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Abstract. A survey of general results about linear subspaces in zeros of polynomials on
real and complex Banach spaces.
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1. INTRODUCTION

The paper is a survey of results related to linear subspaces in zero-sets (kernels) of real and
complex polynomials on Banach spaces.

The study of the zeros of polynomials has a long history, which began with the results ob-
tained in algebraic geometry and complex analysis. Zeros of polynomials on infinite demen-
sional Banach spaces was studied in [2], [3], [4], [5], [7], [12], [13], [18] by R. Aron, B. Cole,
T. Gamelin, D. Garsia, M. Maestre, A. Zagorodnyuk, A. Plichko, R. Gonzalo, J. Ferrer, P. Hajek
and others.

Let X and Y be real or complex Banach vector spaces. For every positive integer numbers
n, m ∈ N let XnYm will denote the Cartesian product of n copies of X and m copies of Y, and
xnym will denote the element (x, . . . , x, y, . . . , y) from XnYm.

For n ∈ N we denote by L(nX, Y) the vector space of all continuous n-linear mappings F
from X to Y endowed with the norm of uniform convergence on the unit ball of Xn. An n-linear
mapping F is called symmetric if

F(x1, . . . , xn) = F
(

xs(1), . . . , xs(n)

)
, s ∈ Sn,

where Sn means all permutations

s : {1, . . . , n} 7−→ {s(1), . . . , s(n)}.



106 N.B. Verkalets, A.V. Zagorodnyuk

The subspace in L(nX, Y) of all continuous symmetric n-linear maps will be denoted by
Ls(nX, Y). Clearly, L(nX, Y) and Ls(nX, Y) are Banach spaces. Further in the previous nota-
tions we will not write the index n = 1. In particular, L(X) denotes the algebra of all continuous
linear operators and L(X,C) := X′ denotes the dual space of X.

Definition 1. Let us denote by ∆n the natural embeddings called diagonal mappings from X to
Xn defined as

∆n : X −→ Xn

x 7−→ (x, . . . , x).

A mapping P from X to Y is called a continuous n-homogeneous polynomial if

P(x) = (F ◦ ∆n) (x) for some F ∈ L(nX, Y). (1.1)

Let P(nX, Y) denote the vector space of all continuous n-homogeneous polynomials endowed
with the norm of uniform convergence on the unit ball B of X, i.e.,

‖P‖ = sup
x∈B
‖P(x)‖

with P ∈ P(nX, Y).

In the paper we consider cases Y = R or Y = C the fields of real or complex numbers. We
use notation P(X) and P(nX) for the space of scalar valued polynomials and n-homogeneous
scalar valued polynomials respectively.

Let us denote by P̌ the unique symmetric n-linear map F which satisfies 1.1 for a given P ∈
P(nX).

For detales on polynomials on Banach spaces we refer the reader to [9], [10], [17].

2. LINEAR SUBSPACES IN ZEROS OF COMPLEX POLYNOMIALS

If X is an arbitrary complex vector space (not necessarily normed), we define a n-homogeneous
complex polynomial by the formula

P(x) = (F ◦ ∆n) (x) x ∈ X,

where F is a complex n-linear (not necessarily continuous) functional on X.
It is clear that the kernel (i.e. the set of zeros) of an n-homogeneous complex polynomial P

on X, where n > 0 and dim X > 1, consists of one-dimensional subspaces. In [18] A. Plichko
and A. Zagorodnyuk showed that one-dimensional subspaces consists of infinite-dimensional
subspaces if dim X = ∞.

Theorem 2.1. Let X be an infinite-dimensional complex vector space and P is a complex n-homogeneous
polynomial on X. Then there exists an infinite-dimensional subspace X0 such that

X0 ⊂ ker P.

Lemma 1. Let Theorem 2.1 be proved for every homogeneous polynomial of degree ≤ n. Then for
arbitrary homogeneous polynomials P1, · · · , Pm of degree ≤ n there exists a subspace

X0 ⊂ ker P1 ∩ . . . ∩ ker Pm

such that dim X0 = ∞.
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Proof. Let X1 ⊂ ker P1 with dim X1 = ∞. Then there exists a subspace X2 ⊂ X1 ∩ ker P2 such
that dim X2 = ∞. Continuing this process, we get the subspace

X0 = Xm ⊂ Xm−1 ⊂ · · · ⊂ X1

with X0 ⊂ ker P1 ∩ · · · ∩ ker Pm and dim X0 = ∞. �

Proof of Theorem 2.1. We will construct X0 using the induction on n. Evidently that the theorem
is true for linear functionals. Suppose that it is true for homogeneous polynomials of degree
< n.

Let x1 ∈ X is chosen such that P(x1) 6= 0 (if such x1 does not exist then the assertion of
theorems is true automatically). By the induction hypothesis and by Lemma 1 there exists a
subspace X1 ⊂ X with dim X1 = ∞, on which each of the homogeneous polynomials

Px1(x) := P̌
(

x1, xn−1
)

,

Px2
1
(x) := P̌

(
x2

1, xn−2
)

,
. . . . . . . . . . . . . . . . . . . . .
Pxn−1

1
(x) := P̌

(
xn−1

1 , x
)

vanish for all x ∈ X1, where P̌ is the symmetric n-linear functional associated with the n-
homogeneous polynomial P.

On second step we choose an element x2 ∈ X1 such that P(x2) 6= 0 (if x2 does not exist then
X1 ⊂ ker P and the theorem is proved at once). By the induction hypothesis and by Lemma 1
there exists a subspace X2 ⊂ X1 with dim X2 = ∞ on which each homogeneous polynomials

Pxk
1,xl

2
(x) := P̌

(
xk

1, xl
2, xn−k−l

)
, 0 < k + l < n

vanish for all x ∈ X2.
We continue this process in the way written above. If it finishes on the i-th step (i.e. P(Xi) ≡

0), then the theorem is proved. If it does not finish then we will get an infinite sequence (xi)
consisting of linearly independent terms such that P(xi) 6= 0 for every i ∈ N and

P̌
(

xk1
1 , xk2

2 , . . . , xki
i

)
= 0

if 0 < ki < n at least for one ki.
Consequently, it follows that for any finite sequence of scalars (ai),

P
(

∑
i

aixi

)
= ∑

i
an

i P(xi).

Put yi = xi/P(xi) for all i ∈ N. Then P vanishes on the linear span of elements

y1 +
n
√
−1y2, y3 +

n
√
−1y4, y5 +

n
√
−1y6, . . . .

The theorem is proved. �
In [18] it was proved the following:

Corollary 1. For every polynomial functional P on a complex infinite dimensional vector space, for
which P(0) = 0, there exists an infinite dimensional linear subspace X0 such that X0 ⊂ ker P.

Corollary 2. If P is a polynomial functional on a complex infinite dimensional vector space and P(x0) =
0, then there exists an infinite dimensional affine subspace X0 ⊂ ker P with x0 ∈ X0.
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In [19] it was proved next corollary:

Corollary 3. There is a function Φ : N0 ×N0 → N0, Φ(m, d) = n with the following property.
For every complex polynomial P : Cn → C of degree d, there is a subspace X ⊂ Cn dimension m such

that P|X ≡ P(0).

The real analogue of this result is obviously false, as can be seen by considering P(x) = ∑ x2
j .

Despite this, a number of positive results hold. For example, one can show:

Theorem 2.2. There is a function θ : N0 → N0, θ(m) = n with the following property:
For every real polynomial P : Rn → R which is homogeneous of degree 3, there is a subspace X ⊂ Rn

of dimension m such that P|X ≡ 0.

Theorem 2.3. If a real infinite dimensional Banach space E does not admit a 2-homogeneous positive
definite polynomial, then every 2-homogeneous polynomial P : E → R is identically 0 on an infinite
dimensional subspace of E.

3. NONSEPARABLE ZERO SUBSPACES

3.1. NONSEPARABLE SUBSPACES IN ker P ⊂ l∞

All results of this subsection was proved in [11] by M. Fernandez-Unzueta. In particular in
[11] was proved that every complex polynomial P defined on l∞ such that P(0) = 0 necessarily
vanishes on a non-separable subspace. In the real case, it was shown that if P vanishes on a
copy of c0, then it vanishes as well on a non-separable subspace.

Theorem 3.1. Consider the Banach space l∞ (real or complex) and a subspace G ⊂ l∞ isomorphic to c0.
Then, there exists a non-countable collection of vectors (xα)α∈A ⊂ l∞ satisfying the following condition:
For every {Pi}∞

i=1 ⊂ P(l∞) such that G ⊂ ⋂∞
i=n ker Pi, there exists a subset of indices Γ ⊂ A with

A \ Γ at most countable such that the subspace

FΓ := Span{xα; α ∈ Γ}
is non-separable and contained in

⋂∞
i=1 ker Pi.

Lemma 2. It is enough to prove Theorem 3.1 for the case where the collection of polynomials {Pi} ⊂
P(nl∞) reduces to a single homogeneous polynomial P ∈ P(nl∞).

Proof of Theorem 3.1. By Lemma 2 it is enough to consider the case of a single homogeneous
polynomial P. The proof will be done by induction on n, the degree of the polynomial. At
each inductive step n we will, however, assume that the result holds for a countable family
of polynomials of degree strictly less than n. The case n = 1 asserts that for a fixed linear
functional x∗ ∈ l∞ such that x∗|c0 = 0, there exists Γ ⊂ A, a subset of indices with countable
complement in A, such that x∗(xγ) = 0 if γ ∈ Γ.

We assume now that Theorem 3.1 holds for polynomials of degree k < n.
Let P ∈ P(nl∞) be such that c0 ⊂ ker P and let (ei)i be the canonical basis of c0. Consider the

countable family of polynomials Pi1,...,ik ⊂ P(
n−kl∞) defined as follows:

Pi1,...,ik(x) := P̌(eik , . . . , eik , x,
n−k

... , x) for x ∈ l∞, 1 ≤ k < n and ij ∈ N. (3.1)
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Every polynomial in this countable collection has degree strictly less than n and satisfies
c0 ⊂ ker Pi1,...ik . The induction hypothesis allows us to choose some set of indices

Γ1 ⊂ A (3.2)

in such a way that A ⊃ Γ1 is countable and FΓ1 = Span{xγ; γ ∈ Γ1} is a non-separable subspace
contained in

⋂
ker Pi1,...ik . A main step in the proof is the fact that the following set:

S = {γ ∈ Γ1; there are α2, . . . , αn ∈ Γ1 with |P̌(xγ ⊗ xα2 ⊗ . . .⊗ xαn)| 6= 0}
is countable, accoding to Lemma 4 (see below).

Assuming this, to finish the proof of Theorem 3.1, consider the non-countable set of indices
obtained by removing from the set Γ1 defined in (3.2), every index appearing in the countable
set S : Γ2 = Γ1\S. Since S is countable, A\Γ2 is a countable set. Besides, whenever γk ∈ Γ2
for 1 ≤ k ≤ n, we have that P̌(xγ1 ⊗ . . . ⊗ xγn). In particular if γ ∈ Γ2 then xγ ∈ ker P. Let
us finally check that not only these elements, but the subspace generated by them, FΓ2 , satisfies
FΓ2 ⊂ ker P. Let γ1, . . . , γk ∈ Γ2 and λ1, . . . λk ∈ C. We obtain the result for the elements in the
linear span of {xγ, γ ∈ Γ2} from the following computation:

P(λ1xγ1 + . . . + λkxγk) = ∑
i1 = 1, . . . , k

. . .
in = 1, . . . , k

λi1 . . . λin P̌(xγi1
⊗ . . .⊗ xγin

) = 0.

The result for the closure FΓ2 of the linear span is obtained just from the continuity of P.
�

Lemma 3. Let k, n ∈ N, and let {ei, i ∈ N} be the set of coordinate vectors in l∞. For any indices
ij
m ∈ N, j = 1, . . . , k, m = 2, . . . , n, the set

{ei1j
⊗ ei2j

⊗ . . .⊗ ein
j
; 1 ≤ j ≤ k} (3.3)

defines a basis isometrically equivalent to the canonical basis of lk
∞ in l∞⊗̂π

n
... ⊗̂πl∞.

