+∞, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, and Gc be the

series defined by (12), (11), and (10). Then the following conditions are equivalent:

(i) ∃ q > 1 ∃ σ1 ∈ R ∀ σ ≥ σ1: lnM(σ, F) ≤ Ψ(qσ);

(ii) ∃ p > 1 ∃ σ2 ∈ R ∀ σ ≥ σ2: ln µ(σ, Gc) ≤ Ψ(pσ);

(iii) ∃ p > 1 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −Ψ̃(λn/p).

Theorem 9. Let Ψ ∈ Ω+∞, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, and Gc be the

series defined by (12), (11), and (10). Then the following conditions are equivalent:

(i) ∀ q > 1 ∃ σ1 ∈ R ∀ σ ≥ σ1: lnM(σ, F) ≤ Ψ(qσ);

(ii) ∀ p > 1 ∃ σ2 ∈ R ∀ σ ≥ σ2: ln µ(σ, Gc) ≤ Ψ(pσ);

(iii) ∀ p > 1 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −Ψ̃(λn/p).

Theorem 10. Let Ψ ∈ Ω+∞, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, Gc be the

series defined by (12), (11), and (10), and let

δ0 = lim
σ→+∞

σ ln σ/Ψ(σ). (26)

If δ0 < +∞ and (20) holds, then for every δ > 0 we have

lnM(σ, F)− Ψ(σ + δ0 + δ) → −∞, σ → +∞.

Proof. Let δ > 0 be a fixed number, and Γ be the second Young conjugate function of Ψ. Using

Lemma 2, we see that in (26) we can replace Ψ with Γ. Then, using the convexity of the function

Γ on R, it is easy to prove that δ0 = limσ→+∞ ln σ/Γ′
+(σ). It remains to apply Theorem 6 with

some fixed ε ∈ (0, δ).

If Ψ ∈ X, δ ∈ R, and β(σ) = Ψ(σ + δ) for all σ ∈ R, then β̃(x) = Ψ̃(x)− δx for all x ∈ R

by Lemma 9. Taking this into account, as well as Theorem 10 and Lemma 7, we obtain the

following two theorems.
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Theorem 11. Let Ψ ∈ Ω+∞, δ0 be the quantity defined by (26), F ∈ D+∞ be a Dirichlet series

of the form (1), c > 0, and Gc be the series defined by (12), (11), and (10). If δ0 < +∞, then the

following conditions are equivalent:

(i) ∃ ε > 0 ∃ σ1 ∈ R ∀ σ ≥ σ1: lnM(σ, F) ≤ Ψ(σ + ε);

(ii) ∃ δ > 0 ∃ σ2 ∈ R ∀ σ ≥ σ2: ln µ(σ, Gc) ≤ Ψ(σ + δ);

(iii) ∃ δ > 0 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −Ψ̃(λn) + δλn.

Theorem 12. Let Ψ ∈ Ω+∞, δ0 be the quantity defined by (26), F ∈ D+∞ be a Dirichlet series

of the form (1), c > 0, and Gc be the series defined by (12), (11), and (10). If δ0 = 0, then the

following conditions are equivalent:

(i) ∀ ε > 0 ∃ σ1 ∈ R ∀ σ ≥ σ1: lnM(σ, F) ≤ Ψ(σ + ε);

(ii) ∀ δ > 0 ∃ σ2 ∈ R ∀ σ ≥ σ2: ln µ(σ, Gc) ≤ Ψ(σ + δ);

(iii) ∀ δ > 0 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −Ψ̃(λn) + δλn.

Theorem 13. Let Ψ ∈ Ω+∞, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

h be a nondecreasing, continuous, unbounded from above function in some neighborhood of

the point +∞, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, and Gc be the series defined

by (12), (11), and (10). If

∃ x0 ∈ R ; ∀ x ≥ x0 : ln x ≤ h(Ψ(ψ(x))) (27)

and (20) holds, then for every δ > 0 we have

lnM(σ, F) ≤ Ψ(σ) + h(Ψ(σ) + δ) + ln σ + δ − ln δ + o(1), σ → +∞. (28)

Proof. Let Γ be the second Young conjugate function of Ψ. By Lemma 7, condition (20) is

equivalent to condition (22). Using Lemma 5, it is easy to prove that condition (27) is equivalent

to the condition

∃ σ2 ∈ DΨ ∀ σ ≥ σ2 : ln Γ′
+(σ) ≤ h(Γ(σ)). (29)

Let δ > 0 be a fixed number. We also fix σ3 ∈ DΨ such that Γ′
+(σ3) > 0 and for each σ ≥ σ3

we denote by ε(σ) that positive value of ε for which εΓ′
−(σ + ε) ≤ δ ≤ εΓ′

+(σ + ε). Note that

Γ(σ + ε(σ))− Γ(σ) ≤ ε(σ)Γ′
−(σ + ε(σ)) ≤ δ, σ ≥ σ3. (30)

Using Theorem 1 with ε = ε(σ) and taking into account (22), (30), and (29), we have

lnM(σ, F) ≤ Γ(σ + ε(σ)) + ln
1 + ε(σ)c + σc

ε(σ)c

= Γ(σ + ε(σ)) + ln
σ

ε(σ)
+ o(1)

= Γ(σ + ε(σ)) + ln σ + ln Γ′
+(σ + ε(σ))− ln δ + o(1)

≤ Γ(σ) + δ + ln σ + h(Γ(σ) + δ)− ln δ + o(1)

as σ → +∞. This implies (28).
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The following theorem is a direct consequence of Theorem 13.

Theorem 14. Let Ψ ∈ Ω+∞, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

F ∈ D+∞ be the Dirichlet series of the form (1), c > 0, Gc be the series defined by (12), (11),

and (10), and

∆ = lim
x→+∞

ln x/Ψ(ψ(x)). (31)

If ∆ < +∞ and (20) holds, then lnM(σ, F) ≤ (1 + ∆ + o(1))Ψ(σ) as σ → +∞.

If Ψ ∈ X, p > 0, and β(σ) = pΨ(σ) for all σ ∈ R, then β̃(x) = pΨ̃(x/p) for all x ∈ R by

Lemma 9. Therefore, from Theorem 14 and Lemma 7 we obtain the following two theorems.

