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Within the framework of proton model with taking into account the piezoel ectric interaction with the shear
strain €4, a dynamic dielectric response of KH,PO, family ferroelectrics and antiferroelectrics is considered.

Piezoel ectric resonance frequencies of rectangular thin plates of the crystals cut in the (001) plane (0° Z-cut) are
calculated, which are found to bein a good agreement with experiment.
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I ntr oduction

In our previous papers [1,2] we explored the
dynamic dielectric response of square thin plates cut
from the KH,PO, family crystals in the planes (001),
perpendicular to the axis of spontaneous polarization.
Using the modification of the proton ordering model [3]
that includes the piezoelectric coupling with the shear
strain €, , within the framework of the Glauber approach

[4] and the four-particle cluster approximation, we
obtained expressons for the dynamic dielectric
permittivity of the crystals, which took into account the
dynamics of the shear strain g,. In the low-frequency

[imit these expressions coincided with the static permitti-
vities of mechanically free crystals, whereas in the
microwave region they coincided with the dynamic
permittivities of clamped crystals, exhibiting a
relaxational dispersion.

In the intermediate region, the obtained permittivities
had numerous peaks associated with the piezoeectric
resonances. However, while solving the partia
differential equations for the strain in [1,2], the boundary
conditions were not set correctly. Instead of demanding
that the entire edges of the plate were mechanically free,
we considered the plate free only at its vertices. It
resulted in the underestimated values of the resonant
frequencies. In the present paper we shall correct these
erors.

We shall not repeat here the details of the previous
caculations, which were correct. The system
Hamiltonians, most of the used notations, as well as
derivation of the dynamic dielectric permittivities of
clamped crystal (the pseudospin subsystem dynamics),
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can befoundin[1,2].

I. Dynamic permittivity of KH,PO,4 type
crystals

We shall consider shear mode vibrations of a thin
L, " L, rectangular plate of a KH,PO, crystal, cut in the

(001) plane, with the edges along [100] and [010] (0O° Z-
cut). The vibrations are induced by time-dependent
eectric field E, = E,"™. In the ferroelectric phase this
field, in addition to the shear strain e, , induces also the
diagonal components of the strain tensor e, but for the
sake of simplicity we shall neglect them.

Dynamics of pseudospin subsystem will  be
considered in the spirit of the stochastic Glauber model
[4], using the four-particle cluster approximation. The
system of equations for the time-dependent deuteron
(pseudospin) distribution functionsis

d
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where eg (t) is the local field acting on the fdth

deuteron in the gth cell, which can be found from the

system Hamiltonian (see [1]); a isthe parameter setting
the time scale of the dynamic processes in the pseudospin
subsystem.

Taking into account the symmetry of the distribution
functions
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from (1) we obtain for them a closed system of
equations
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The used here notations can be found in [1].
Dynamics of the deformational processes is described
using classicd Newtonian equations of motion of an
elementary volume, which for the relevant to our system

. T, Tu,
displacements u, and u, (e, =—+—=) read
E¢ U C* fy ﬂX)
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Here r isthe crystal density, s is the mechanical
shear stress, which, being the function of h® | E,, and
e, is found from the constitutive equations derived in
1].
- At small deviations from the equilibrium we can
separate in the systems (3) and (4) the static and time-
dependent parts, presenting the dynamic variables h®,
h®, h®, e, u, assumsof the equilibrium values and
of their fluctuational deviations, while the fluctuational
parts are assumed to be in the form of harmonic waves
h(l) =l‘%(1) +h(1)(X, y)eiwl,
h® =H® +h @ (x, y)e".
The fluctuational part of (3) is then reduced to the

system of linear first-order differential equations with
constant coefficients, solving which we get
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the notations introduced here can be found in [1].
Subgtituting (5) into Egs. (4), we obtain
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where k; isthe wavevector
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Differentiating the first and second equations of (6)
with respect to y and X, correspondingly, remembering
that we neglect the diagonal drains e =1u,/fx and
e, = fu, /Yy, and adding the two obtained equations, we
arrive at the single equation for the strain e,
2 2
Tl LoD e =0 @
Boundary conditions for e;(x,y) follow from the
assumption that the crystal is simply supported, that is, it
is traction free at its edges (&t x=0, x=L,, y=0,
y=L,,tobedenoted as S)
S.|s=0. 10)
In our previous consideration [1] this condition was
fulfilled at the corners of the crystal plate only, but not
along all its edges. Substituting (10) into the constitutive

relations, we obtain the explicit boundary conditions for
the strainsin the following form

Lo, = S@W)
6 IS i0 C;(aW)

E, (12)
where
b
e, (aw) = &, +T”*[-y FO@w)+ )
+d O @w) +d, F (aw) - d, 2 @w)].

Solution of (7) with the boundary conditions (11) is
€ (X Y) =€g +
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with wy, given by
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Using the expression, relating polarization P, to the
order parameter h® and strain e, (see[1]), we find that
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R(x y.t) = B(x y)e",

. (15)
R(xY) =es@w)e; (X, y) +cu@W)E,
where
csaw) =c% + 2 FO ) (16
is the dynamic dielectric susceptibility of a clamped
crystal.

Now we can calculate the dynamic dielectric
susceptibility ofafreecrystal c§3(aw) as

:__ 17
L0 = ¢ I oina(x ). (17)
obtaining
¢2 ) = 5y (aw) + R ()2 an; (18)
where A
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In the static and the high frequency limits from (18)
we obtain the static susceptibility of afree crystal [3] and
the dynamic susceptibility of a mechanicaly clamped
crystal, exhibiting relaxational dispersion in the
microwave region. Thus, eg. (18) explicitly describes the
effect of crystal clamping by high-frequency eectric
fidd.