Lemma 4. Consider Γ1 the subset of A defined in (3.2). Then, the set

S = {Γ1; there are α2, . . . , αn ∈ Γ1 with P̌(xγ ⊗ xα2 ⊗ . . .⊗ xαn) 6= 0}
is at most countable.

Corollary 4. If F ⊂ l∞ is separable and c0 ⊂ F, then F is not the intersection of any denumerable family
of sets of zeroes of scalar-valued polynomials.

The following theorem is an important consequence of Theorem 3.1. It asserts the existence
of non-separable subspaces in the set of zeroes of every polynomial P on the complex l∞ space,
such that P(0) = 0.

Theorem 3.2. Let E be a complex Banach space containing l∞ and P ∈ P(E) be such that P(0) = 0.
Then, there exists a non-separable subspace F ⊂ ker P.

For a fixed Banach space E, n ∈ N, and a polynomial P ∈ P(nE) with P(0) = 0 we say
that the subspace F ⊂ E is maximal among the subspaces contained in ker P (or just maximal if the
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context is clear) if F ⊂ ker P and whenever G ⊂ E is any subspace satisfying F ⊂ G ⊂ ker P,
then necessarily F = G.

The following proposition describes an arbitrary maximal subspace for a homogeneous poly-
nomial P as the intersection of the sets of zeroes of a finite number of polynomials (generally
non-scalar). This result is particularly interesting for our purposes if the maximal subspace is
separable.

Proposition 1. Let E be a Banach space (real or complex), n ∈ N, P ∈ P(nE) and F ⊂ E a subspace
such that F ⊂ ker P. Then F is maximal among the subspaces contained in ker P if and only if

F =
n⋂

k=1

ker Qk, (3.4)

where Qk ∈ P(kE,P(n−kF)) is defined for every x ∈ E and every y ∈ F as

Qk(x)(y) = P̂(x,
k
... , x, y,

n−k
... , y),

where 1 ≤ k ≤ n.

Proof. Assume first that F is a maximal subspace, and consider any x ∈ F. By hypothesis
Qn(x) = P(x) = 0. For 1 ≤ k ≤ n − 1 we have Qk(x) = 0 if and only if for every y ∈ F,
Qk(x)(y) = 0. The condition P|F = 0 is equivalent to P̌|

F×
n
... ×F

= 0. Thus for every y ∈

F, Qk(x)(y) = P̌(x,
k
... , x, y,

n−k
... , y) = 0. This implies that x ∈ ker Qk and the contention ⊆

in (3.4) is proved.
Observe that this proof does not make use of the maximality of F. However, to show the

reverse inclusion this assumption is essential: Consider x ∈ ⋂n
k=1 ker Qk any scalar and y ∈ F.

Then

P(λx + y) = λnP(x) + P(y) +
n−1

∑
k=1

λk
(

n
k

)
P̌(x,

k
... , x, y,

n−k
... , y)

= λnP(x) + P(y) +
n−1

∑
k=1

λk
(

n
k

)
Qk(x)(y) = 0. (3.5)

Since F ⊂ [x] + F ⊂ ker P and F is maximal, necessarily x ∈ F.
Assume now that F ⊂ ker P can be expressed as in (3.3). Let us prove that F is maximal.

Consider x ∈ ker P such that P(λx + y) = 0 for every scalar λ and every y ∈ F. Equation (3.5)
still holds and says that for every fixed y ∈ F we have a polynomial on λ ∈ K identically zero.
Thus, every coefficient is zero. In this way it is proved that x ∈ ker Qk for k = 1, . . . , n. From
expression (3.3) we get that x ∈ F and consequently that F is maximal. �

Corollary 5. If F ⊂ l∞ is separable and c0 ⊂ F, then F is not maximal for any P ∈ P(nl∞).

Observe that the description of a maximal separable subspace just given leads also to a proof
of Theorem 3.2: As argued before, every complex polynomial with P(0) = 0 must be zero on a
copy of c0. This copy of c0 is contained in a maximal subspace F ⊂ ker P which, by Corollary 5,
is necessarily non-separable.
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3.2. ZERO SUBSPACES OF POLYNOMIALS ON l1(Γ)

All results of this subsection was proved in [6].
The examples that we construct are defined on spaces l1(Γ). Over this space, all polynomials

can be explicitly described. For instance, the general form of a quadratic functional P : l1(Γ)→
C is

P(x) = ∑
α,γ∈Γ

λαβxαxβ, x = (xγ)γ∈Γ ∈ l1(Γ),

where (λαβ)α,β∈Γ is a bounded family of complex scalars. Indeed in all our examples the coeffi-
cients λαβ are either 0 or 1, they functionals of the form

P(x) = ∑
{α,β∈G}

xαxβ,

where G a certain set of couples of elements of Γ. On the other hand, we state the following
elementary basic fact about polynomials that we shall explicitly use at some point.

Proposition 2. Let P : X → Y be a homogeneous polynomial of degree n and norm K. Then

||P(x)− P(y)|| ≤ nKMn−1||x||||y||
for every x, y ∈ X.

Let Ω be a set and A be an almost disjoint family of subsets of Ω (that is, |A ∩ A′| < |Ω|
whenever A, A′ ∈ A are different), and let B = Ω ∪ A. We consider the following quadratic
functional P : l1(B)→ C given by

P(x) = ∑{xnxA : n ∈ Ω, A ∈ A, n ∈ A}.

Theorem 3.3. The space X = l1(Ω) ⊂ l1(B) is maximal zero subspace for the polynomial P.

Proof. The only point which requires explanation is that X is indeed maximal. So assume by
contradiction that there is a vector y out of X such that Y = span(X ∪ {y}) is a zero subspace
for P. Without loss of generality, we suppose that y is supported in A. Pick A ∈ A such that
|yA| = max{|yB| : B ∈ A} and F ⊂ A a finite subset of A such that ∑B∈A\F |yB| < 1

9 |yA|.
Now, because A is an almost disjoint family of subsets of Ω, it is possible to find n ∈ Ω such
that n ∈ A but n /∈ B whenever B ∈ F \ {A}. Consider the element y + 1n ∈ Y. We claim that
P(y + 1n) 6= 0 getting thus a contradiction

P(y + 1n) = ∑
n∈B

yB = yA + ∑
n∈B,B∈A\F

yB.

The second term of the sum has modulus less than 1
9 the modulus of the first term. So P(y +

1n) 6= 0. �

We are interested in the case when |A| > |Ω|. The subspace l1(A) is a zero subspace for
P. It may not be maximal but this does not matter because, by a Zorn’s lemma argument, it is
contained in some maximal zero subspace. This fact together with Theorem 3.3 shows that P
has maximal zero subspaces of both densities |Ω| and |A|.

There are two standard constructions of big almost disjoin families. One is by induction, and
it shows that for every cardinal κ we can find an almost disjoint family of cardinality κ+ on
a set of cardinality κ. The other one is by considering the branches of the tree κ<ω, and this
indicates that for every cardinal κ we can find an almost disjoint family of cardinality κω(one
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construction or the other provides a better result depending on whether κω = κ, κω = κ+ or
κω > κk+. Hence,

Corollary 6. Let κ be an infinite cardinal and τ = max(κ+, κω). There exists a quadratic functional
on l1(τ) with a maximal zero subspace of density κ and another maximal zero subspace of density τ.

Corollary 7. There exists a quadratic functional on l1(c) with a separable maximal zero subspace and a
maximal zero subspace of density c.

We denote by [A]2 the set of all unordered pairs of elements of A

[A]2 = {t ⊂ A : |t| = 2}.
We consider an ordinal α to be equal to the set of all ordinals less than α,so

ω1 = {α : α < ω1}
is the set of countable ordinals, and also for a nonnegative integer n ∈ N, n = {0, 1, . . . , n− 1}.

We introduce some notations for subsets of a well ordered set Γ. If a ⊂ Γ is a set of cardinality
n, and k < n we denote by a(k) the (k + 1)-th element of a according to the well order of Γ, so
that

a = {a(0), . . . , a(n− 1)}.
Moreover, for a, b ⊂ Γ, we write a < b if α < β for every α ∈ a and every β ∈ b.
We recall also that a ∆-system with root a is a family of sets such that the intersection of every

two different elements of the family equals a. The well-known ∆-system lemma asserts that
every uncountable family of finite sets has an uncountable subfamily which forms a ∆-system.

Definition 2. A function f : [Γ]2 → 2 is said to be a partition of the first kind if for every
uncountable family A of disjoint subsets of Γ of some fixed finite cardinality n, and for ev-
ery k ∈ n there exist a, b, a′, b′ ∈ A such that f (a(k), b(k)) = 1, f (a′(k), b′(k)) = 0 and
f (a(i), b(j)) = f (a′(i), b′(j)) whenever (i, j) 6= (k, k). Notice that, passing to a further un-
countable subfamily A, we can choose such a < b such that, in addition, f (a(i), a(j)) =
f (a′(i), a′(j)) = f (b(i), b(j)) = f (b′(i), b′(j)) for all {i, j} ∈ [n]2.

Theorem 3.4. For Γ = ω1 there is a partition f : [Γ]2 → 2 of the first kind.

Theorem 3.5. If f : [Γ]2 → 2 is a partition of the first king and if Y is a subspace of l1(Γ) with
Y ⊂ ker Pf , then Y is separable.

We shall denote by ∆n = {(i, i) : i ∈ n} the diagonal of the cartesian product n × n,
n = {0, 1, . . . , n − 1} . Also BX(x, r) or simply B(x, r) will denote the ball of center x and
radius r in a given Banach space X.

Definition 3. A function f : [Γ]2 → ω is said to be a partition of the second kind if for every un-
countable family A of finite subsets of Γ all of some fixed cardinality n, we have the following
two conclusions:

(a) there is an uncountable subfamily B of A and a function h : n2 \ ∆n → ω such that
f (a(i), b(j)) = h(i, j) for every i 6= j, i, j < n and every a < b in B;

(b) for every function h : n→ ω there exists a < b in A such that f (a(i), b(i)) = h(i).

Theorem 3.6. For Γ = ω1 there is a partition f : [Γ]2 → 2 of the second kind as well.
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Theorem 3.7. Suppose that f : [ω1]
2 → ω is a partition of the second kind and let P = Pf : l1(Γ)→ V

be the corresponding polynomial. Let Y be a nonseparable subspace of l1(ω1). Then P(Y) has nonempty
interior in V.

3.3. ON THE ZERO-SET OF REAL POLYNOMIALS IN NONSEPARABLE BANACH
SPACES

All results of this subsection was proved in [12].
By P f (

nX) we denote the subspace of P(nX) formed by those polynomials which can be

written as P(x) =
m
∑

j=1
λj〈u∗j , x〉n, with λj ∈ R, u∗j ∈ X∗, 1 ≤ j ≤ m, and they are called finite

type polynomials. The space of approximable polynomials, PA(
nX), is given by the closure of

P f (
nX) in P(nX). By Pω(nX) we represent the subspace of P(nX) formed by those polyno-

mials that are weakly continuous on the bounded subsets of X. A polynomial P ∈ P(nX) is a

nuclear polynomial whenever it has the form P(x) =
∞
∑

j=1
aj〈u∗j , x〉n, x ∈ X, where (aj)

∞
j=1 and

(u∗j )
∞
j=1 is a bounded sequence of X∗. Denoting by PN(

nX) the class of nuclear polynomials, it
is quite clear that

P f (
nX) ⊂ PN(

nX) ⊂ PA(
nX) ⊂ Pω(

nX) ⊂ P(nX).

In what follows X will be an infinite-dimensional real Banach space and X∗ its topological
dual. We use the symbol 〈·, ·〉 to denote the standard duality between X and X∗.

