Recent advances in intranasal delivery of therapeutic peptides

Authors

DOI:

https://doi.org/10.15330/jpnubio.11.123-135

Keywords:

intranasal drug delivery, blood-brain barrier, peptide administration, olfactory transport, drug bioavailability enhancement

Abstract

Treatment of neurodegenerative disorders requires delivery of drugs into the central nervous system. However, presence of the blood–brain barrier (BBB) strongly limits applicability of intravenous or oral paths for administration of drugs acting in the brain. Intranasal delivery is a promising, non-invasive strategy to bypass the BBB and deliver drugs directly to the brain. This review examines the nasal-to-brain delivery mechanisms, enhancement strategies, and therapeutic applications of drug delivery to the brain upon intranasal administration, with a focus on peptide delivery. It compares the anatomical differences in nasal cavity structure between humans and model animals used to study delivery efficacy and considers transport mechanisms, including intracellular (axonal) and extracellular (paracellular and transcellular) pathways. Peptide drugs approved for intranasal administration, such as insulin, exendin, and oxytocin as well as several peptides on the development stage are discussed in more details with insights of the influence of peptide sequence on the delivery efficiency. Finally, recent progress in various strategies to improve intranasal peptide delivery, including PEGylation, cell-penetrating peptides, and cyclodextrins are discussed.

References

AGRAWAL, M., SARAF, S., SARAF, S., ANTIMISIARIS, S. G., CHOUGULE, M. B., SHOYELE, S. A. & ALEXANDER, A. 2018. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release, 281, 139-177.

BALIN, B. J., BROADWELL, R. D., SALCMAN, M. & EL-KALLINY, M. 1986. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol, 251, 260-80.

BANKS, W. A. 2009. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol, 9 Suppl 1, S3.

BANKS, W. A., DURING, M. J. & NIEHOFF, M. L. 2004. Brain uptake of the glucagon-like peptide-1 antagonist exendin(9-39) after intranasal administration. J Pharmacol Exp Ther, 309, 469-75.

BECK, B. & POURIE, G. 2013. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev, 71, 541-61.

BENEDICT, C., HALLSCHMID, M., HATKE, A., SCHULTES, B., FEHM, H. L., BORN, J. & KERN, W. 2004. Intranasal insulin improves memory in humans. Psychoneuroendocrinology, 29, 1326-34.

BORN, J., LANGE, T., KERN, W., MCGREGOR, G. P., BICKEL, U. & FEHM, H. L. 2002. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci, 5, 514-6.

CHENG, Y. S., CHEN, Z. T., LIAO, T. Y., LIN, C., SHEN, H. C., WANG, Y. H., CHANG, C. W., LIU, R. S., CHEN, R. P. & TU, P. H. 2017. An intranasally delivered peptide drug ameliorates cognitive decline in Alzheimer transgenic mice. EMBO Mol Med, 9, 703-715.

CRAFT, S., BAKER, L. D., MONTINE, T. J., MINOSHIMA, S., WATSON, G. S., CLAXTON, A., ARBUCKLE, M., CALLAGHAN, M., TSAI, E., PLYMATE, S. R., GREEN, P. S., LEVERENZ, J., CROSS, D. & GERTON, B. 2012. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol, 69, 29-38.

CROWE, T. P., GREENLEE, M. H. W., KANTHASAMY, A. G. & HSU, W. H. 2018. Mechanism of intranasal drug delivery directly to the brain. Life Sci, 195, 44-52.

CUI, X., CAO, D. Y., WANG, Z. M. & ZHENG, A. P. 2013. Pharmacodynamics and toxicity of vasoactive intestinal peptide for intranasal administration. Pharmazie, 68, 69-74.

DELOBETTE, S., PRIVAT, A. & MAURICE, T. 1997. In vitro aggregation facilities beta-amyloid peptide-(25-35)-induced amnesia in the rat. Eur J Pharmacol, 319, 1-4.

DEROSSI, D., JOLIOT, A. H., CHASSAING, G. & PROCHIANTZ, A. 1994. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 269, 10444-50.

DHURIA, S. V., HANSON, L. R. & FREY, W. H., 2ND 2009. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system. J Pharm Sci, 98, 2501-15.