Theorem 15. Let Ψ ∈ Ω+∞, ∆ be the quantity defined by (31), F ∈ D+∞ be a Dirichlet series

of the form (1), c > 0, and Gc be the series defined by (12), (11), and (10). If ∆ < +∞, then the

following conditions are equivalent:

(i) ∃ q > 0 ∃ σ1 ∈ R ∀ σ ≥ σ1: lnM(σ, F) ≤ qΨ(σ);

(ii) ∃ p > 0 ∃ σ2 ∈ R ∀ σ ≥ σ2: ln µ(σ, Gc) ≤ pΨ(σ);

(iii) ∃ p > 0 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −pΨ̃(λn/p).

Theorem 16. Let Ψ ∈ Ω+∞, ∆ be the quantity defined by (31), F ∈ D+∞ be a Dirichlet series

of the form (1), c > 0, and Gc be the series defined by (12), (11), and (10). If ∆ = 0, then the

following conditions are equivalent:

(i) ∀ q > 1 ∃ σ1 ∈ R ∀ σ ≥ σ1: lnM(σ, F) ≤ qΨ(σ);

(ii) ∀ p > 1 ∃ σ2 ∈ R ∀ σ ≥ σ2: ln µ(σ, Gc) ≤ pΨ(σ);

(iii) ∀ p > 1 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −pΨ̃(λn/p).

Let us now turn to the case of Dirichlet series absolutely converging in a half-plane.

Consider the function y : [0,+∞] → [0, 1], defined as follows:

y(q) =

√
q + 1 − 1√
q + 1 + 1

, q ∈ [0,+∞]; (32)

here, of course, y(+∞) = 1. Note that this function is continuous, increasing on [0,+∞], and

the interval [0, 1] is its range.

Theorem 17. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

F ∈ D0 be a Dirichlet series of the form (1), F2 be the series defined by (5) and (4), and

q = lim x→+∞ |ψ(x)|x. If q > 0 and

∃ σ1 ∈ DΨ ∀ σ ∈ [σ1, 0) : ln µ(σ, F2) ≤ Ψ(σ), (33)

then for every η ∈ (0, y(q)), where y(q) is defined by (32), there exists σ2 ∈ DΨ such that

lnM(σ, F) ≤ Ψ(ησ), σ ∈ [σ2, 0). (34)
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Proof. Let Γ be the second Young conjugate function of Ψ. Using Lemma 5, it is easy to prove

that q = lim σ↑0 |σ|Γ
′
+(σ). From properties of the function y it follows that there exists a unique

number p < q for which η = y(p). Then there exists σ3 ∈ DΨ such that |σ|Γ′
+(σ) ≥ p for all

σ ∈ [σ3, 0). Setting δ = (
√

p + 1 − 1)/
√

p + 1, we get

Γ(ησ)− Γ(δσ) ≥ (δ − η)|σ|Γ′
+(δσ) ≥

δ − η

δ
p =

δ

1 − δ
, σ ∈ [σ3, 0). (35)

Next, we note that condition (33), according to Lemma 7, is equivalent to the condition

∃ σ4 ∈ DΨ ∀ σ ∈ [σ4, 0) : ln µ(σ, F2) ≤ Γ(σ). (36)

Setting σ2 = max{σ3, σ4} and using Theorem E, (36), and (35), for all σ ∈ [σ2, 0) we have

lnM(σ, F) ≤ ln µ(δσ, F2) + ln
1

1 − δ
≤ Γ(δσ) +

δ

1 − δ
≤ Γ(ησ) ≤ Ψ(ησ),

and therefore, the theorem is proved.

Using Theorem 17 and Lemmas 9 and 7, we obtain the following two results.

Theorem 18. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

F ∈ D0 be a Dirichlet series of the form (1), and F2 be the series defined by (5) and (4).

If lim x→+∞ |ψ(x)|x > 0, then the following conditions are equivalent:

(i) ∃ δ ∈ (0, 1) ∃ σ1 < 0 ∀ σ ∈ [σ1, 0): lnM(σ, F) ≤ Ψ(δσ);

(ii) ∃ η ∈ (0, 1) ∃ σ2 < 0 ∀ σ ∈ [σ2, 0): ln µ(σ, F2) ≤ Ψ(ησ);

(iii) ∃ η ∈ (0, 1) ∃ n0 ∈ N0 ∀ n ≥ n0: ln |Sn| ≤ −Ψ̃(λn/η).

Theorem 19. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

F ∈ D0 be a Dirichlet series of the form (1), and F2 be the series defined by (5) and (4).

If |ψ(x)|x → +∞ as x → +∞, then the following conditions are equivalent:

(i) ∀ δ ∈ (0, 1) ∃ σ1 < 0 ∀ σ ∈ [σ1, 0): lnM(σ, F) ≤ Ψ(δσ);

(ii) ∀ η ∈ (0, 1) ∃ σ2 < 0 ∀ σ ∈ [σ2, 0): ln µ(σ, F2) ≤ Ψ(ησ);

(iii) ∀ η ∈ (0, 1) ∃ n0 ∈ N0 ∀ n ≥ n0: ln |Sn| ≤ −Ψ̃(λn/η).

Theorem 20. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

F ∈ D0 be a Dirichlet series of the form (1), c > 0, Gc be the series defined by (12), (16), and

(10), and q = lim x→+∞ |ψ(x)|x/ ln(1/|ψ(x)|). If q > 1 and the condition

∃ σ1 ∈ DΨ ∀ σ ∈ [σ1, 0) : ln µ(σ, Gc) ≤ Ψ(σ) (37)

holds, then for every positive η < (q − 1)/q there exists σ2 ∈ DΨ such that we have (34).

Proof. Let Γ be the second Young conjugate function of Ψ. Using Lemma 5, it is easy to

prove that q = lim σ↑0 |σ|Γ
′
+(σ)/ ln(1/|σ|). From the condition q > 1 and the inequality

η < (q − 1)/q it follows that there exist numbers δ ∈ (η, 1) and p ∈ (1, q) such that
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η/δ < (p − 1)/p. Let us fix some r ∈ (p, q). Then there exists σ3 ∈ DΨ such that σ3 > −1 and

|σ|Γ′
+(σ) ≥ r ln(1/|σ|) for all σ ∈ [σ3, 0). Therefore,

Γ(ησ)− Γ(δσ) ≥ (δ − η)|σ|Γ′
+(δσ) ≥

δ − η

δ
r ln

1

δ|σ|
≥

r

p
ln

1

|σ|
, σ ∈ [σ3, 0). (38)

Furthermore, we note that by Lemma 7, condition (37) is equivalent to the condition

∃ σ4 ∈ DΨ ∀ σ ∈ [σ4, 0) : ln µ(σ, Gc) ≤ Γ(σ). (39)

Using Theorem 2 (see Remark 2), condition (39), the inequality r/p > 1, and (38), we obtain

lnM(σ, F) ≤ ln µ(δσ, Gc) + ln
1

|σ|
+ O(1) ≤ Γ(δσ) +

r

p
ln

1

|σ|
≤ Γ(ησ) ≤ Ψ(ησ)

as σ ↑ 0, that is, (34) holds for some σ2 ∈ DΨ. The theorem is proved.