If A ⊂ X and B ⊂ X∗, then we use the notation

A⊥ = {x ∈ X : 〈x∗, x〉 = 0, x ∈ A}, B⊥ = {x ∈ X : 〈x∗, x〉 = 0, x∗ ∈ B}.
For a polynomial P ∈ P(nX), the following conjugacy relationship between its first and

(n− 1)-th derivatives turned out to be relevant. The first derivative is the mapping P′ : X → X∗
such that

P′(x) = nP̌(x,
(n−1)

... , x, ·), x ∈ X,

while the (n− 1)-th derivative is given by the continuous linear map P(n−1) : X → Ls(Xn−1)
such that

P(n−1)(x) = n!P̌(x, ·,
(n−1)

... , ·), x ∈ X,

where Ls(Xn−1) denotes the space of symmetric continuous (n− 1)-linear functionals on X. It
is then straightforward to notice, using the Polarization formula, that

ker P(n−1) = P′(X)⊥.

If Z is such a maximal subspace, then, for x ∈ ker P(n−1), z ∈ Z,

P(x + z) = P(x) + P(z) +
n−1

∑
j=1

(
n
j

)
P̌(x,

(j)
... , x, z,

(n−j)
... , z)

=
1
n!

P(n−1)(x)(x,
(n−1)

... , x) +
n−1

∑
j=1

1
j!(n− j)!

P(n−1)(x)(x,
(j−1)

... , x, z,
(n−j)

... , z) = 0,
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i.e., Z + ker P(n−1) ⊂ ker P, and the maximality of Z yields that ker P(n−1) is contained in Z.
Hence, if ker P(n−1) were non-zero, we would easily obtain a non-zero linear subspace con-
tained in P−1(0). Indeed, we will seek for conditions in order to guarantee that ker P(n−1) is
sufficiently big. For this purpose, recall that

(ker P(n−1))⊥ = (P′(X)⊥)
⊥ = lin

ω∗
(P′(X)),

and so, roughly speaking, the smaller P′(X) is the bigger ker P(n−1) will be. In particular, if
P′(X) were separable, then (X/ ker P(n−1))∗ = (ker P(n−1))⊥would have to be weak∗-separable
and this is mainly the reason why in the next section we shall be dealing with this type of space.

We say that a real Banach space X is in class CH whenever there exists a one-to-one continu-
ous linear map from X into a Hilbert space. When X ∈ CH we shall say that X is injected into
a Hilbert space. If X is injected into a separable Hilbert space, then we shall write X ∈ W∗.
Clearly,W ⊂ CH. The following properties of the spaces in these two classes are quite straight-
forward.

Proposition 3. The following conditions are equivalent for a space X :

(i) X ∈ W∗.

(ii) X∗ is weak∗-separable.

(iii) X∗ has a countable total subset.

Proposition 4. If X is in class CH (respectively, inW∗) and Y is a space that is injected linearly and
continuously into X, then Y ∈ CH (respectively, Y ∈ W∗). Hence, every closed linear subspace of X is
in the same class that X.

Proposition 5. If X is separable, then X and X∗ are inW∗ .

Proposition 6. Let Y be a closed linear subspace of the Banach space X. If Y is inW∗ and X/Y is in
CH, then X is in CH.

Proof. With no loss of generality, we may assume that we have two one- to-one bounded linear
maps

S1 : Y → l2, S2 : X/Y → l(Γ0),

with Γ0 being a set that is disjoint from the set of positive integers N. Now, for each j ∈ N, if ej
denotes the corresponding unit vector, we have that S∗1ej ∈ Y∗. Let v∗j ∈ X∗ be the extension of
S∗1ej to X such that ||v∗j || = ||S∗1ej||. Setting Γ := N ∪ Γ0, we define the mapping T : X → l2(Γ)
such that, for x ∈ X, Tx := (λγ)γ∈Γ where

λγ :=

{
2−γ〈v∗γ, x〉, γ ∈ N,
〈S2(x + Y), eγ〉, γ ∈ Γ0.

Then, T is a well defined linear map such that it is bounded. To see that it is one-to-one, let
x ∈ X be such that Tx = 0, then, 0 = 〈S2(x + Y), eγ〉, γ ∈ Γ0, implies that S2(x + Y) = 0, and
so x ∈ Y; hence, from 0 = 2−j〈v∗j , x〉, j ∈ N, it follows that 0 = 〈S∗1ej, x〉 = 〈ej, S1x〉, x ∈ N,
therefore S1x = 0, and x = 0. �
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Corollary 8. Let Y be a closed linear subspace of X such that Y and X/Y are both inW∗, then X is also
inW∗, i.e., being inW∗ is a three-space property.

We already know that, if X is separable then X and X∗ are both inW∗, let’s take a look now
at some other examples of spaces not belonging toW∗, which will obviously be non-separable.
Every non-separable weakly compactly generated space, and hence every non-separable reflex-
ive one and c0(Γ), Γ an uncountable set, has a non-weak∗-separable dual. This, plus the fact
that c0(Γ) can be canonically injected into l∞(Γ), yields that, for uncountable Γ, c0(Γ) and l∞(Γ)
are not inW∗ and clearly l2(Γ) ∈ CHW∗. The easiest example of a space X such that X ∈ W∗
and X∗ /∈ W∗ is given by X = l∞: Being obvious that l∞ ∈ W∗, we show that l∗∞ /∈ W∗: l∞
contains a closed subspace F such that l∞/F is isomorphic to a non-separable Hilbert space.
Hence, F⊥ = (l∞/F)∗ is a subspace of l∗∞ which is also isomorphic to a non-separable Hilbert
space. If l∗∞ were in classW∗, then, from Proposition 4, there would be a non-separable Hilbert
space inW∗, which is clearly contradictory.

There are also examples satisfying the contrary, i.e., X /∈ W∗ and X∗ ∈ W∗. In particular,
there is one which plays a somewhat outstanding role and we shall take a look at it right now.
Let X = c0([0, 1]). Then X∗ = l1([0, 1]), and to show that X∗ is in W∗, since the space of
continuous functions C[0, 1], being separable, is a quotient of l1, and therefore its topological
dual C[0, 1]∗ is isomorphic to a subspace of l∞, it suffices to see that l1([0, 1]) can be continuously
injected into C[0, 1]∗. This is done by noticing that the mapping T : l1([0, 1]) → C[0, 1]∗ such
that, if x = (xγ) ∈ l1([0, 1]), Tx := ∑γ∈[0,1] xγδγ where δγ is the Dirac measure at the point
γ ∈ [0, 1], is one-to-one bounded and linear.

Also, since (l∞/c0)
∗ admits no countable total subsets, it follows that l∞/c0 is not inW∗.

Let us to show that, if X /∈ W∗, then every sequence of closed linear subspaces (Ej)
∞
j=1 such

that X/Ej ∈ W∗, j ≥ 1, satisfies that
⋂∞

j=1 Ej /∈ W∗.

Lemma 5. Let E be a closed linear subspace of the Banach space X. Then E⊥ is σ(X∗, X)-separable if
and only if there is a sequence (u∗j )

∞
j=1 in X∗ such that E = ∩∞

j=1 ker u∗j .

Proposition 7. Let (Ej)
∞
j=1 be a sequence of closed linear subspaces of X such that, for each j, E⊥j is

σ(X∗, X)-separable. Let E := ∩∞
j=1Ej, then:

(i) E⊥ is also σ(X∗, X)-separable.

(ii) If Xσ /∈ W∗, then E /∈ W∗.

Proof. For each j, from the previous lemma, there is a sequence (u∗jk) ⊂ X∗ such that Ej =⋂∞
k=1 ker u∗jk. Hence E⊥ = (∩∞

j=1Ej)
⊥ = (∩∞

j,k=1 ker u∗jk)
⊥ = lin

w∗{u∗jk : j, k ≥ 1} is clearly
σ(X, X∗)-separable, thus obtaining (i). Besides, this yields X/E ∈ W∗, and, if X /∈ W∗ the
3-space property shown in Corollary 8 guarantees (ii). �

Proposition 8. If X is a Banach space which is not in class W∗, then, if n is any positive integer, for
each P ∈ Pw(nX), ker P(n−1) is not inW∗.

Proof. If P ∈ Pw(nX), making use of the conjugacy relation mentioned in the first section, we
have

ker P(n−1) = P′(X)⊥.
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From ([10], p. 88, Proposition 2.6), we know that P′ is (weak-to-norm)-uniformly continuous
on the bounded subsets and, since BX is weakly precompact, it follows that P′(X) is norm-

separable in X∗. Clearly then, lin
w∗
(P′(X)) is weak∗-separable and so, since

(X/P′(X)⊥)
∗ = (P′(X)⊥)

⊥ = lin
w∗
(P′(X)),

we have that X/P′(X)⊥ is in W∗. From Corollary 8, since X is not in W∗, it follows that
ker P(n−1) = P′(X)⊥ is not inW∗. �

Recalling that ker P(n−1) is contained in every maximal linear subspace contained in ker P,
the next result clearly follows.

Corollary 9. If X /∈ W∗, then, for every integer n and every P ∈ Pw(nX), every maximal linear
subspace Z contained in ker P is such that Z /∈ W∗.

The next result gives us another characterization of the spaces in classW∗.
Corollary 10. For a Banach space X, the following conditions are equivalent:

(i) X ∈ W∗.

(ii) For any even integer n, X admits a positive definite polynomial P ∈ PN(
nX).

(iii) For any even integer n, X admits a positive definite polynomial P ∈ Pw(nX).

(iv) There is an even integer n such that X admits a positive definite polynomial P ∈ Pw(nX).

(v) There is an even integer n such that X admits a positive definite polynomial P ∈ PN(
nX).

As a by product of this last corollary, the author obtained a stronger version of part (i) in
Theorem 16 of [1].

Corollary 11. Let X be any infinite-dimensional real Banach space. Then, either X admits a positive
definite nuclear polynomial of degree 2, or, for every positive integer n, the zero-set of every P ∈ Pw(nX)
contains a closed linear subspace of X whose dual is not weak∗-separable.

The results previously obtained will be used in the following to show that, if X /∈ W∗, then
every vector-valued polynomial, not necessarily homogeneous, which is weakly continuous
on the bounded subsets of X admits a closed linear subspace not belonging to W∗ where the
polynomial is constant.

Lemma 6. If P ∈ Pw(nX), then (ker P(n−1))⊥ is σ(X∗, X)-separable.

Proposition 9. Let (nj)
∞
j=1 be a sequence of positive integers and let (Pj)

∞
j=1 be a sequence of polynomials

such that, for each j, Pj ∈ Pw(
nj X). If X ∈ W∗, then there is a closed linear subspace Z in X such that

Z /∈ W∗ and Z ⊂ ∩∞
j=1P−1

j (0).

Proof. For each j, set Zj := ker P
(nj−1)
j . Then, from the previous lemma we have that Z⊥j is

σ(X∗, X)-separable, j ≥ 1. Setting Z := ∩∞
j=1Zj, we know from Proposition 7 that Z⊥ is

(X∗, X)-separable, and so, since X /∈ W∗, we have that Z /∈ W∗. Now, since it is evident

that ker P
(nj−1)
j ⊂ ker Pj, j ≥ 1, the result follows. �
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For a Banach space Y and a positive integer n, the symbols P(nX, Y) and Pw(nX, Y) will
denote the spaces of n-homogeneous continuous polynomials on X with values in Y and the
subspace formed by those which are weakly continuous (to say it in a more explicit way, weak-
to-norm continuous) on the bounded subsets of X, respectively. We see next that, when X is
not in classW∗, any countable family of polynomials in Pw(nX, Y) vanishes simultaneously on
quite a big linear subspace.

Corollary 12. Let X, Y be Banach spaces with X /∈ W∗. Let (nj)
∞
j=1 be a sequence of positive integers

and (Pj)
∞
j=1 a sequence of polynomials such that, for each j, Pj ∈ Pw(

nj X, Y). Then there is a closed
linear subspace Z in X such that Z /∈ W∗ and Pj|Z = 0, j ≥ 1.