DURING, M. J., CAO, L., ZUZGA, D. S., FRANCIS, J. S., FITZSIMONS, H. L., JIAO, X., BLAND, R. J., KLUGMANN, M., BANKS, W. A., DRUCKER, D. J. & HAILE, C. N. 2003. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med, 9, 1173-9.

ERDO, F., BORS, L. A., FARKAS, D., BAJZA, A. & GIZURARSON, S. 2018. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull, 143, 155-170.

FLETCHER, L., KOHLI, S., SPRAGUE, S. M., SCRANTON, R. A., LIPTON, S. A., PARRA, A., JIMENEZ, D. F. & DIGICAYLIOGLU, M. 2009. Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg, 111, 164-70.

FUJIKI, N., YOSHIDA, Y., RIPLEY, B., MIGNOT, E. & NISHINO, S. 2003. Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin-ligand-deficient narcoleptic dog. Sleep, 26, 953-9.

GALBUSERA, A., DE FELICE, A., GIRARDI, S., BASSETTO, G., MASCHIETTO, M., NISHIMORI, K., CHINI, B., PAPALEO, F., VASSANELLI, S. & GOZZI, A. 2017. Intranasal Oxytocin and Vasopressin Modulate Divergent Brainwide Functional Substrates. Neuropsychopharmacology, 42, 1420-1434.

GEDULIN, B. R., SMITH, P. A., JODKA, C. M., CHEN, K., BHAVSAR, S., NIELSEN, L. L., PARKES, D. G. & YOUNG, A. A. 2008. Pharmacokinetics and pharmacodynamics of exenatide following alternate routes of administration. Int J Pharm, 356, 231-8.

GOLOLOBOV, G., NODA, Y., SHERMAN, S., RUBINSTEIN, I., BARANOWSKA-KORTYLEWICZ, J. & PAUL, S. 1998. Stabilization of vasoactive intestinal peptide by lipids. J Pharmacol Exp Ther, 285, 753-8.

GOZES, I., BARDEA, A., RESHEF, A., ZAMOSTIANO, R., ZHUKOVSKY, S., RUBINRAUT, S., FRIDKIN, M. & BRENNEMAN, D. E. 1996. Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci U S A, 93, 427-32.

HAGAN, J. J., LESLIE, R. A., PATEL, S., EVANS, M. L., WATTAM, T. A., HOLMES, S., BENHAM, C. D., TAYLOR, S. G., ROUTLEDGE, C., HEMMATI, P., MUNTON, R. P., ASHMEADE, T. E., SHAH, A. S., HATCHER, J. P., HATCHER, P. D., JONES, D. N., SMITH, M. I., PIPER, D. C., HUNTER, A. J., PORTER, R. A. & UPTON, N. 1999. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A, 96, 10911-6.

HARDY, J. & SELKOE, D. J. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297, 353-6.

HARKEMA, J. R., CAREY, S. A. & WAGNER, J. G. 2006. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol, 34, 252-69.

HARRIS, J. M. & CHESS, R. B. 2003. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov, 2, 214-21.

HENKIN, R. I. 2010. Intranasal insulin: from nose to brain. Nutrition, 26, 624-33.

JANSSON, B. & BJORK, E. 2002. Visualization of in vivo olfactory uptake and transfer using fluorescein dextran. J Drug Target, 10, 379-86.

KANDEL, E. R., J.H., S., T.M., J., S.A., S., A.J., H. & S., M. 2014. Smell and Taste: The Chemical Senses. Principles of Neural Science, Fifth Edition. New York, NY: McGraw-Hill Education.

KELLER, L. A., MERKEL, O. & POPP, A. 2022. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res, 12, 735-757.

KHAFAGY EL, S., MORISHITA, M., ISOWA, K., IMAI, J. & TAKAYAMA, K. 2009. Effect of cell-penetrating peptides on the nasal absorption of insulin. J Control Release, 133, 103-8.

KHAFAGY , S., MORISHITA, M. & TAKAYAMA, K. 2010. The role of intermolecular interactions with penetratin and its analogue on the enhancement of absorption of nasal therapeutic peptides. Int J Pharm, 388, 209-12.

KHAWLI, L. A. & PRABHU, S. 2013. Drug delivery across the blood-brain barrier. Mol Pharm, 10, 1471-2.