Using Theorem 20 and Lemmas 9 and 7, we obtain the following two theorems.

Theorem 21. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

F ∈ D0 be a Dirichlet series of the form (1), c > 0, and Gc be the series defined by (12), (16),

and (10). If lim x→+∞ |ψ(x)|x/ ln(1/|ψ(x)|) > 1, then the following conditions are equivalent:

(i) ∃ δ ∈ (0, 1) ∃ σ1 < 0 ∀ σ ∈ [σ1, 0): lnM(σ, F) ≤ Ψ(δσ);

(ii) ∃ η ∈ (0, 1) ∃ σ2 < 0 ∀ σ ∈ [σ2, 0): ln µ(σ, Gc) ≤ Ψ(ησ);

(iii) ∃ η ∈ (0, 1) ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −Ψ̃(λn/η).

Theorem 22. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

F ∈ D0 be a Dirichlet series of the form (1), c > 0, and Gc be the series defined by (12),

(16), and (10). If |ψ(x)|x/ ln(1/|ψ(x)| → +∞ as x → +∞, then the following conditions are

equivalent:

(i) ∀ δ ∈ (0, 1) ∃ σ1 < 0 ∀ σ ∈ [σ1, 0): lnM(σ, F) ≤ Ψ(δσ);

(ii) ∀ η ∈ (0, 1) ∃ σ2 < 0 ∀ σ ∈ [σ2, 0): ln µ(σ, Gc) ≤ Ψ(ησ);

(iii) ∀ η ∈ (0, 1) ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −Ψ̃(λn/η).

Theorem 23. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R, h be

a nondecreasing, continuous, unbounded from above function in some neighborhood of the

point +∞, F ∈ D0 be a Dirichlet series of the form (1), and F2 be the series defined by (5) and

(4). If conditions (27) and (33) hold, then there exists σ2 ∈ DΨ such that for each η > 0 and all

σ ∈ [σ2, 0) we have

lnM(σ, F) ≤ Ψ(σ) + η|σ|+ h(Ψ(σ + η|σ|)− ln η. (40)

Proof. Let Γ be the second Young conjugate function of Ψ. By Lemma 7, condition (33) is

equivalent to condition (36). Using Lemma 5, it is easy to prove that condition (27) is equivalent

to the condition

∃ σ3 ∈ DΨ ∀ σ ∈ [σ3, 0) : ln Γ′
+(σ) ≤ h(Γ(σ)). (41)
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Since Γ ∈ Ω0 and Γ are convex on DΨ, then Γ′
+(σ) ր +∞ as σ ↑ 0. We choose σ2 < 0

such that the inequalities Γ′
−(σ2) > 0, σ2 ≥ σ3, and σ2 ≥ σ4 hold, where σ4 is the number from

condition (36). We fix arbitrary η > 0 and σ ∈ [σ2, 0). Consider the functions y1 = 1 − δ and

y2 = η/Γ′
+(δσ) of the variable δ, defined on the interval (0, 1]. On this interval the function y1

is continuous, decreasing, and takes all values from [0, 1), and the function y2 is nondecreasing

with y2(0 + 0) = 0 and y2(1) = η/Γ′
+(σ) > 0. So, as is easy to see, on the interval (0, 1) there

exists a unique number δ = δ(σ) such that η/Γ′
+(δσ) ≤ 1 − δ ≤ η/Γ′

−(δσ). Note that

Γ(δσ)− Γ(σ) ≤ (1 − δ)|σ|Γ′
−(δσ) ≤ η|σ|. (42)

Using Theorem E and taking into account (36), (42) and (41), we have

lnM(σ, F) ≤ Γ(δσ)− ln(1 − δ)

≤ Γ(σ) + η|σ| − ln η + ln Γ′
+(δσ)

≤ Γ(σ) + η|σ| − ln η + h(Γ(σ + η|σ|).

This implies (40).

Theorem 24. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R, h be

a nondecreasing, continuous, unbounded from above function in some neighborhood of the

point +∞, F ∈ D0 be a Dirichlet series of the form (1), c > 0, and Gc be the series defined by

(12), (16), and (10). If conditions (27) and (37) hold, then for each ε > 0 we have

lnM(σ, F) ≤ Ψ(σ) + h(Ψ(σ) + ε) + ε − ln ε − ln c + o(1), σ ↑ 0. (43)

Proof. Let Γ be the second Young conjugate function of Ψ. By Lemma 7, condition (37) is

equivalent to condition (39), and by Lemma 5, condition (27) is equivalent to condition (41).

Let also σ3 and σ4 be the numbers from conditions (41) and (39), respectively, and ε > 0 be a

fixed number.

We choose σ2 < 0 such that the inequalities Γ′
−(σ2) > 0, σ2 ≥ σ3, and σ2 ≥ σ4 hold. Let

σ ∈ [σ2, 0). As is easy to see, on the interval (0, 1) there exists a unique number δ = δ(σ) such

that (1 − δ)|σ|Γ′
−(δσ) ≤ ε ≤ (1 − δ)|σ|Γ′

+(δσ). Note that

Γ(δσ)− Γ(σ) ≤ (1 − δ)|σ|Γ′
−(δσ) ≤ ε. (44)

Using Theorem 2 (see Remark 2) and taking into account (39), (44), and (41), we have

lnM(σ, F) ≤ Γ(δσ) + ln
( 1

1 − δ
+ 1 +

1

(1 − δ)|σ|c

)

= Γ(δσ) + ln
1

(1 − δ)|σ|c
+ o(1)

= Γ(δσ) + ln Γ′
+(δσ)− ln ε − ln c + o(1)

≤ Γ(σ) + ε + h(Γ(σ) + ε)− ln ε − ln c + o(1)

as σ ↑ 0. This implies (43).