Corollary 13. Let P : X → Y be a polynomial, not necessarily homogeneous, which is weakly contin-
uous on the bounded subsets of X. If X /∈ W∗, then there is a closed linear subspace Z in X such that
Z /∈ W∗ and P|Z = P(0).

In the results previously given we determine constructively the big linear subspace contained
in the polynomial’s zero-set. Nevertheless, noticing that what we really use is that weak zero-
neighborhoods contain finite-codimensional linear subspaces, there is a natural extension of
these existence results to a larger frame, namely that of the mappings which are weak-to-norm
continuous on the bounded sets. More explicitelly, we have the following generalization.

Corollary 14. Let f : X → Y be a weak-to-norm continuous mapping on the bounded subsets of X
such that f (0) = 0. If X /∈ W∗, then there is a closed linear subspace Z in X, with Z /∈ W∗, such that
Z ⊂ f−1(0).

Corollary 15. Let ( f j)
∞
j=1 be a sequence of mappings from X into Y which are weak-to-norm continuous

on the bounded subsets of X and such that f j(0) = 0, j ≥ 1. Assume that, for all x ∈ X,

f (x) := lim
j

f j(x)

exists.

Conjecture. For a real Banach space X, either X ∈ CH, or, for every P ∈ P(2X), ker P contains
a non-separable linear subspace.

Proposition 10. Let X be a space such that X /∈ CH and X∗ ∈ CH. Then, if P ∈ P(2X), ker P′ /∈ W∗.
Proof. The first Fréchet derivative of P is the continuous linear map P′ : X → X∗ such that
〈P′(x), y〉 = 2P̌(x, y), x, y ∈ X. Assuming ker P′ were in W∗, then, from Proposition 6, since
X /∈ CH, we would have that X/ ker P′ /∈ CH. But the map T : X/ ker P′ → X∗ given by
T(x + ker P′) := P′(x) is well defined linear bounded and one-to-one, which would imply that
X/ ker P′ is injected into X∗, but X∗ ∈ CH, after Proposition 4, would then yield X/ ker P′ ∈ CH,
a contradiction. �

Corollary 16. If X /∈ CH and X∗ ∈ CH, then, for every P ∈ P(2X), every maximal linear subspace Z
contained in ker P is such that Z /∈ W∗.

We show next that, for uncountable Γ, the spaces c0(Γ), lp(Γ), 2 < p < ∞, are of the type
just considered, i.e., X /∈ CH, X∗ ∈ CH.

Lemma 7. Let Γ be an uncountable set. Then, for 1 ≤ p ≤ 2, the space lp(Γ) ∈ CH, while, for
2 < p ≤ ∞, lp(Γ) /∈ CH.
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Corollary 17. Let Γ be an uncountable set and let X be any of the spaces lp(Γ), 2 < p < ∞, or c0(Γ).
If P is a continuous 2-homogeneous polynomial on X, then ker P′ is a closed linear subspace contained
in ker P whose dual is not weak∗-separable. Consequently, every maximal linear subspace contained
in ker P has a dual which is not weak∗-separable. If X = l∞(Γ), then, for every P ∈ P(2X), ker P
contains a closed linear subspace Z such that Z /∈ W∗.

We say that a space X is in class C ′H whenever, for any sequence (u∗j )
∞
j=1 in X∗, we have that⋂∞

j=1 ker u∗j /∈ CH.
Clearly, CH and C ′H are disjoint classes and we show that for the elements of class C ′H the

conjecture holds.

Proposition 11. Let X ∈ C ′H. If P ∈ P(2X), then every maximal linear subspace contained in ker P is
non-separable.

Proof. Let Z be one of such maximal subspaces and suppose it is separable. Let Y := P′(Z)⊥.
Then, by the maximality of Z, we have that ker P ∩Y = Z and P does not change sign in Y (we
shall assume that P|Y ≥ 0).

Since Y⊥ = P′(Z)
w∗

is σ(X∗, X)-separable, after Lemma 5 we have that there is a sequence
(u∗j )

∞
j=1 in X∗ such that Y = ∩∞

j=1 ker u∗j . Thus, since X ∈ C ′H, it follows that Y /∈ CH. Now, by
defining

Q(x + Z) := P(x), x ∈ Y,

we obtain a polynomial Q ∈ P(2(Y/Z)) which is positive definite. This implies that Y/Z ∈ CH,
but, Z being separable yields Z ∈ W∗, and so, after Proposition 6, we have that Y ∈ CH, a
contradiction. �

4. THE REAL CASE

All results of this subsection was proved in [1].
Let E be a real Banach space. The author showed that either E admits a positive definite

2-homogeneous polynomial or every 2-homogeneous polynomial on E has an infinite dimen-
sional subspace on which it is identically zero. Under addition assumptions, he showed that
such subspaces are non-separable. He examined analogous results for nuclear and absolutely
(1,2)-summing 2-homogeneous polynomials and give necessary and sufficient conditions on a
compact set K so that C(K) admits a positive definite 2-homogeneous polynomial or a positive
definite nuclear 2-homogeneous polynomial.

The case of the polynomial P : Rn → R, P(x) =
n
∑

j=1
x2

j not with standing, it is exactly the ze-

ros of real valued 2-homogeneous polynomials which will be of interest here, in the case when
the domain Rn is replaced by an infinite dimensional real Banach space E. There are many
”large“ Banach spaces E for which there is no positive definite 2-homogeneous polynomial P.
As we will see, for a real Banach space E, either E admits a positive definite 2-homogeneous
polynomial or every 2-homogeneous polynomial on E is identically zero on an infinite dimen-
sional subspace of E.

We recall that an n-homogeneous polynomial P : E → K = R or C is, by definition, the
restriction to the diagonal of a necessarily unique symmetric continuous n-linear form P̌ : E×
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. . . × E → K; that is, P(x) = P̌(x, ..., x) for every x ∈ E. The polynomial P is said to be
positive definite if P(x) > 0 for every x and P(x) = 0 implies that x = 0.

An n-homogeneous polynomial P on E is nuclear if there is bounded sequence (φj)
∞
j=1 ⊂ E′

and a point (λj)
∞
j=1 in l1 such that

P(x) =
∞

∑
j=1

λjφj(x)n

for every x in E. The space of all nuclear n-homogeneous polynomials on E is denoted by
PN(

nE). A sequence (xj)j in E is said to be weakly 2− summing if

sup
φ∈BE′

∞

∑
j=1

φ(xj)
2 < ∞.

An n-homogeneous polynomial P on E is said to be (absolutely) (1,2)-summing if P maps

weakly 2-summing sequences into absolutely summable sequences; that is if
∞
∑

j=1
||P(xj)|| < ∞

for every weakly 2-summing sequence (xj)j. P is (1,2)-summing if and only if there is C > 0 so
that for every positive integer m and every x1, . . . , xm in E we have

m

∑
j=1
|P(xj)| 6 C

(
sup

φ∈BE′

m

∑
j=1

φ(xj)
2

) n
2

.

Proposition 12. A polynomial P ∈ P(2E) is positive definite if and only if for every x, y ∈ E such that
x 6= ±y,

|P̌(x, y)| < 1
2
(P(x) + P(y)).

Consequently, if P is a positive definite 2-homogeneous polynomial on E, then ||P|| = ||P̌||.

Proof. Assume that P is positive definite, and so P̌ is an inner product. Hence we may apply the
Cauchy-Schwarz inequality: |P̌(x, y)| ≤ |P(x)P(y)| 12 , with equality if and only if x = ±y. Next,
by the arithmetic-geometric inequality, |P(x)P(y)| 12 ≤ 1

2(P(x) + P(y)). The converse follows
by taking an arbitrary x 6= 0 and y = 0 in the inequality. �

Proposition 13. The following conditions on a Banach space E are equivalent:

(i) E admits a positive 2-homogeneous polynomial.

(ii) There is a continuous linear injection from E into a Hilbert space.

(iii) The point 0 is an exposed point of the convex cone of the subset {δx
⊗

δx : x ∈ SE} of the sym-
metric tensor product E

⊗
π,s E, where SE is the unit sphere of E.

(iv) There is a 2-homogeneous polynomial P on E whose set of zeros is contained in a finite dimensional
subspace of E.
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Proof. (i)⇒ (ii): Let P̌ be the symmetric positive definite bilinear form associated to the positive
definite polynomial P, so that (E, P̌) is a pre-Hilbert space with completion, say, H with the in-
duced pre-Hilbert norm. Then the injectionj : E→ H is continuous since ||j(x)|| = |P̌(x, x)| 12 =

|P(x)| 12 ≤ ||P|| 12 ||x||.
(ii) ⇒ (iii): Note that the space of 2-homogeneous polynomials on E is the dual of E

⊗̂
π,sE.

Also, recall that the convex cone of the set {δx
⊗

δx : x ∈ SE consists of all points of the form
{∑n

i=1 aiδxi

⊗
δxi , where xi ∈ SE and ai ≥ 0}. Now, the polynomial P(x) ≡ 〈j(x), j(x)〉

is positive definite on E. If we regard P as an element of (E
⊗̂

π,sE)′, we see at P(0) = 0 while

P(δx
⊗⊗

δx) = P(x) > 0 for all x ∈ SE. Consequently, for any point
n
∑

i=1
aiδxi

⊗
δxi in the

convex cone, P(
n
∑

i=1
aiδxi

⊗
δxi) =

n
∑

i=1
aiP(xi) ≥ 0, with equality if and only if all ai = 0.

(iii) ⇒ (iv): Let T ∈ (E
⊗̂

π,sE)′ be such that T(0) = 0 and T(b) > 0 for all b in the convex
cone. In particular, for all x ∈ SE, P(x) ≡ T(δx

⊗
δx) > 0, so that ker P = 0.

(iv)⇒ (i): We only consider the non-trivial situation, when dim E = ∞. Suppose that P is a
2-homogeneous polynomial whose zero set is contained in the finite dimensional subspace V
with basis, say, {v1, . . . , vn}. We first observe that P(x) is always positive or always negative,
for all x ∈ E\V. Otherwise, there would exist x, y ∈ SE\V such that P(x) < 0 < P(y). Let
γ : [0, 1] → E\V be a curve linking x and y. Then P ◦ γ(t) = 0 for some t ∈ [0, 1], which
is a contradiction. So, without loss of generality, we assume that P(x) ≥ 0 for all x ∈ E. Let
Π : E→ V be a projection, with Π(x) = ∑n

i=1 ai(Π(x))vi. Then, the 2-homogeneous polynomial
Q defined by Q(x) ≡ P(x) + ∑n

i=1 ai(Π(x))2 is positive definite. �

Remark 1. Suppose that there is a normalized sequence (φj)j ∈ E′ such that if x ∈ E, φj(x) = 0
for all j, then x = 0. Then the mapping x ∈ E 7→ (1

j φj(x)) defines an injection into l2, and so
Proposition 13 applies. In particular, any separable space and C(K)spaces, when K is compact
and separable, admit a positive definite 2-homogeneous polynomial. On the other hand E =
c0(Γ) and E = lp(Γ), where Γ is an uncountable index set and p > 2, do not admit positive
definite 2-homogeneous polynomials.

We also note that if there is a continuous linear injection j : E → l2, j(x) = (jn(x)), then the
mapping x 7→ ( jn(x)

2n ) is a nuclear injection between these spaces. We have proved (ii)⇒ (iii) of
the following separable version of Proposition 13.

Proposition 14. Let E be a real Banach space. The following conditions are equivalent:

(i) E admits a positive definite 2-homogeneous nuclear polynomial.

(ii) E admits a continuous injection j : E→ l2.

(iii) There is a nuclear injection j : E→ l2 of the form j(x) =
∞
∑

n=1
χn(x)en with (||χn||) ∈ l1.