KIM, T. H., PARK, C. W., KIM, H. Y., CHI, M. H., LEE, S. K., SONG, Y. M., JIANG, H. H., LIM, S. M., YOUN, Y. S. & LEE, K. C. 2012. Low molecular weight (1 kDa) polyethylene glycol conjugation markedly enhances the hypoglycemic effects of intranasally administered exendin-4 in type 2 diabetic db/db mice. Biol Pharm Bull, 35, 1076-83.

LEE, K. C., PARK, M. O., NA, D. H., YOUN, Y. S., LEE, S. D., YOO, S. D., LEE, H. S. & DELUCA, P. P. 2003. Intranasal delivery of PEGylated salmon calcitonins: hypocalcemic effects in rats. Calcif Tissue Int, 73, 545-9.

LOCHHEAD, J. J., KELLOHEN, K. L., RONALDSON, P. T. & DAVIS, T. P. 2019. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci Rep, 9, 2621.

LOCHHEAD, J. J. & THORNE, R. G. 2012. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev, 64, 614-28.

LOCHHEAD, J. J., WOLAK, D. J., PIZZO, M. E. & THORNE, R. G. 2015. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab, 35, 371-81.

LUO, D., NI, X., YANG, H., FENG, L., CHEN, Z. & BAI, L. 2024. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci, 192, 106630.

MEREDITH, M. E., SALAMEH, T. S. & BANKS, W. A. 2015. Intranasal Delivery of Proteins and Peptides in the Treatment of Neurodegenerative Diseases. AAPS J, 17, 780-7.

MERKUS, F. W., VERHOEF, J. C., MARTTIN, E., ROMEIJN, S. G., VAN DER KUY, P. H., HERMENS, W. A. & SCHIPPER, N. G. 1999. Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev, 36, 41-57.

MERKUS, F. W., VERHOEF, J. C., ROMEIJN, S. G. & SCHIPPER, N. G. 1991. Absorption enhancing effect of cyclodextrins on intranasally administered insulin in rats. Pharm Res, 8, 588-92.

MEYER-LINDENBERG, A., DOMES, G., KIRSCH, P. & HEINRICHS, M. 2011. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci, 12, 524-38.

MITCHELL, D. J., KIM, D. T., STEINMAN, L., FATHMAN, C. G. & ROTHBARD, J. B. 2000. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res, 56, 318-25.

MOREIRA BRITO, J. C., CARVALHO, L. R., NEVES DE SOUZA, A., CARNEIRO, G., MAGALHAES, P. P., FARIAS, L. M., GUIMARAES, N. R., VERLY, R. M., RESENDE, J. M. & ELENA DE LIMA, M. 2022. PEGylation of the antimicrobial peptide LyeTx I-b maintains structure-related biological properties and improves selectivity. Front Mol Biosci, 9, 1001508.

MORISHITA, M., KAMEI, N., EHARA, J., ISOWA, K. & TAKAYAMA, K. 2007. A novel approach using functional peptides for efficient intestinal absorption of insulin. J Control Release, 118, 177-84.

NOGUCHI, C. T., ASAVARITIKRAI, P., TENG, R. & JIA, Y. 2007. Role of erythropoietin in the brain. Crit Rev Oncol Hematol, 64, 159-71.

NONAKA, N., FARR, S. A., KAGEYAMA, H., SHIODA, S. & BANKS, W. A. 2008. Delivery of galanin-like peptide to the brain: targeting with intranasal delivery and cyclodextrins. J Pharmacol Exp Ther, 325, 513-9.

OTT, V., FINLAYSON, G., LEHNERT, H., HEITMANN, B., HEINRICHS, M., BORN, J. & HALLSCHMID, M. 2013. Oxytocin reduces reward-driven food intake in humans. Diabetes, 62, 3418-25.

OZSOY, Y., GUNGOR, S. & CEVHER, E. 2009. Nasal delivery of high molecular weight drugs. Molecules, 14, 3754-79.

PALDE, C., BAROT, T., CHAKRABORTHY, G. S. & PATEL, L. D. 2024. PEPTIDE DELIVERY VIA NASAL ROUTE: EXPLORING RECENT DEVELOPMENTS AND APPROACHES. International Journal of Applied Pharmaceutics, 16, 46-56.