The following theorem is a direct consequence of Theorem 24.
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Theorem 25. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R,

∆ be the quantity defined by (31), F ∈ D0 be a Dirichlet series of the form (1), c > 0, and

Gc be the series defined by (12), (16), and (10). If ∆ < +∞ and condition (20) holds, then we

have lnM(σ, F) ≤ (1 + ∆ + o(1))Ψ(σ) as σ ↑ 0.

Using Theorem 25 and Lemmas 9 and 7, we obtain the following two statements.

Theorem 26. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R, ∆ be

the quantity defined by (31), F ∈ D0 be a Dirichlet series of the form (1), c > 0, and Gc be the

series defined by (12), (16), and (10). If ∆ < +∞, then the following conditions are equivalent:

(i) ∃ q > 0 ∃ σ1 < 0 ∀ σ ∈ [σ1, 0): lnM(σ, F) ≤ qΨ(σ);

(ii) ∃ p > 0 ∃ σ2 < 0 ∀ σ ∈ [σ2, 0): ln µ(σ, Gc) ≤ pΨ(σ);

(iii) ∃ p > 0 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −pΨ̃(λn/p).

Theorem 27. Let Ψ ∈ Ω0, ψ(x) be the right-hand derivative of Ψ̃(x) at each point x ∈ R, ∆ be

the quantity defined by (31), F ∈ D0 be a Dirichlet series of the form (1), c > 0, and Gc be the

series defined by (12), (16), and (10). If ∆ = 0, then the following conditions are equivalent:

(i) ∀ q > 1 ∃ σ1 < 0 ∀ σ ∈ [σ1, 0): lnM(σ, F) ≤ qΨ(σ);

(ii) ∀ p > 1 ∃ σ2 < 0 ∀ σ ∈ [σ2, 0): ln µ(σ, Gc) ≤ pΨ(σ);

(iii) ∀ p > 1 ∃ n0 ∈ N0 ∀ n ≥ n0: ln |bn| ≤ −pΨ̃(λn/p).

Note that estimates of the type obtained above are often used to study the growth of ana-

lytic functions (see, for example, [5, 8, 9, 21, 24, 25]). In particular, such estimates are necessary

to describe the minimal growth of analytic functions with given zeros (see [1–4, 7, 20, 39]).

5 Global estimates for sums of Dirichlet series

Conditions, under which some global estimates for the sum of a series F ∈ DA hold, are

found in the works [23, 38]. Here we supplement the results from [23, 38], and also investigate

other global estimates.

By Ω′ we denote the class of all continuously differentiable, positive on R functions Φ such

that Φ′ is an increasing, positive on R function. Let Ω be the class of all continuous, positive,

increasing on R functions Φ such that Φ(σ)/σ → +∞ as σ → +∞. It is clear that Ω′ ⊂ Ω ⊂ X.

Let F ∈ D+∞ be a Dirichlet series of the form (1). M.M. Sheremeta [38], in the case when

Ψ ∈ Ω′, indicated a condition on the sequence (|an|)n∈N0
(in terms of the sequence (Rn)n∈N0

defined by (2)), which is necessary and sufficient in order that for every q > 1 there exists a

constant B ∈ R such that

lnM(σ, F) ≤ Ψ(qσ) + B, σ ∈ R. (45)

In [23], this result is extended to the case when Φ ∈ Ω. In the general case, that is, for an

arbitrary function Φ ∈ X, we have the following theorem.
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Theorem 28. Let Ψ ∈ X, q0 ≥ 0, F ∈ D+∞ be a Dirichlet series of the form (1), c > 0, and

(bn)n∈N0
be the sequence defined by (11) and (10). Then for every q > q0 there exists a constant

B ∈ R such that (45) holds if and only if for every p > q0 there exists a constant C ∈ R such

that

ln bn ≤ −Ψ̃(λn/p) + C, n ∈ N0. (46)

Proof. Let N be the number defined by (10), and Gc be the series defined by (12). Note that

the functions µ(σ, F) and µ(σ, Gc) are continuous and positive on R, and for all σ from some

neighborhood of the point −∞ we have µ(σ, F) = |aN |e
σλN and µ(σ, Gc) = bNeσλN . It is also

clear that M(σ, F) ∼ |aN |e
σλN as σ → −∞. Let us fix some number σ0 > 0. From what has

been said it immediately follows that there exist constants c1 ∈ (0, 1) and c2 > 1 such that

c1µ(σ, Gc) ≤ M(σ, F) ≤ c2µ(σ, Gc) for all σ ≤ σ0.

Sufficiency. Suppose that for every p > q0 there exists a real constant C = C(p) such that

(46) holds, and let q > q0 be a fixed number. We put p1 = q and fix some p2 ∈ (q0, q). If

j ∈ {1, 2}, then ln bn ≤ −Ψ̃(λn/pj) + Cj for all n ∈ N0, where Cj = C(pj), and therefore by

Lemmas 8 and 9 we have

ln µ(σ, Gc) ≤ Ψ(pjσ) + Cj, σ ∈ R. (47)

Since M(σ, F) ≤ c2µ(σ, Gc) for all σ ≤ σ0, then, using (47) with j = 1, we obtain

lnM(σ, F) ≤ Ψ(qσ) + C1 + ln c2, σ ≤ σ0. (48)

Next, for each σ ≥ σ0 we set ε(σ) = (q − p2)σ/p2 and let ε0 = ε(σ0). Then by Theorem 1 for all

σ ≥ σ0 we have

M(σ, F) ≤ µ(σ + ε(σ), Gc)
( eε0c

eε0c − 1
+

σ

ε(σ)

)
= c3µ

(qσ

p2
, Gc

)
, c3 :=

eε0c

eε0c − 1
+

p2

q − p2
.

So, using (47) with j = 2, we get

lnM(σ, F) ≤ Ψ(qσ) + C2 + ln c3, σ ≥ σ0. (49)

Taking B = max{C1 + ln c2, C2 + ln c3}, from (48) and (49) we see that (45) holds.

Necessity. Suppose that for every q > q0 there exists a real constant B = B(q) such

that (45) holds. Let p > q0 be a fixed number and B1 = B(p), i.e. for all σ ∈ R we have

lnM(σ, F) ≤ Ψ(pσ) + B1. Let also c1 be the constant defined above. By the definition of the

constant c1 and by Theorem 1 for all σ ∈ R we have c1µ(σ, Gc) ≤ M(σ, F), and therefore

ln µ(σ, Gc) ≤ lnM(σ, F)− ln c1 ≤ Ψ(pσ) + B1 − ln c1, σ ∈ R.