Proof. (i) ⇒ (ii): If P(x) = ∑∞
n=1 φn(x)2 is a positive definite nuclear polynomial on E, then

j(x) = ∑∞
n=1 φn(x)en will satisfy (ii).
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(iii) ⇒ (i): Let j : E → l2 be a nuclear injection, j(x) = ∑∞
n=1 χn(x)en, where (||χn||)n ∈ l1.

Since
⋂∞

n=1 ker χn = {0}, it follows that the 2-homogeneous polynomial P : E → R, P(x) =

∑∞
n=1 χ2

n(x) is positive definite. Finally, P is nuclear since ∑∞
n=1 ||χn||2 ≤ ∑∞

n=1 ||χn|| < ∞. �

Theorem 4.1. Let E be a real Banach space which does not admit a positive definite 2-homogeneous
polynomial. Then, for every P ∈ P(2E), there is an infinite dimensional subspace of E on which it is
identically zero.

Proof. Suppose E does not admit a positive definite 2-homogeneous polynomial and that P ∈
P(2E). Let S = {S : S is a subspace of E and P|S ≡ 0}. Order S by inclusion and use Zorn’s
Lemma to deduce the existence of a maximal element S of S . Suppose that S is finite dimen-
sional. v1, . . . , vn be a basis for S and let T =

⋂
x∈S ker Ax =

⋂n
i=1 ker Avi where Ax : E → R

is the linear map which sends y in E to P̌(x, y). We note that S ⊂ T. To see this suppose that
y ∈ S. Then for every s ∈ S, s + y is also in S. Since

0 = P(s + y) = P(s) + 2As(y) + P(y) = 2As(y)

for every s ∈ S we see that y ∈ T.
Since S is finite dimensional we can write T as T = S

⊕
Y for some subspace Y of T. It is

easy to see that all the zeros of P|T are contained in S. Therefore, either P|T or −P|T is positive
definite on Y. Let us suppose, without loss of generality, that P|T is positive definite on Y. As
S is n-dimensional we can find φ1, . . . , φn so that P + ∑n

i=1 φ2
i is positive definite on T. Note

that T has finite codimension in E and hence is complemented. Let πT be the (continuous)
projection of E onto T. Then (P + ∑n

i=1 φ2
i ) ◦ πT + ∑n

i=1 A2
vi

is a positive definite polynomial on
E, contradicting the fact that E does not admit such a polynomial. �

Theorem 4.2. Let E be a real Banach space of type 2. Then either E admits a positive definite 2-
homogeneous polynomial or every P ∈ P(2E) has an non-separable subspace on which it is identically
zero.

Proof. Assume that E does not admit a positive definite 2-homogeneous polynomial and let
P ∈ P(2E). Let S ⊂ E be a maximal subspace such that P|S ≡ 0. If S is separable, the argument
in Theorem 4.1 shows that the subspace T ⊂ E can be written T = S

⊕
a Y, where Y is an

algebraic complement of S in T and where, without loss of generality, P|T is positive definite
on Y. Then for every s ∈ S and t ∈ T:

P(s + t) = P(s) + 2P̌s(t) + P(t) = P(t) ≥ 0.

Since S is separable, we can find a sequence {φi}∞
i=1 in E′ so that ∑∞

i=1 φ2
i is positive definite on S,

and hence P+∑∞
i=1 φ2

i is positive definite on T. Hence we have a continuous linear injection i of
T into some Hilbert space L2(I). Since E is type 2, Maurey’s Extension Theorem ([8], Theorem
12.22) allows us to extend i to a (not necessarily injective) linear map ĩ from E into L2(I). Finally,
define a map j from E into L2(I)

⊕
l2 l2 by

j(x) =

(
ĩ(x),

∞

∑
i=1

Avi(x)
i2||Avi ||

ei

)
,

where ei is the ith basis vector in l2. Since j is a continuous injection, E admits a positive definite
polynomial, which is a contradiction. �
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Theorem 4.3. Let E be a real Banach space which does not admit a positive definite 4-homogeneous
polynomial. Then for every 2-homogeneous polynomial P on E, there is a non-separable subspace of E on
which P is identically zero.

Theorem 4.4. Let E be a real Banach space which does not admit a positive definite 4-homogeneous
polynomial, and let (ψk)

∞
k=1 be a sequence in E′. Then for any countable family (Pj)

∞
j=1 ⊂ P(2E), there

is a non-separable subspace of
⋂∞

k=1 ker ψk on which each Pj is identically zero.

Note that if E does not admit a positive definite 4-homogeneous polynomial, then it can-
not admit a positive definite 2-homogeneous one either. An example of an E satisfying the
hypotheses of Theorems 4.3 and 4.4 is E = lp(I), where I is an uncountable index set and p > 4.

Proof. of Theorem 4.4: The argument begins in a similar way to our earlier proofs. As before, let
S be a maximal element of S = {S : S is a subspace of

⋂∞
k=1 ker ψk and Pj|S ≡ 0, all j}. Suppose

that S is separable, with countable dense set (vi)
∞
i=1. Let

⋂∞
k=1 ker ψk ∩

⋂∞
i=1

⋂∞
j=1 ker(Aj)vi . As

before, S ⊂ T. We can write T as T = S
⊕

a Y for some subspace Y of T. Since all the common

zeros of Pj|T, j ∈ N, are contained in S, ∑∞
j=1

P2
j

j2||Pj||2
is positive definite on Y. As S is separable

we can find (φi)
∞
i=1 so that ∑∞

j=1
P2

j
j2||Pj||2

+ ∑∞
i=1 φ4

i is positive definite on T. Then

∞

∑
j=1

P2
j

j2||Pj||2
+

∞

∑
i=1

φ4
i +

∞

∑
i=1

∞

∑
j=1

(Aj)
4
vi

i2 j2||(Aj)vi ||4
+

∞

∑
k=1

ψ4
k

k2||ψK||4

is a positive definite polynomial on E, contradicting the fact that E does not admit such a poly-
nomial. �

Corollary 18. Let E be a real Banach space which does not admit a positive definite 4-homogeneous
polynomial. Then every P ∈ P(3E) is identically zero on a non-separable subspace of E.

Theorem 4.5. Let E be a real Banach space which does not admit a positive definite homogeneous poly-
nomial. Then, for every polynomial P on E such that P(0) = 0, there is a non-separable subspace of E
on which P is identically zero.

Lemma 8. A real Banach space E admits a positive definite 2-homogeneous (1,2)-summing polynomial
if and only if there is a continuous 2-summing injection from E into a Hilbert space.

Corollary 19. Let E be an L∞,λ -space for some real λ. Then every positive definite polynomial on E is
(1,2)-summing.

Note, though, that there may well not exist any positive definite polynomials on an L∞,λ
space.

We next consider the question of the existence of positive definite 2-homogeneous polynomi-
als in case E is a C(K) space. We recall that a (Borel) measure µ on a compact set K is said to be
strictly positive if µ(B) > 0 for every non-empty open subset B ⊂ K.

Corollary 20. Let E = C(K) where K is a compact Hausdorff space. Then
(i) C(K) admits a positive definite 2-homogeneous polynomial if and only if K admits a strictly positive
measure.
(ii) C(K) admits a positive definite 2-homogeneous nuclear polynomial if and only if there is a sequence
of finite Borel measures (µn)∞

n=1 on K such that
∫

K f (x)dµn(x) = 0 for all n implies f ≡ 0.
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Theorem 4.6. Let E be a real Banach space.
(i) Either E admits a positive definite 2-homogeneous nuclear polynomial or every P ∈ PN(

2E) has a
non-separable subspace on which it is identically zero.
(ii) Either E admits a positive definite 2-homogeneous (1,2)-summing polynomial or every (1,2)-summing
has an non-separable subspace on which it is identically zero.

Proof. (i) We reason as before, supposing that E does not admit a positive 2-homogeneous nu-
clear polynomial and that P ∈ PN(

2E). Let S be a maximal subspace of E on which P is iden-
tically 0, assume that S = {vi : i ∈ N}, let T =

⋂∞
i=1 ker Avi , and write T = S

⊕
a Y. Without

loss of generality, we may assume that P|T is positive definite on Y, so that P|T ≥ 0. Since S
is separable, we can find a sequence {φi}∞

i=1 in E′ so that ∑∞
i=1 φ2

i is positive definite on S and
nuclear on E. Hence P + ∑∞

i=1 φ2
i is positive definite and nuclear on T. We therefore have a

continuous linear nuclear injection i of T into l2. We can extend i to a nuclear linear map ĩ from
E into l2.

Define a map j : E→ l2
⊕

2 l2 by

j(x) =

(
ĩ(x),

∞

∑
i=1

Avi(x)
i2||Avi ||

ei

)
.

Since j is a nuclear injection, E admits a positive definite nuclear polynomial, which is a con-
tradiction.

(ii) The argument given above works in the (1,2)-summing case, the only significant change
being an appeal to the ∏2 Extension Theorem to prove the existence of a 2-summing extension
mapping ĩ : E→ L2(I)

⊕
2 l2, for a sufficiently large index set I. �

Even if we know that an L∞,λ-space admits a positive definite (1,2)-summing polynomial, it
is nevertheless possible to conclude something about the zeros of those 2-homogeneous poly-
nomials which are not (1,2)-summing.

Theorem 4.7. Let E be a real L∞,λ-space. Then every P ∈ P(2E) which is not (1,2)- summing has an
infinite dimensional subspace on which it is identically zero.

Proof. Suppose P ∈ P(2E) is not (1,2)-summing. Suppose that a maximal subspace S on which
P vanishes is only finite dimensional, with basis {v1, . . . , vn}. Let T =

⋂n
i=1 ker Avi , and write

T = S
⊕

Y, for some complemented subspace Y ⊂ T. Without loss of generality, P|T is positive
definite on Y and, since S is finite dimensional, we can find φ1, . . . , φn so that P + ∑n

i=1 φ2
i is

positive definite on T. Let πT be the (continuous) projection of E onto T. Then (P + ∑n
i=1 φ2

i ) ◦
πT + ∑n

i=1 A2
vi

is positive definite on E. But E is an L∞,λ-space and so by Corollary 14, (P +

∑n
i=1 φ2

i ) ◦πT +∑n
i=1 A2

vi
is (1,2)-summing implying that P|T and hence P itself is (1,2)-summing,

a contradiction. �

4.1. ZEROES OF REAL POLYNOMIALS ON C(K) SPACES

All results of this subsection was proved in [13].
By CH, and W∗, we shall denote the class formed by those Banach spaces which can be in-

jected (i.e., there is a continuous one-to-one linear map) into a Hilbert space, and the subclass
formed by those that can be injected into a separable Hilbert space, respectively. Notice that
X in W∗ is equivalent to say that X∗ is weak∗-separable. If Y is a closed linear subspace of X
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such that Y is inW∗ and X/Y is in CH, then X is in CH. Thus obtaining that being in W∗ is a
three-space property.

If X is not in CH, then every element of P(2X) admits an infinite-dimensional linear subspace
where it vanishes, and the following conjecture is stated:

Conjecture. If X is a real Banach space such that X /∈ CH, then the zero-set of every quadratic
polynomial, i.e., an element of P(2X), contains a non-separable linear zero subspace.

This conjecture is proved to be correct for spaces having the Controlled Separable Projection
Property (CSPP)([7]), a class which contains the Weakly Countably Determined spaces. Let us
recall that X has the CSPP whenever, if (xj) and (x∗j ) are sequences in X and X∗, respectively,
there exists a norm-one projection on X with separable range containing (xj) and such that the
range of its conjugate contains (x∗j ).

Let us recall that the (n− 1)-derivative of the polynomial P ∈ P(nX) is given by the contin-
uous and linear map P(n−1) : X → Ls(Xn−1) such that

P(n−1)(x) = n!P̌(x, ·,
(n−1)

... , ·), x ∈ X,

where Ls(Xn−1) is the space of continuous symmetric (n− 1)-linear functionals on X and P̌ is
the n-linear functional provided by the polarization formula.

Proposition 15. Given n ∈ N, if P ∈ P(nc0(Γ)), then ker P(n−1) contains an isometric copy of c0(Γ).