PONTIROLI, A. E., ALBERETTO, M., CALDERARA, A., PAJETTA, E. & POZZA, G. 1989. Nasal administration of glucagon and human calcitonin to healthy subjects: a comparison of powders and spray solutions and of different enhancing agents. Eur J Clin Pharmacol, 37, 427-30.

RENNER, D. B., SVITAK, A. L., GALLUS, N. J., ERICSON, M. E., FREY, W. H., 2ND & HANSON, L. R. 2012. Intranasal delivery of insulin via the olfactory nerve pathway. J Pharm Pharmacol, 64, 1709-14.

REZNIK, G. K. 1990. Comparative anatomy, physiology, and function of the upper respiratory tract. Environ Health Perspect, 85, 171-6.

SCHAEFER, M. L., BOTTGER, B., SILVER, W. L. & FINGER, T. E. 2002. Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol, 444, 221-6.

SCHIPPER, N. G., ROMEIJN, S. G., VERHOEF, J. C. & MERKUS, F. W. 1993. Nasal insulin delivery with dimethyl-beta-cyclodextrin as an absorption enhancer in rabbits: powder more effective than liquid formulations. Pharm Res, 10, 682-6.

SCHIPPER, N. G., VERHOEF, J. C., ROMEIJN, S. G. & MERKUS, F. W. 1995. Methylated beta-cyclodextrins are able to improve the nasal absorption of salmon calcitonin. Calcif Tissue Int, 56, 280-2.

SEMPLE, B. D., BLOMGREN, K., GIMLIN, K., FERRIERO, D. M. & NOBLE-HAEUSSLEIN, L. J. 2013. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol, 106-107, 1-16.

SHIBA, K., KAGEYAMA, H., TAKENOYA, F. & SHIODA, S. 2010. Galanin-like peptide and the regulation of feeding behavior and energy metabolism. FEBS J, 277, 5006-13.

SNYDER, E. L. & DOWDY, S. F. 2004. Cell penetrating peptides in drug delivery. Pharm Res, 21, 389-93.

SPETTER, M. S. & HALLSCHMID, M. 2015. Intranasal Neuropeptide Administration To Target the Human Brain in Health and Disease. Mol Pharm, 12, 2767-80.

TALBOT, K., WANG, H. Y., KAZI, H., HAN, L. Y., BAKSHI, K. P., STUCKY, A., FUINO, R. L., KAWAGUCHI, K. R., SAMOYEDNY, A. J., WILSON, R. S., ARVANITAKIS, Z., SCHNEIDER, J. A., WOLF, B. A., BENNETT, D. A., TROJANOWSKI, J. Q. & ARNOLD, S. E. 2012. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest, 122, 1316-38.

THORNE, R. G., PRONK, G. J., PADMANABHAN, V. & FREY, W. H., 2ND 2004. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 127, 481-96.

UENO, H., MIZUTA, M., SHIIYA, T., TSUCHIMOCHI, W., NOMA, K., NAKASHIMA, N., FUJIHARA, M. & NAKAZATO, M. 2014. Exploratory trial of intranasal administration of glucagon-like peptide-1 in Japanese patients with type 2 diabetes. Diabetes Care, 37, 2024-7.

VERONESE, F. M. & PASUT, G. 2005. PEGylation, successful approach to drug delivery. Drug Discov Today, 10, 1451-8.

VIVES, E., BRODIN, P. & LEBLEU, B. 1997. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 272, 16010-7.

WATANABE, Y., MATSUMOTO, Y., KAWAMOTO, K., YAZAWA, S. & MATSUMOTO, M. 1992. Enhancing effect of cyclodextrins on nasal absorption of insulin and its duration in rabbits. Chem Pharm Bull (Tokyo), 40, 3100-4.

ZHANG, H., WU, C., CHEN, Q., CHEN, X., XU, Z., WU, J. & CAI, D. 2013. Treatment of obesity and diabetes using oxytocin or analogs in patients and mouse models. PLoS One, 8, e61477.

Downloads

Published

2024-12-29

How to Cite

Kharuk, S., Shturmak, A., & Shvadchak, V. (2024). Recent advances in intranasal delivery of therapeutic peptides. Journal of Vasyl Stefanyk Precarpathian National University. Biology, 11, 123–135. https://doi.org/10.15330/jpnubio.11.123-135

Issue

Section

Articles