Then, taking C = B1 − ln c1, by Lemmas 8 and 9 we obtain (46).

Let Ψ ∈ Ω′, and F ∈ D+∞ be a Dirichlet series of the form (1). M.M. Sheremeta [38] also

considered the following problem posed by B.V. Vynnyts’kyi: find a condition on the sequence

(|an|)n∈N0
that is necessary and sufficient in order that there exist positive constants q and B

such that

lnM(σ, F) ≤ qΨ(σ + B), σ ∈ R. (50)

The result in [38], which gave such a condition (in terms of the sequence (Rn)n∈N0
defined by

(2)), contained a minor inaccuracy, which was corrected in [23]. In addition, in [23], a solution

to the formulated problem was obtained for the case when Ψ ∈ Ω. In the general case, that is,

in the case of arbitrary Ψ ∈ X, this problem is open. However, we succeeded in proving the

following theorem.
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Theorem 29. Let Ψ ∈ X, q0 ≥ 0, F ∈ D+∞ be a Dirichlet series of the form (1), N be the

number defined by (10), 0 < c < λN+1 − λN , and (bn)n∈N0
be the sequence defined by (11).

If λN > 0, then for every q > q0 there exists a constant B ∈ R such that (50) holds if and only

if for every p > q0 there exists a constant C ∈ R such that

ln bn ≤ −pΨ̃(λn/p) + Cλn, n ∈ N0. (51)

Proof. Let Gc be the series defined by (12). Since 0 < c < λN+1 − λN , then bN = |aN |, and

therefore there exists σ1 < 0 such that µ(σ, Gc) = µ(σ, F) = |aN |e
σλN ≤ M(σ, F) for all σ ≤ σ1.

Furthermore, since λN > 0 and M(σ, F) ∼ |aN |e
σλN as σ → −∞, there exists σ2 < 0 such that

M(σ, F) ≤ |aN |e
(σ+1)λN ≤ µ(σ + 1, Gc) for all σ ≤ σ2.

Sufficiency. Suppose that for every p > q0 there exists a real constant C = C(p) such that

(51) holds, and let q > q0 be a fixed number. We put p1 = q and fix some p2 ∈ (q0, q). If

j ∈ {1, 2}, then ln bn ≤ −pjΨ̃(λn/pj) + Cjλn for all n ∈ N0, where Cj = C(pj), and therefore

by Lemmas 8 and 9 we have

ln µ(σ, Gc) ≤ pjΨ(σ + Cj), σ ∈ R. (52)

Using Theorem 1, we obtain lnM(σ, F) ≤ ln µ(σ + 1, Gc) + 2 ln σ for all sufficiently large

σ ≥ 0. Since ln µ(σ, Gc) ≥ ln |aN |+ σλN for all σ ∈ R, there exists a number σ3 ≥ 0 such that

lnM(σ, F) ≤ q ln µ(σ + 1, Gc)/p2 for all σ ≥ σ3. Then for all σ ∈ [σ2, σ3] we have

lnM(σ, F) ≤ lnM(σ3, F) ≤
q

p2
ln µ(σ3 + 1, Gc) ≤

q

p2
ln µ(σ + σ3 − σ2 + 1, Gc).

Put B = max{1 + C1, σ3 − σ2 + 1 + C2}. If σ ≤ σ2, then using the monotonicity of the

function µ(σ, Gc), the inequality 1 ≤ B − C1, and (52) with j = 1, we obtain

lnM(σ, F) ≤ ln µ(σ + 1, Gc) ≤ ln µ(σ + B − C1, Gc) ≤ qΨ(σ + B).

Similarly, using the inequalities 1 ≤ σ3 − σ2 + 1 ≤ B − C2 and (52) with j = 2, for all σ ≥ σ2 we

have

lnM(σ, F) ≤
q

p2
ln µ(σ + σ3 − σ2 + 1, Gc) ≤

q

p2
ln µ(σ + B − C2, Gc) ≤ qΨ(σ + B).

Therefore, (50) holds.

Necessity. Suppose that for every q > q0 there exists a real constant B = B(q) such

that (50) holds. Let p > q0 be a fixed number and B1 = B(p), i.e. for all σ ∈ R we have

lnM(σ, F) ≤ pΨ(σ + B1). Let C = −σ1 + B1, where σ1 < 0 is the number defined above.

Using the definition of the number σ1 and Theorem 1, as well as the inequality 0 < C − B1 and

the monotonicity of the function M(σ, F), for all σ /∈ [σ1, 0] we have

ln µ(σ, Gc) ≤ lnM(σ, F) < lnM(σ + C − B1, F) ≤ pΨ(σ + C).

Similarly, for all σ ∈ [σ1, 0] we obtain

ln µ(σ, Gc) ≤ ln µ(0, Gc) ≤ lnM(0, F)

≤ lnM(σ − σ1, F) = lnM(σ + C − B1, F) ≤ pΨ(σ + C).

Therefore, ln µ(σ, Gc) ≤ pΨ(σ + C) for all σ ∈ R. Hence, by Lemmas 8 and 9, (51) holds.
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Remark 4. A detailed analysis of the proof of the following theorem shows that in Theorem 29

the condition c < λN+1 − λN can be omitted, but then (51) must be replaced by

ln bn ≤ −pΨ̃(λn/p) + ln(|aN |/bN) + Cλn, n ∈ N0.

Theorem 30. Let Ψ ∈ X, δ0 be the quantity defined by (26), F ∈ D+∞ be a Dirichlet series of

the form (1), N be the number defined by (10), c > 0, and (bn)n∈N0
be the sequence defined

by (11). If λN > 0 and δ0 < +∞, then there exists a constant ε ∈ R such that

lnM(σ, F) ≤ Ψ(σ + ε), σ ∈ R, (53)

if and only if there exists a constant δ ∈ R such that

ln bn ≤ −Ψ̃(λn) + ln(|aN |/bN) + δλn, n ∈ N0. (54)

Proof. Let Gc be the series defined by (12).