Proof. After ([10], Exercise 1.72, p. 68), we know that Pw(nc0(Γ)) coincides with P(nc0(Γ)).
Hence, if P ∈ P(nc0(Γ)), again using ([10], Proposition 2.6, p. 88), we have that the linear map
P(n−1) is weak-to-norm continuous on bounded sets from c0(Γ) into Ls(c0(Γ)n−1).

For each m ∈ N, we consider the set

Γm := {γ ∈ Γ : ||P(n−1)(eγ)|| ≥ 1/m},
where eγ stands for the unit vector in c0(Γ) corresponding to γ. We claim that Γm is finite,
otherwise there would be an infinite sequence (γj)

∞
j=1 contained in Γm; but, since P(n−1) is

weak-to-norm continuous on bounded sets, and the sequence (eγj)
∞
j=1 is weakly null in c0(Γ),

this would yield
lim

j
||P(n−1)(eγj)|| = 0,

a contradiction. Consequently, the set

Γ0 := {γ ∈ Γ : P(n−1)(eγ) = 0}
∞⋃

m=1

Γm

is countable. Thus, if E denotes the closed linear span of {eγ : γ ∈ Γ\Γ0} in c0(Γ), it clearly
follows that E is isometric to c0(Γ). Besides, if γ ∈ Γ\Γ0, we have P(n−1)(eγ) = 0, from where
we deduce that, since P(n−1) is linear, E ⊂ ker P(n−1). �

In the coming result it is convenient to observe that, for P ∈ P(nX), the linear subspace
ker P(n−1) is always contained in the zero-set ker P .

Corollary 21. Let Γ be an uncountable set. If P ∈ P(c0(Γ)), then there is a closed linear subspace E of
c0(Γ) such that P|E = P(0) and E is isometric to c0(Γ).
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Corollary 22. Every real-valued analytic function on c0(Γ) admits a closed linear subspace isometric to
c0(Γ) where it has constant value.

Notice that Proposition 15, as well as the two previous corollaries, could also be obtained
from the well-known fact that any continuous polynomial on c0(Γ) factors through c0(Γ′) with
Γ′ countable.

Proposition 16. Let K be a compact Hausdorff topological space. The following conditions are equiva-
lent:
(i) C(K) contains a non-separable weakly compact subset.
(ii) K does not satisfy the CCC.
(iii) C(K) contains an isometric copy of c0(Γ), for some uncountable Γ.
(iv) There is an uncountable set Γ such that there is a one-to-one bounded linear map from c0(Γ) into
C(K).

Proof. (i) ⇒ (ii). Let W be a weakly compact non-separable subset of C(K), which we may
assume to be absolutely convex. By a result of Corson, see [15], W contains a subset which
is homeomorphic, in its weak topology, to the one-point compactification of an uncountable
discrete set and we may thus find an uncountable subset W0 ⊂W\{0} such that every sequence
of distinct elements of W0 is weakly-null. There is clearly some δ > 0 such that the set W1 :=
{x ∈ W0 : ||x|| > δ} is uncountable. For each x ∈ W1, let Vx := {t ∈ K : |x(t)| > δ/2}.
Then, if (xj)

∞
j=1 is a sequence of distinct elements of W1, it follows that

⋂∞
j=1 Vxj = ∅, otherwise,

since xj → 0 weakly, this would imply that limj xj(t) = 0, for all t ∈ K, in particular, if t ∈⋂∞
j=1 Vxj , this would lead to a contradiction. Hence, we have an uncountable collection {Vx :

x ∈ W1} of non-empty open subsets of K such that for all sequences (Vxj)
∞
j=1 of distinct terms

the intersection of its members is empty; this is a sufficient condition for K not to satisfy the
CCC.

(ii)⇒(iii). Let (Vγ)γ∈Γ be an uncountable collection of pairwise disjoint non-empty open
subsets of K. For each γ ∈ Γ, we find a function xγ ∈ C(K) such that ||xγ|| = 1 and xγ(t) = 0,
t ∈ K\Vγ. Thus, if E denotes the closed linear span of {xγ : γ ∈ Γ} in C(K), it is clear that E is
isometric to c0(Γ).

(iii)⇒ (iv) Being obvious, we see that (iv)⇒ (i).
Let Γ be an uncountable set and T : c0(Γ) → C(K) a one-to-one bounded linear map. Then,

it is clear that the set
{Teγ : γ ∈ Γ} ∪ {0}

is weakly compact and non-separable in C(K). �

Corollary 23. Let K be a compact space not satisfying the CCC. For any positive integer n, every
continuous n-homogeneous real-valued polynomial on C(K) vanishes in an isometric copy of c0(Γ), for
some uncountable Γ.

Corollary 24. If K does not satisfy the CCC, then every analytic real-valued function on C(K) has
constant value in an isometric copy of c0(Γ), for some uncountable Γ.

l∞/c0 is isometric to C(βN \ N). Since it is well known that there is a family, with the con-
tinuum cardinality, of infinite subsets of N such that any two distinct members meet only in a
finite set, it follows that βN \N does not have the CCC, so the next result obtains.

Corollary 25. Every analytic real-valued function on l∞/c0 is constant in an isometric copy of c0(Γ),
Γ having the continuum cardinality.
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Corollary 26. For every positive integer n, if P ∈ P(nl∞) is such that ker P(n−1) contains c0, then
there is a closed linear subspace Z of l∞ such that c0 ⊂ Z ⊂ ker P and Z/c0 is isometric to c0(Γ), Γ
with the continuum cardinality.

Lemma 9. For an uncountable set Γ, the spaces c0(Γ), lp(Γ), 2 < p ≤ ∞, do not belong to the class
CH.

Proposition 17. If X is a Banach space such that, for some uncountable Γ, either c0(Γ), or lp(Γ), 2 <
p < ∞, is injected into X, then X belongs to the class C ′H.

Proof. Let T : c0(Γ) → X be a one-to-one bounded linear map (an analogous proof works for
the case of lp(Γ) injected into X). Let (u∗j )

∞
j=1 be a sequence in X∗ and let Y :=

⋂∞
j=1 ker u∗j . As

we have already seen before in similar situations, it can be seen that, for each positive integer
m, and j ≥ 1, the set

Γm,j := {γ ∈ Γ : |〈u∗j , Teγ〉| > 1/m}
is finite, and so, for each j ≥ 1, the set

Γ0,j := {γ ∈ Γ : 〈u∗j , Teγ〉 6= 0

is countable. Hence, the set Γ0 := Γ\⋃j>0 Γ0,j has the same cardinality as Γ and we have that,
Teγ ∈ Y, γ ∈ Γ0. Denoting by E the closed linear span of {eγ : γ ∈ Γ0}, we obtain an isometric
copy of c0(Γ) which is injected into Y. After the previous lemma, this implies that Y cannot be
in CH. �

From Propositions 16 and 17 the coming result obtains.

Corollary 27. If K does not have the CCC, then C(K) belongs to the class C ′H.

Lemma 10. The following statements are equivalent :

(i) X ∈ CH.

(ii) There is a positive definite 2-homogeneous continuous polynomial on X.

(iii) If X = C(K), K carries a strictly positive measure (a non-negative regular finite Borel measure
which has positive value on every non-empty open subset).

Proposition 18. Let X be in class C ′H. Then, if P ∈ P(2X), every maximal linear subspace contained
in ker P is non-separable.

Proof. Let P ∈ P(2X). Let Z be a maximal linear subspace contained in ker P, whose existence
is guaranteed by Zorn’s Lemma. We show that Z is non-separable. If this were not so, since the
Frechet derivative P′ : X → X∗ is a bounded linear map, setting Y := {x ∈ X : 〈P′(z), x〉 =
0, z ∈ Z}, it follows that (X/Y)∗ = Y⊥ = P′(Z)

w∗
is weak∗-separable, i.e., Y is a countable

intersection of closed hyperplanes. Hence, X ∈ C ′H implies that Y /∈ CH. But, from the max-
imality of Z, it is easy to see that Y ∩ ker P = Z and that P does not change sign in Y; thus,
defining Q(y + Z) := P(y), y ∈ Y, we obtain a quadratic polynomial in Y/Z such that either
Q, or −Q, is positive definite. From the above lemma, this implies that Y/Z ∈ CH, and, since
Z ∈W∗, after the 3-space result it follows that Y ∈ CH, a contradiction. �

If A is a subset of the compact space K, then by CA(K) we denote the closed linear subspace
of C(K) formed by those functions which vanish in A.
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Proposition 19. For a compact Hausdorff topological space K, if Y is a closed linear subspace of C(K)
such that C(K)/Y ∈ W∗ and Y ∈ CH, then C(K) ∈ CH.

Proof. Let Y be a closed linear subspace of C(K) such that it satisfies the conditions of our state-
ment. Since (C(K)/Y)∗ = Y⊥ is weak∗-separable, there is a sequence (µj)

∞
j=1 contained in

C(K)∗, which, after Riesz’s theorem, we identify with M(K), the space of regular finite Borel
measures in K, such that Y =

⋂∞
j=1 ker µj. In light of Jordan’s decomposition theorem, there is

no loss of generality in assuming that those measures are probabilities on K. We show first that
K must have the Countable Chain Condition (CCC, for short). Otherwise, after Proposition 16,
C(K) would contain a copy (isometrically indeed) of c0(Γ), for some uncountable set Γ. Thus,
let S : c0(Γ) → C(K) be such isometry (what we need really is that S is weakly continuous and
one-to-one). Then setting, for each pair of positive integers j, m,

Γjm := {γ ∈ Γ : |〈µj, Seγ〉| > 1/m},
where eγ stands for the corresponding unit vector of c0(Γ), it is clear that Γjm must be a finite
set. Hence, the set Γ0 :=

⋃
j,m Γjm is countable and the closed linear span of {Seγ : γ ∈ Γ\Γ0} is

contained in Y. This implies that a copy of c0(Γ\Γ0) would be injected into Y, a contradiction,
since, after Lemma 9, c0(Γ\Γ0) /∈ CH.

Let K0 :=
⋃∞

j=1 suppµj. Then, it is easy to see that K0 carries a strictly positive measure and so,
after Lemma 10, C(K0) ∈ CH. Let H1 be a Hilbert space and T1 be a one-to-one bounded linear
map from C(K0) into H1. Having in mind that the family of cozero sets, i.e., the complements
of zero-sets of elements of C(K), is a base for the open sets in K, Zorn’s Lemma guarantees the
existence of a maximal collection of pairwise disjoint cozero sets contained in K\K0 (we assume
that K\K0 6= 0, otherwise C(K) ∈ CH). Now, the CCC forces this collection to be a countable
one, so let (Vj)

∞
j=1 represent this maximal collection. Clearly, if we set V :=

⋃∞
j=1 Vj, then

V ⊂ K\K0 ⊂ V.

Since V is also a cozero set, let ϕ be a continuous real-valued function such that ϕ−1(0) =
K\V. Observing that CK\V(K) ⊂ CK0(K) ⊂ Y, we have that CK\V(K) ∈ CH. And so, there is a
Hilbert space H2 and a one-to-one bounded linear map T2 from CK\V(K) into H2. Let H be the
Hilbert space given by the product H1 × H2. We define the map T : C(K)→ H as

Tx := (T1(x|K0
), T2(xϕ)).

Then, it can be easily verified that T is well defined, as well as that it is linear and bounded.
We see that it is one-to-one: If Tx = 0, then, since ker T1 = {0}, we have that x vanishes in K0;
also, ker T2 = {0} implies that xϕ = 0 and so x must also vanish in V ⊃ K\K0; hence, x = 0.
Therefore, C(K) ∈ CH. �

Corollary 28. For a compact Hausdorff topological space K, the following statements are equivalent:

(i) K does not carry a strictly positive measure.

(ii) C(K) is not injected into a Hilbert space.

