Interpolational (L,M)-rational integral fraction on a continual set of nodes

Authors

  • Ya.O. Baranetskij Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
  • I.I. Demkiv Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
  • M.I. Kopach Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
  • A.V. Solomko Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine https://orcid.org/0000-0002-6213-4130
https://doi.org/10.15330/cmp.13.3.587-591

Keywords:

interpolation, functional polynomial, continual set of nodes, chain fraction, rational fraction
Published online: 2021-11-19

Abstract

In the paper, an integral rational interpolant on a continual set of nodes, which is the ratio of a functional polynomial of degree L to a functional polynomial of degree M, is constructed and investigated. The resulting interpolant is one that preserves any rational functional of the resulting form.

Article metrics
How to Cite
(1)
Baranetskij, Y.; Demkiv, I.; Kopach, M.; Solomko, A. Interpolational (L,M)-Rational Integral Fraction on a Continual Set of Nodes. Carpathian Math. Publ. 2021, 13, 587-591.

Most read articles by the same author(s)

1 2 > >>