Necessity. Suppose that for some constant ε ∈ R we have (53). Reasoning as in the proof of

Theorem 28, for some σ1 < 0 and all σ ≤ σ1 we have the inequality |aN|
bN

µ(σ, Gc) ≤ M(σ, F). By

Theorem 1 this inequality also holds for all σ ≥ 0. Therefore, for each σ ∈ R we have

ln µ(σ, Gc) ≤ lnM(σ − σ1, F)− ln(|aN |/bN) ≤ Ψ(σ − σ1 + ε)− ln(|aN |/bN).

Taking δ = −σ1 + ε, by Lemmas 8 and 9 we obtain (54).

Sufficiency. Suppose that there exists a constant δ ∈ R such that (54) holds. Then by Lem-

mas 8 and 9 we obtain

ln µ(σ, Gc) ≤ Ψ(σ + δ)− ln(|aN |/bN), σ ∈ R. (55)

Reasoning as in the proof of Theorem 29, for some σ2 < 0 and all σ ≤ σ2 we have

M(σ, F) ≤ |aN|
bN

µ(σ + 1, Gc). Furthermore, according to the condition δ0 < +∞, there exist

constants σ3 > 0 and η > 0 such that for all σ ≥ σ3 we have Ψ(σ) ≥ ησ ln σ.

Without loss of generality, we can assume that Ψ is nondecreasing, convex, and takes fi-

nite values on R (otherwise we set γ(σ) = ln µ(σ − δ, Gc) + ln(|aN |/bN) for all σ < σ3,

γ(σ) = max{ln µ(σ − δ, Gc) + ln(|aN |/bN), ησ ln σ} for all σ ≥ σ3, and, using Lemma 3, every-

where below instead of Ψ we consider the function ˜̃γ).

Using the convexity of the function Ψ, it is easy to prove the existence of a number σ4 ≥ σ3

such that Ψ′
+(σ) ≥ η ln σ for all σ ≥ σ4. Let us fix a number ζ such that (ζ − 1 − δ)η > 2. Then

we obtain

Ψ(σ + ζ)− Ψ(σ + 1 + δ) ≥ (ζ − 1 − δ)Ψ′
+(σ + 1 + δ) ≥ 2 ln σ, σ ≥ σ5, (56)

with some σ5 ≥ σ4 − 1 − δ. Therefore using Theorem 1 and relations (55) and (56) for some

positive σ6 ≥ σ5 and all σ ≥ σ6 we have

lnM(σ, F) ≤ ln µ(σ + 1, Gc) + ln(|aN |/bN) + 2 ln σ ≤ Ψ(σ + ζ).

If σ ≤ σ2, then using (55) we get

lnM(σ, F) ≤ ln(|aN |/bN) + ln µ(σ + 1, Gc) ≤ Ψ(σ + 1 + δ).

If σ ∈ [σ2, σ9], then using the monotonicity of the function Ψ we have

lnM(σ, F) ≤ lnM(σ6, F) ≤ Ψ(σ6 + ζ) ≤ Ψ(σ + σ6 − σ2 + ζ).

As a result, we see that (53) holds with ε = σ6 − σ2 + ζ, and Theorem 30 is proved.
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The following three theorems can be proved by similar considerations.

Theorem 31. Let Ψ ∈ X, δ0 be the quantity defined by (26), F ∈ D+∞ be a Dirichlet series of

the form (1), c > 0, and (bn)n∈N0
be the sequence defined by (11) and (10). If δ0 < +∞, then

there exist real constants ε and B such that

lnM(σ, F) ≤ Ψ(σ + ε) + B, σ ∈ R, (57)

if and only if there exist real constants δ and C such that

ln bn ≤ −Ψ̃(λn) + δλn + C, n ∈ N0. (58)

Theorem 32. Let Ψ ∈ X, δ0 be the quantity defined by (26), F ∈ D+∞ be a Dirichlet series

of the form (1), c > 0, and (bn)n∈N0
be the sequence defined by (11) and (10). If δ0 < +∞,

then for every B > 0 there exists a constant ε ∈ R such that (57) holds if and only if for every

C > ln(|aN |/bN) there exists a constant δ ∈ R such that (58) holds.

Theorem 33. Let Ψ ∈ X, δ0 be the quantity defined by (26), F ∈ D+∞ be a Dirichlet series of

the form (1), c > 0, and (bn)n∈N0
be the sequence defined by (11) and (10). If δ0 = 0, then for

every ε > 0 there exists a constant B ∈ R such that (57) holds if and only if for every δ > 0

there exists a constant C ∈ R such that (58) holds.

Let F ∈ D+∞ be a Dirichlet series of the form (1). If an ≥ 0 for any n ∈ N0, then

M(σ, F) = M(σ, F) for all σ ∈ R, and therefore in the estimates from Theorems 28–33

we can replace M(σ, F) with M(σ, F). In the general situation, for all σ ∈ R we have

M(σ, F) ≤ M(σ, F), and therefore the mentioned theorems give only sufficient conditions

for the corresponding estimates to hold for M(σ, F). The question regarding the necessity of

these conditions remains open and does not seem simple, since M(σ, F) can grow relative to

M(σ, F) as σ → +∞ arbitrarily fast (see, for example, [17, 19]). However, under additional

conditions on the sequence of exponents λ = (λn)n∈N0
of the series F, it is already possible to

establish necessary and sufficient conditions, under which some general estimates from above

for M(σ, F) hold. In fact, let N be the number defined by (10) and τ(λ) = lim n→∞ ln n/λn.

If τ(λ) < +∞, then for each ε > τ(λ) we have B(ε) := ∑
∞
n=N e−ελn < +∞, and therefore

µ(σ, F) ≤ M(σ, F) ≤ M(σ, F) =
∞

∑
n=N

|an|e
(σ+ε)λne−ελn ≤ B(ε)µ(σ + ε, F), σ ∈ R. (59)

Using (59) and Lemmas 8 and 9, it is easy to prove, for example, the following two theorems.