(iii) For every closed linear subspace Y of C(K) such that C(K)/Y ∈ W∗, it follows that Y /∈ CH,
i.e., C(K) ∈ C ′H .
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(iv) For every continuous 2-homogeneous polynomial on C(K), its zero-set contains a non-separable
linear subspace.

4.2. ZERO SETS OF POLYNOMIALS IN SEVERAL VARIABLES

All results of this subsection was proved in [4].
Let k, n ∈ N where n is odd. Let us denote by {ei}k

i=1 the canonical basis of Rk. Given l ∈ N a
partition A = (A1, . . . , Ak) of {1, . . . l} is called an ordered partition of {1, . . . l} of rank |A| = k.

We set N(k, n) =
(

k + n− 1
k− 1

)
. A set S(k, n) of cardinality N(k, n) in Rk is called a basic set

of nodes if P|S(k,n) ≡ 0 implies P ≡ 0 whenever P is an n-homogeneous polynomial on Rk.

Lemma 11. Given k, n ∈ N, there exists a set S(k, n) = {vi}N(k,n)
i=1 ⊂ Rk such that ej ∈ S(k, n), 1 ≤

j ≤ k, with the property that for every n-homogeneous polynomial Q(x) on Rk, if Q(vi) = 0, 1 ≤ i ≤
N(k, n) then Q ≡ 0 on Rk.

Lemma 12. Given k, n ∈ N, k ≤ l there exist p(k, l) ∈ N, p(k, l) ≤ k!(log2(l))
k, and a system

{AI}
p(k,l)
I=1 of ordered partitions of {1, . . . , l} of rank k, such that for every B ⊂ {1, . . . , l}, |B| = k,

there exists AI = (A1, . . . , Ak) for which B ∩ Ai 6= 0 for every 1 ≤ i ≤ k.

Given an (abstract) n-homogeneous nonzero polynomial Q(x) on a k-dimensional Banach
space X, by a suitable choice of the basis {ẽ1, . . . , ẽk} of X we can easily achieve that in the
formula

Q(
k

∑
i=1

yi ẽi) = ∑
|α|=n

bαyα,

we have b(n,0,...,0) 6= 0. Indeed, it is enough to choose a direction ẽ1 in which Q is nonzero. It

is easily verified that a change of variables y1 → C(
k
∑

i=n
xi), y2 → x2, . . . , yk → xk, where C is

sufficiently large, will lead to a transformed algebraic formula for the same abstract polynomial
Q on X:

Q((x1, . . . , xk)) = ∑
|α|=n

aαxα,

in which a(n,0,...,0), a(0,n,0,...,0), . . . , a(0,0,...,0,n) are all nonzero. To summarize, we have the follow-
ing.

Lemma 13. Let Q(x) be an (abstract) n-homogeneous nonzero polynomial on a k-dimensional Banach
space X. Then there exists a basis {e1, . . . , ek} in X such that in the formula

Q(
k

∑
i=1

xiei) = Q((x1, . . . , xk)) = ∑
|α|=n

aαxα,

all the constants a(n,0,...,0), a(0,n,0,...,0), . . . , a(0,0,...,0,n) are nonzero.

Let us introduce the following notation. Let A ⊂ {1, 2, . . . , l}.

We put PA : Rl → Rl, PA(
k
∑

i=1
xiei) = ∑

j∈A
xiei.
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Given v = (v1, . . . , vk) ∈ Rk and an ordered partitionA = (A1, . . . , Ak) of {1, . . . , l}, |A| = k,
we define v.A : Rl → Rl as

v.A(x) =
k

∑
j=1

vjPAj(x).

Theorem 4.8. Let n ∈ N, n be odd, and let Q(x) be n-homogeneous polynomial on RN. Provided

N > k!(log2(N))k
(

k + n− 1
k− 1

)
, there exists a linear subspace X ↪→ RN, dim X = k such that

Q ≡ 0 on X.
Proof. By Lemma 13, we may assume that the basis {e1, . . . , eN} of RN is chosen so that all the
monomials in the formula for Q have nonzero coefficients. Consider the system {AI}

p(k,N)
I=1 from

Lemma 12 and the set S(k, n) = {vJ}N(k,n)
J=1 from Lemma 11. Fix a basis eI,J , 1 ≤ I ≤ p(k, N), 1 ≤

J ≤ N(k, n) in Rp(k,N)N(k,n). Form an n-homogeneous polynomial Q̃ : RN → Rp(k,N)N(k,n)

Q̃(x) = ∑
I

∑
J

Q(vJ .AI(x))eI,J .

By assumption, N + 1 ≥ p(k, N)N(k, n) and the mapping Q̃(x) is odd (Q̃(−x) = −Q̃(x)).
By the Borsuk antipodal theorem ([16]) there exists a nonzero x0 = (x0

1, . . . , x0
N) ∈ RN, such that

Q̃(x0) = 0. Denote B = supp(x0).
We first claim that |B| > k. Indeed, otherwise there exists some AI = (A1, . . . , Ak) such

that |B ∩ Ai| ≤ 1, whenever 1 ≤ i ≤ ∆k, and |B ∩ Aj| = 1 for some j. Pick J such that vJ =

(0, . . . , 0, 1, 0, . . . , 0) = em ∈ S(k, n), where {m} = B∩Aj. Clearly, vJ .AI(x0) = (0, . . . , 0, x0
m, 0, . . . , 0)

as all monomials in the formula for Q are nonzero, Q(vJ .AI(x0)) 6= 0, a contradiction to
Q̃(x0) = 0.

Thus |B| > k and we can find AI = (A1, . . . , Ak) such that |B ∩ Ai| ≥ 1, 1 ≤ i ≤ k, which
means that xi = PAi(x0) 6= 0. Next define a polynomial R on Rk

R((t1, . . . , tk)) = Q(
K

∑
i=1

tixi).

Since Q̃(x0) = 0, it is immediate that R(vJ) = Q(vJ .AI(x0)) = 0, 1 ≤ J ≤ N(k, n). Thus
R ≡ 0 on Rk. Consequently, it suffices to choose X = span{xi}k

i=1, in order to obtain Q ≡ 0 on
X.

�

Note that in Theorem 4.8, N = (log2 N)k → ∞ as N → ∞. In order to give an explicit formula
for the asymptotic dependence of N on the values of k and n, let us note that N ≥ (k + n)3k

satisfies the requirements of Theorem 4.8, provided k + n ≥ 24 .
As the following corollary shows, the fact that Theorem 4.8 was stated for homogeneous

polynomials is not a real restriction.

Corollary 29. Given k and m ∈ N, there is N ∈ N such that every odd polynomial Q(x) of degree
2m + 1 on RN vanishes on a subspace of dimension k.

In order to motivate the last part of our note, which deals with even degree polynomials, let
us recall the statement of the fundamental theorem of Dvoretzky on almost spherical sections
of unit balls of finite dimensional Banach spaces.
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Theorem 4.9. (Dvoretzky) Let (X, || · ||) be an N-dimensional Banach space, ε > 0, k ∈ N. There
exists a function η : R+ → R+ such that provided k ≤ η(ε) log(N) there exists a linear operator
T : lk

2 → X, such that ||T||||T−1|| ≤ 1 + ε.

4.3. ODD DEGREE POLYNOMIALS ON REAL BANACH SPACES

All results of this subsection was proved in [5].
A classical result of Birch claims that for given k, n integers, n-odd there exists some N =

N(k, n) such that for arbitrary n-homogeneous polynomial P on RN, there exists a linear sub-
space Y ↪→ R of dimension at least k, where the restriction of P is identically zero (we say that
Y is a null space for P).

Given n > 1 odd, and arbitrary real separable Banach space X (or more generally a space
with w∗-separable dual X∗), we construct a n-homogeneous polynomial P with the property
that for every point 0 6= x ∈ X there exists some k ∈ N such that every null space containing
x has a dimension at most k. In particular, P has no infinite dimensional null space. For a
given n odd and a cardinal τ, we obtain a cardinal N = N(τ, n) = expn+1 τ such that every
n-homogeneous polynomial on a real Banach space X of density N has a null space of density
τ.

In every real separable Banach space X (or more generally every real Banach space with w∗-
separable dual X∗), of a n-homogeneous polynomial P(n > 1 arbitrary odd integer) which has
no n-finite dimensional null space.

We say that the dual X∗ has w∗ density character w∗-dens(X∗) = Γ, if there exists a set S ⊂ X∗

of cardinality Γ, such that Sw∗
= X∗, and moreover Γ is the minimal cardinal with this property.

Recall the following well-known fact.
Fact 1. Let X be a Banach space, then w∗-dens(X∗) iff there exists a bounded linear injection

T : X → l∞(Γ).

Theorem 4.10. Let X be an infinite dimensional real Banach space with w∗-densX∗ = ω, n > 1 an odd
integer. Then there exists a n-homogeneous polynomial P : X → R without any infinite dimensional
null space. More precisely, given any 0 6= x ∈ X, P(x) = 0, there exists a N ∈ N such that every null
space x ∈ Y ↪→ X has dim Y ≤ N.

Proof. Suppose that we have already proven the statement of the theorem for X = c0 and n = 3.
Let P : c0 → R be the polynomial. Given any Banach space X with w∗-densX∗ = ω, and n =
3+ 2l, we can construct the desired n-homogeneous polynomial Q : X → R as follows. Fix any

bounded linear injection T : X → c0 (put for example T(x) =
(

fi(x)
i

)∞

i=1
, where { fi}∞

i=1 ⊂ BX∗

is a separating set of functionals), and put Q(x) = P ◦ T(X) ·
(

∞
∑

i=1

1
2i fi(x)2l

)
. It is easy to verify

that a linear subspace of X where Q vanishes translates via T into a linear subspace (of the same
dimension) of c0 where P vanishes, which concludes the implication. It remains to produce P
on c0. We put

P((xi)) =
∞

∑
k=1

xk

∞

∑
i=k+1

αi
kx2

i ,

where αi
k > 0, together with the auxiliary system τ

j
k,i > 0, are chosen satisfying conditions (0)-

(3) below.
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(0)
∞
∑

k=1

∞
∑

i=k+1
|αi

k| < ∞.

(1) 1
i αi

k >
∞
∑

j=k+1
αi

j.

(2) 1
2i α

i
k ≥

∞
∑

j=1
τ

j
k,i.

(3) (αr
p)

2 ≤ 1
16 τ

q
r,pτ

p
r,q whenever r < p < q.

To construct such a system of coefficients αi
k (and auxiliary system τ

j
k,i > 0) is rather straight-

forward, proceeding inductively by the infinite rows of the matrix {αk
i }. Indeed, the additional

conditions always require that elements of a certain row are small enough depending on the el-
ements of the previous rows. Note that our choice guarantees that the formula for P converges
absolutely for every x ∈ c0.

Claim. Given any 0 6= x ∈ c0, P(x) = 0, there exists N ∈ N such that for every null space
x ∈ Y ↪→ c0 we have that dim Y ≤ N.

We may assume that ||x||∞ ≤ 1. Consider a (nonhomogeneous) 3-rd degree polynomial
R(y) = P(x + y).

R((yi)) =
∞

∑
k=1

(xk + yk)
∞

∑
i=k+1

αk
i (xi + yi)

2.

Writing R = R0 + R1 + R2 + R3, where Rm is the m-homogeneous part of R, we obtain in
particular:

R2((yi)) =
∞

∑
k=1

xk

∞

∑
i=k+1

αi
ky2

i +
∞

∑
k=1

yk

∞

∑
i=k+1

2αi
kxiyi.

Thus R2((yi)) =
∞
∑

s=1

∞
∑

l=s
βl

sysyl, where βs
s =

s−1
∑

k=1
xkαs

k, βs
l = 2xlα

l
s.

To prove the claim it suffices to find N ∈ N, such that R2, restricted to Z = [ei : i > N] ↪→
c0 (Z has codimension N) is strictly positive outside the origin. Indeed, if so, then R(λz) =

3
∑

m=0
λmRm(z) is a nontrivial 3-rd degree polynomial in λ, for every z ∈ Z, and in particular for

every z ∈ Z there exists some λ ∈ R such that P(x + λz) = R(λz) 6= 0. Now if x ∈ Y ↪→ c0 is a
null space, then Z ∩Y = {0}, and so dim Y ≤ N, as stated.

Let us without lost of generality assume that xr > 0, where r = min{i : xi 6= 0}. We choose
N > r large enough, so that the following are satisfied.

(i) βs
s =

s−1
∑
j=r

xjα
s
j ≥

1
2 xrαs

r for every s ≥ N + 1.

There exists a decomposition βs
s ≥

∞
∑

i=N+1
δi

s, δi
s > 0 such that

(ii) (αq
p)

2 ≤ 1
16 δ

q
pδ

p
q whenever N < p < q.

To see that such a choice on N is possible, we estimate using property (1), whenever s > 3
xr

βs
s ≥ xrαs

r −
s−1

∑
j=r+1

xjα
s
j ≥ xrαs

r −
s−1

∑
j=r+1

αs
j α >

1
2

xrαs
r.
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Thus N > 3
xr

guarantees that (i) is satisfied. To see (ii), for N large enough, and s > N, 1
2 xr >

1
2N > 1

2s , so we have βs
s

1
2s αs

r. So putting δi
s = τi

r,s suffices using properties (2) and (3).
The conditions are set up so that R2 restricted to Z = [ei : i > N] satisfies

R2((yi)) ≥
∞

∑
p=N+1

∞

∑
q=p+1

(δ
q
py2

p + δ
p
q y2

q + 2α
q
pxqypyq).

However, condition (ii) implies that

δ
q
py2

p + δ
p
q y2

q + 2α
q
pxqypyq ≥ δ

q
py2

p + δ
p
q y2

q − 2α
q
p|ypyq| ≥

3
4
(δ

q
py2

p + δ
p
q y2

q)

+ (
1
2

√
δ

q
p|yp| −

1
2

√
δ

p
q |yq|)2 >

1
2
(δ

q
py2

p + δ
p
q y2

q).

The last expression is clearly a positive quadratic form in variables yp, yq, which concludes
the claim that

R2((yi)) ≥∑ p = N + 1∞
∞

∑
q=p+1

(
1
2

δ
q
py2

p +
1
2

δ
p
q y2

q) > 0

for every 0 6= (yi) ∈ Z. �

The statement of the theorem applies to all separable Banach spaces, l∞, C(K), where K is
separable (not necessarily metrizable). It is inherited by the subspaces, so since l1(c) ↪→ l∞, it
applies also to l1.

Our objective now is to obtain some estimate on the size of card(Γ), such that every n-
homogeneous odd polynomial on l1(Γ) has large null sets. Given and ordinal Γ, we say that a

polynomial P : l1(Γ) → R is subsymmetric if P
(

l
∑

i=1
xieγi

)
= P

(
l

∑
i=1

xieβi

)
whenever we have

γ1 < γ2 < . . . < γl, β1 < . . . < βl, for arbitrary xi ∈ R.

Lemma 14. Let P : l1(Γ) → R be a subsymmetric n-homogeneous polynomial, n odd. Then P has a
null set of density Γ.

Denote by exp α = 2α, expn+1 α = exp(expn α), where α is a cardinal. For a set S, let [S]n =
{X ⊂ S : cardX = n}. We will use the following result, which in the language of partition
relations claims that (expn−1α)+ → (α+)αn

α.

Theorem 4.11. (Erdos, Rado) Let α be an infinite cardinal, n ∈ N, κ = (expn−1α)+ and {Gγ}γ<α be
a partition of [κ]n. Then there exist M ⊂ κ, cardM = α+ and [M]n ⊂ Gγ for some γ < α.

Proof. Let P be an n-homogeneous polynomial, suppose Γ is an ordinal. We partition the set
[Γ]n using continuum many sets {G{ai1,...,in :1≤i1≤...≤in≤n} : ai1,...,in ∈ R} as follows.

We put [γ1, . . . , γn] ∈ G{ai1,...,in :1≤i1≤...≤in≤n} iff {ai1,...,in : 1 ≤ i1 ≤ . . . ≤ in ≤ n} coincides
with the set of coefficients of P, when restricted to the n-dimensional space with coordinate
vectors eβ1 , . . . , eβn where {βi} is an increasingly reordered set {γi} (in the order coming from
Γ). Applying the Erdos-Rado theorem 4.11 yields a subset S ⊂ Γ of the desired cardinality, such
that the restriction of P to l1(S) is a subsymmetric polynomial. �

Theorem 4.12. Suppose cardΓ ≤ expn α, n odd. Then every n-homogeneous polynomial on l1(Γ) has
a null space of density at least α+.
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Theorem 4.13. Let X be a real Banach space of dens(X) ≥ expn+1 α, where α is a cardinal, n odd
integer. Then every n-homogeneous polynomial on X has a null space of density at least α+.

Proof. Let Γ = expn α. We construct a continuous injection T : l1(Γ)→ X inductively as follows.
Having chosen T(ei) ∈ BX for all i < β < Γ together with functionals fi ∈ BX∗ , fi(T(ei)) ≥
1
2 , we choose T(eβ) ∈

⋂
i<β

ker fi. The last set is nonempty, since cardX ≤ 2w∗−densX∗ , so w∗-

densX∗ ≥ expn α and we can continue the inductive process. Now it remains to note that
P ◦ T is an n-homogeneous polynomial on l1(Γ), its null subspaces carry right into X, and the
previous theorem applies. �

Proposition 20. Let Γ be an infinite cardinal, P : c0(Γ) → R be an arbitrary continuous polynomial.
Then P has a null space of separable codimension in c0(Γ).

Proof. Since P is wsc, it mapps in particular ω-null sequences to sequences convergent to 0 ∈ R.
Using a standard argument we see that P depends only on a countable set of coordinates S ⊂ Γ,
and so P restricted to Γ\S is identically zero. �

A similar proof based on wsc property for polynomials of degree less than p on lp spaces
gives.

Proposition 21. Let Γ be an infinite cardinal, P : lp(Γ)→ R be an arbitrary continuous polynomial of
degree less than p. Then P has a null space of separable codimension in lp(Γ).

In order to investigate polynomials of degree higher than p on lp(Γ) spaces, we need the
following lemma.

Lemma 15. Let P be a polynomial of n-th degree on lp(Γ), Γ > w, n < 2[p]. Then there exists a
subset Γ′ ⊂ Γ, linearly ordered, such that the restriction of P to Γ′ has the form

P((xi)) = ∑
j∈Γ′,[p]≤m≤n

∑
i1≤...≤il≤j

αm
i1,...,il ,jxii . . . xil x

m
j

The previous proposition may be further generalized to arbitrary degree polynomial. The
resulting formula will contain only those mixed terms whose last power is of degree at least
[p].

Proposition 22. Let P be a n-homogeneous polynomial on lp(w+
1 ), n < 2[p]. Then P has an infinite

dimensional (block) null space.

Proof. Consider the P in the above form. Since for every j, the set of nonzero am
i1,...,il ,j

is at most
countable. We proceed inductively as follows. Pick the first ω1 elements of Γ = ω+

1 . It follows
that there is some k0 ∈ Γ, and a set Γ1, min Γ1 > k0, of cardinality ω+

1 such that am
i1,...,il ,j

= 0,
whenever k0 ∈ {i1, . . . , il}, for all j ∈ Γ1. Since ω+

1 is a regular cardinal, we can in the next step
choose the initial ω1-interval of Γ1, and k1 in there, such that for some Γ2 ⊂ Γ1, min Γ2 > k1 of
cardinality ω+

1 we have that am
i1,...,il ,j

= 0, whenever k1 ∈ {i1, . . . , il}, for all j ∈ Γ2.
We proceed inductively along ω. The final set {k j}∞

j=0 clearly defines a splitting of P restricted
to this index set. �

Proposition 23. Let P be a 3rd degree polynomial on l2(w1). Then P has an infinite dimensional null
(block) space.
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Proof. Without lost of generality, P has the formula

P((xi)) = ∑
j<ω1

∑
i≤j

ai,jxix2
j .

We are going to construct a block sequence {uk}∞
k=1 inductively as follows. First step. If there

exists some i such that Γ1 = {j : i < j, ai,j = 0} is uncountable, then we choose u1 = ei. Clearly,
P restricted to [u1, ei : i ∈ Γ1] splits with respect to the decomposition {i}, Γ1.

Otherwise, for every i there exists εi > 0 such that ∆i = {j : j > l, |al,j| > εi} is uncountable.
Fix i = 1 and still using the previous assumption, pick an l > 1 such that the set Γ1 = {j :
j ∈ ∆1, j > i, |ai,j| < ε1

2 } is uncountable. Here we are using the property of the ground space
l2, namely if such a choice were not possible, we would have some j for which the set {i : i <
j, |ai,j| ≥ ε1

2 } is infinite. This is a contradiction with the continuity of the linear term in the
shifted polynomial Q(x) = P(ej + x). Assume, without lost of generality, that there exists some
δ > 0, a = ε1 > a− 3δ > ε1

2 > b > b− 3δ > c ≥ 0, and a disjoint decomposition of Γ1 into
uncountable subsets Γ1

1, Γ2
1 such that |a1,j − a| < δ for all j ∈ Γ1, |al,j − b| < δ for all j ∈ Γ1

1 and
|al,j − c| < δ for all j ∈ Γ2

1. Put u1 = el − b=c
2a e1. Consider now the polynomial P restricted to

the subspace generated by the basic long sequence {e1
i : i < ω1} = {u1, ej : j ∈ Γ1}. Its formula

has the canonical form P((xi)) = ∑
j<ω1

∑
i≤j

a1
i,jxix2

j , where moreover |a1
1,i| > δ for all i > 1, and

both sets A = {i : i > 1, a1
1,i > δ} and B = {i : i > 1, a1

1,i < −δ} are uncountable. Blocking
once more, this time using a bijection φ : A → B and suitable coefficients ci, i ∈ A we obtain
the disjoint blocks vi = ei + cieφ(i), i ∈ A, such that in the restriction of P to [e1

1, vi] splits with
respect to e1 and [vi]. The inductive step consists of repeating the previous argument, for the
polynomial P restricted to the last index set defining the previous splitting. This leads to a
sequence {uk}∞

k=1, where each uk lies in the block subsequent to blocks containing ui, i < k, and
defining a splitting of P. Thus P splits with respect to disjoint block vectors {uk}∞

k=1, and the
result follows. �

Remark 2. The assumption that τ is uncountable cannot be dropped. Indeed, consider the

subspace of lp generated by vectors vn =
∞
∑

i=kn

an
i ei for some fast decreasing sequence an

i ↘ 0,

and fast increasing kn → ∞. We have {vn} ∼ {en} the canonical basis. The coordinates of
vj(i), j ≤ n in the intervals i ∈ [kn, kn+1) are chosen so that for every pair of nonzero vectors

x =
n
∑

j=1
bjvj, y =

n
∑

j=1
cjvj there exists some i ∈ [kn, kn+1) for which x(i), y(i) 6= 0. This can

be obtained by a simple compactness argument. It follows, that [vn : n ∈ N] contains no two
nonzero disjoint blocks.

Given n− 2 < p ≤ n, where n is odd, we define a polynomial operator Qp : lp(c) → l1(c)
by Q((xi)) = (xn

i ). Clearly, Q is n-homogeneous and injective. Let P be the 3-homogeneous
polynomial on l1(c) without any infinite dimensional null space.

Lemma 16. R = P ◦ Q is a 3n-homogeneous polynomial on lp(c), which has no infinite dimensional
block null space. In particular, it has no nonseparable null space. Moreover, for every l ≥ 4n + 1 odd,
there exists an l-homogeneous polynomial on lp(c) without a nonseparable null space.
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Зроблено огляд загальних результатiв про лiнiйнi пiдпростори у ядрах полiномiв на дiйсних та
комплексних банахових просторах.
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