Theorem 34. Let Ψ ∈ X, λ = (λn)n∈N0
be a sequence from the class Λ such that τ(λ) < +∞,

and F ∈ D+∞ be a Dirichlet series of the form (1). Then there exist real constants ε and B such

that

ln M(σ, F) ≤ Ψ(σ + ε) + B, σ ∈ R, (60)

if and only if there exist real constants δ and C such that

ln |an| ≤ −Ψ̃(λn) + δλn + C, n ∈ N0. (61)

Theorem 35. Let Ψ ∈ X, λ = (λn)n∈N0
be a sequence from the class Λ such that τ(λ) = 0, and

F ∈ D+∞ be a Dirichlet series of the form (1). Then for every ε > 0 there exists a real constant

B such that (60) holds if and only if for every δ > 0 there exists a real constant C such that (61)

holds.
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Now we turn to Dirichlet series absolutely convergent in a half-plane. Let Ψ ∈ X0, F ∈ D0

be a Dirichlet series of the form (1), and (Sn)n∈N0
be the sequence defined by (4). In [23], it is

proved that for every q ∈ (0, 1) there exists a constant B ∈ R such that

lnM(σ, F) ≤ Ψ(qσ) + B, σ < 0, (62)

if and only if for every p ∈ (0, 1) there exists a constant C ∈ R such that

ln Sn ≤ −Ψ̃(λn/p) + C, n ∈ N0, (63)

and also it is proved that there exist constants q ∈ (0, 1) and B ∈ R such that (62) holds if and

only if there exist constants p ∈ (0, 1) and C ∈ R such that (63) holds. Here we supplement

these results with the following theorem.

Theorem 36. Let Ψ ∈ X0, F ∈ D0 be a Dirichlet series of the form (1), and (Sn)n∈N0
be the

sequence defined by (4). Then for every B > 0 there exists a constant q ∈ (0, 1) such that (62)

holds if and only if for every C > 0 there exists a constant p ∈ (0, 1) such that (63) holds.

Proof. Let F2 be the series defined by (5).

Necessity. Suppose that for every B > 0 there exists a constant q = q(B) ∈ (0, 1) such

that (62) holds, and let C > 0. Put p = q(B). Using Theorem E, for all σ < 0 we have

ln µ(σ, F2) ≤ lnM(σ, F) ≤ Ψ(pσ) + C. Then by Lemmas 8 and 9 we obtain (63).

Sufficiency. Suppose that for every C > 0 there exists a constant p = p(C) ∈ (0, 1) such

that (63) holds, and let B > 0. We fix some C0 < B and set p0 = p(C0). Then we have

ln Sn ≤ −Ψ̃(λn/p0) + C0 for each n ∈ N0, and therefore by Lemmas 8 and 9 for all σ < 0

we obtain ln µ(σ, F2) ≤ Ψ(p0σ) + C0. Put δ = 1 − eC0−B. Noting that δ ∈ (0, 1), and using

Theorem E, for all σ < 0 we get

lnM(σ, F) ≤ ln µ(δσ, F2) + ln
1

1 − δ
≤ Ψ(p0δσ) + C0 + ln

1

1 − δ
= Ψ(p0δσ) + B,

i.e. (62) holds with p = p0δ.

By additional assumptions regarding the growth of the function Ψ ∈ X0, the condition on

(Sn)n∈N0
in Theorem 36 can be replaced by a simpler one.

Theorem 37. Let Ψ ∈ X0, F ∈ D0 be a Dirichlet series of the form (1), c > 0, and (bn)n∈N0
be

a sequence defined by (16) and (10). If

lim
σ↑0

|σ|Ψ(σ)/ ln(1/|σ|) > 0, (64)

then for every B > 0 there exists a constant q ∈ (0, 1) such that (62) holds if and only if for

every C > 0 there exists a constant p ∈ (0, 1) such that (46) holds.

Proof. Let Gc be the series defined by (12).

Necessity. Suppose that for every B > 0 there exists a constant q = q(B) ∈ (0, 1) such

that (62) holds, and let C > 0. We put p = q(B). Using Theorem 2, for all σ < 0 we have

ln µ(σ, Gc) ≤ lnM(σ, F) ≤ Ψ(pσ) + C. Then by Lemmas 8 and 9 we obtain (46).
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Sufficiency. Suppose that for every C > 0 there exists a constant p = p(C) ∈ (0, 1) such

that (46) holds, and let B > 0. Let us fix some C0 < B and set p0 = p(C0). Then we have

ln bn ≤ −Ψ̃(λn/p0) + C0 for each n ∈ N0, and therefore by Lemmas 8 and 9 for all σ < 0 we

obtain ln µ(σ, Gc) ≤ Ψ(p0σ) + C0. Without loss of generality, we can assume that the function

Ψ is nondecreasing, convex, and takes finite values on (−∞, 0) (see the proof of Theorem 30).

Let N be the number defined by (10). Since bN = |aN |, there exists σ1 < −1 such that

µ(σ, Gc) = µ(σ, F) for all σ ≤ σ1. Furthermore, M(σ, F) ∼ |aN |e
σλN as σ → −∞. Hence, there

exists σ2 < σ1 such that

lnM(σ, F) ≤ ln µ(σ, Gc) + B − C0 ≤ Ψ(p0σ) + B, σ ≤ σ2. (65)

Now let us fix arbitrary δ ∈ (0, 1) and δ0 ∈ (0, δ). Since Ψ(σ) → +∞ as σ ↑ 0 by the

condition (64) and Ψ is convex on (−∞, 0), we have Ψ′
+(σ)/Ψ(σ) → +∞ as σ ↑ 0. Then from

(64) it follows that |σ|Ψ′
+(σ)/(− ln |σ|) → +∞ as σ ↑ 0. Therefore, there exists σ3 ∈ (−1, 0)

such that Ψ(δ0 p0σ) − Ψ(δp0σ) ≥ (δ0 − δ)p0σΨ′
+(σ) ≥ −3 ln |σ|, σ ∈ (σ3, 0). Then, using

Theorem 2 (see Remark 2), for some σ4 ∈ (σ3, 0) we obtain

lnM(σ, F) ≤ ln µ(δσ, Gc)− 2 ln |σ| ≤ Ψ(δp0σ)− 3 ln |σ| < Ψ(δ0 p0σ) + B, σ ∈ [σ4, 0). (66)

Finally, if σ ∈ [σ2, σ4], then we have

lnM(σ, F) ≤ lnM(σ4, F) ≤ Ψ(δ0 p0σ4) + B ≤ Ψ(δ0 p0|σ4|σ/|σ2 |) + B.

This, together with (65) and (66), shows that (62) holds with p = δ0 p0|σ4|/|σ2|.
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[9] Chyzhykov I., Filevych P., Rättyä J. Generalization of proximate order and applications. Comput. Methods Funct.

Theory 2022, 22 (3), 445–470. doi:10.1007/s40315-021-00411-7

[10] Fedynyak S.I., Filevych P.V. Growth estimates for a Dirichlet series and its derivative. Mat. Stud. 2020, 53 (1), 3–12.

doi:10.30970/ms.53.1.3-12



Estimates for sums of Dirichlet series 65

[11] Fedynyak S.I., Filevych P.V. Growth estimates for the maximal term and central exponent of the derivative of a

Dirichlet series. Carpathian Math. Publ. 2020, 12 (2), 269–279. doi:10.15330/cmp.12.2.269-279

[12] Fedynyak S.I., Filevych P.V. Bernstein-type inequalities for analytic functions represented by power series. Mat.

Stud. 2024, 62 (2), 121–131. doi:10.30970/ms.62.2.121-131

[13] Filevych P.V. On the London theorem concerning the Borel relation for entire functions. Ukrainian Math. J. 1998,

50 (11), 1801–1804. doi:10.1007/BF02524490 (translation of Ukrain. Mat. Zh. 1998, 50 (11), 1578–1580. (in

Ukrainian))

[14] Filevych P.V. To the Sheremeta theorem concerning relations between the maximal term and the maximum modulus

of entire Dirichlet series. Mat. Stud. 2000, 13 (2), 139–144.

[15] Filevych P.V. An exact estimate for the measure of the exceptional set in the Borel relation for entire functions.

Ukrainian Math. J. 2001, 53 (2), 328–332. doi:10.1023/A:1010489609188 (translation of Ukrain. Mat. Zh. 2001,

53 (2), 286–288. (in Ukrainian))

[16] Filevych P.V. Asymptotic behavior of entire functions with exceptional values in the Borel relation. Ukrainian Math. J.

2001, 53 (4), 595–605. doi:10.1023/A:1012378721807 (translation of Ukrain. Mat. Zh. 2001, 53 (4), 522–530. (in

Ukrainian))

[17] Filevych P.V. Wiman-Valiron type inequalities for entire and random entire functions of finite logarithmic order. Sib.

Math. J. 2001, 42 (3), 579–586. doi:10.1023/A:1010435512666

[18] Filevych P.V. On the growth of the maximum of the modulus of an entire function on a sequence. Ukrainian Math. J.

2002, 54 (8), 1386–1392. doi:10.1023/A:1023443926292 (translation of Ukrain. Mat. Zh. 2002, 54 (8), 1149–1153.

(in Ukrainian))

[19] Filevych P.V. On influence of the arguments of coefficients of a power series expansion of an entire function on the

growth of the maximum of its modulus. Sib. Math. J. 2003, 44 (3), 579–586. doi:10.1023/A:1023825117420

[20] Filevych P.V. Asymptotic estimates for entire functions of minimal growth with given zeros. Mat. Stud. 2024, 62 (1),

54–59. doi:10.30970/ms.62.1.54-59

[21] Filevych P.V., Hrybel O.B. The growth of the maximal term of Dirichlet series. Carpathian Math. Publ. 2018, 10 (1),

79–81. doi:10.15330/cmp.10.1.79-81

[22] Filevych P.V., Hrybel O.B. On regular variation of entire Dirichlet series. Mat. Stud. 2022, 58 (2), 174–181.

doi:10.30970/ms.58.2.174-181

[23] Filevych P.V., Hrybel O.B. Global estimates for sums of absolutely convergent Dirichlet series in a half-plane. Mat.

Stud. 2023, 59 (1), 60–67. doi:10.30970/ms.59.1.60-67

[24] Filevych P.V., Hrybel O.B. Generalized and modified orders of growth for Dirichlet series absolutely convergent in a

half-plane. Mat. Stud. 2024, 61 (2), 136–147. doi:10.30970/ms.61.2.136-147

[25] Filevich P.V., Sheremeta M.M. Regularly increasing entire Dirichlet series. Math. Notes 2003, 74 (1–2), 110–122.

doi:10.1023/A:1025027418525 (translation of Mat. Zametki 2003, 74 (1–2), 118–131. (in Russian))

[26] Hayman W.K. The local growth of power series: a survey of the Wiman-Valiron method. Canad. Math. Bull. 1974,

17 (3), 317–358. doi:10.4153/CMB-1974-064-0

[27] Hlova T.Ya. Generalized scales of the growth of analytic functions. Dissertation for the degree of Candidate

of Sciences, Lviv, 2016. (in Ukrainian)

[28] Hlova T.Ya., Filevych P.V. Paley effect for entire Dirichlet series. Ukrainian Math. J. 2015, 67 (6), 838–852.

doi:10.1007/s11253-015-1117-x (translation of Ukrain. Mat. Zh. 2015, 67 (6), 739–751. (in Ukrainian))

[29] Hlova T.Ya., Filevych P.V. Generalized types of the growth of Dirichlet series. Carpathian Math. Publ. 2015, 7 (2),

172–187. doi:10.15330/cmp.7.2.172-187

[30] Hlova T.Ya., Filevych P.V. The growth of entire Dirichlet series in terms of generalized orders. Sb. Math. 2018,

209 (2), 241–257.

[31] Kovari T. On the maximum modulus and maximum term of functions analytic in unit disc. J. London Math. Soc.

1966, s1-41 (1), 129–137. doi:10.1112/jlms/s1-41.1.129



66 Hrybel O.B., Filevych P.V.

[32] Mandelbrojt S. Dirichlet series: principles and methods, D. Reidel Publishing Company, Dordrecht, 1972.

[33] Mulyava O.M., Filevych P.V. On the growth of an entire Dirichlet series with nonnegative coefficients. Visnyk Lviv

Univ. Ser. Mech. Math. 2003, 62, 89–94. (in Ukrainian)

[34] Rosenbloom P.C. Probability and entire functions. In “Studies in mathematical analysis and related topics,
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— Т.17, №1. — C. 42–66.

У роботi доведено теореми апроксимацiйного характеру, що дозволяють з достатньою то-

чнiстю оцiнити супремум модуля ряду Дiрiхле через максимальний член iншого ряду Дiрi-

хле, пов’язаного зi заданим. За допомогою цих теорем для ряду Дiрiхле отримано умови на

послiдовнiсть модулiв його коефiцiєнтiв, якi є необхiдними та достатнiми для виконання най-

загальнiших асимптотичних та глобальних оцiнок зверху для його супремуму модуля.

Ключовi слова i фрази: аналiтична функцiя, цiла функцiя, ряд Дiрiхле, супремум модуля,

абсциса абсолютної збiжностi, максимальний член, спряжена за Юнгом функцiя.