In the intermediate frequency region, the
susceptibility has a resonance dispersion with numerous
peaks ar frequencies where RR,(w)] ® ¥ . Frequency
variation of ¢ (aw) is perceptible only in the region of
the microwave dispersion of the dielectric susceptibility.
Below thisregion it is practically frequency independent
and coincides with the static elastic constant cf, . Since
the resonance frequencies are expected to be in the

10*- 10" Hz range, depending on temperature and
x 10° Vo Hz
4 T
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Figure 1. The first resonance frequency n, =wg, / 2p

of a rectangular 0° Z-cut of a KH,PO, crysal.
Symbols are experimental points taken from [6]. Line:
the present theory.
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sample dimensions, the equation for the resonance
frequencies (14) is reduced to an explicit expression by
putting in it cg(@w) ® cf, .

Comparing (14) to the expression obtained
previoudy [1] for a square L™ L plate cut in the (001)
plane

p(2k+1) |epw,)
L ro’
we can see that the incorrectly set boundary conditions

[1] led to the first resonance frequency, being V2 times
smaller than the one given by (14). However, the low and
high frequency limits of the susceptibility calculated in
[1] (the static value and the clamped values with the
relaxational dispersion in the microwave region) were
correct.

The used values of the model parameters can be
found in [1]. Asone can seg, in the paradectric phase the
first resonance frequency of a rectangular 0° Z-cut of a
KH,PO, crystal, calculated from (14), accords well with
experimental data. The discrepancy between the theory
and experiment in the ferroelectric phase is obvioudy
caused by the contributions of the domain effects into the
elagtic congtant of the crystal, which are not considered
in the present model. Note that the first resonant
frequency has a sharp minimum at the transition point,
owing to the smilar behavior of the elastic constant ¢, .

II. Resonant frequencies of NH4H,PO,

typecrystals

We consider vibrations of a 0° Z-cut of an
antiferroel ectric NH4H,PO, type crystal, produced by an
external time-dependent electric fiedd E, = E,e".

Taking into account the system Hamiltonian, the
symmetry of the proton distribution functions for the
case of antiferroelectric ordering [2,5], and following the
procedure, described in the previous section, we obtain
an expression for the dynamic dielectric permittivity of a
free crystal, which isformally the same as for the case of
ferroelectric ordering (18). However, the dagtic constant
is different
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Figure 2. The frequency constants n,,L, = L w /2p
of a square 0° Z-cut of aNH ,H,PO, crystal. m, A:

experimental points taken from [7] and [8]. o: the
present theory. Numbers is parentheses are the (k,I)

values.

Just like in the case of KH,PO, type crystals, it does
not have any perceptible frequency variation in the
piezoelectric resonance region and coincides with the

static constant ¢, . On the other hand, in NH;H,PO, the
elastic constant ¢, does not exhibit any anomalous
behavior in the trangition region and is about 610" N/m
? between T, =148 K and 300K [5].

The expressions for the piezoeectric coefficient
e, (aw) , dynamic dielectric susceptibility of a clamped
crystal cg,, the function R;(w), and the equation for the
resonant frequencies are the same as in the case of a
ferroelectric KH,PO, type crystals. (12), (16), (19), and
(14), respectively. However, the functions F®(w) and
other auxiliary quantities used in these formulae as well
asin (20) differ from those from the previous section and
can befoundin [2,5].

In fig. 2 we compare the calculated frequency
constants (the resonant frequencies multiplied by the
sample edge length Lw{ ; the sizeindependent

W
quantity) of a square 0° Z-cut of a NH4H,PO, crystal to
the available experimental data. As one can see, a very
good agreement is obtained. The fitting procedure and
values of the model parameters were given in [2,5].

Conclusions

Within the proton ordering mode with taking into
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account the shear strain e, we explored a dynamic
response of ferroelectric and antiferroelectric crystals of
the KH,PO, family to an external harmonic eectric field
E, . Dynamics of the pseudospin subsystem is described
within the stochastic Glauber approach. Dynamics of the
strain e, is obtained from the Newtonian eguations of

motion of an dementary volume, with taking into
account the relations between the order parameter of the
pseudospin  subsystem and the drain. Corrected
expressions for the piezoelectric resonance frequencies
of smply supported rectangular 0° Z-cuts of these
crystals are obtained. They are shown to yield a good
guantitative agreement with experimenta data for
KH,PO,4 and NH4H,PO, crystals.

The ultimate goal of the present studies will be to
generalize the obtained expression for the dynamic
permittivity to the case of the Rb,_, (NH,), PO, type

proton glasses, in order to explore ther dynamic
didlectric response. It is known [9,10] that, just like their
pure constituents, these mixed systems are piezoelectric,
and ther dynamic didlectric permittivity has a
piezodectric resonance digpersion. As our preliminary
calculations show, the experimentally obtained resonant
frequencies of such mixed cystas [11] are wel
described by the obtained here expression for the
resonant frequencies, provided that the corresponding

elastic constant ¢, of such asystem isknown.
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P.P.HeBHuKHﬁl, I.P.3aqel<2, A.Il. Mo'l'Hal, A.C. Bnosuu

IT' e30es1eKTPpUYHUIA pe30HAHC B cerHeToeekTpuKax tTuny KH,PO,

Yncmumym @isuxu kondencosanux cucmen, syn. Ceenyiywvrozo,1, 79011, Jvsis, Vpaina
2Hayionanenuii ynisepcumem "Jlvsiecoxa nonimexuika”, eyn. Bandepu,12, 79013, /lvsis, Ypaina

B pamkax Mogelli MPOTOHHOTO BIOPS/KYBaHHS 3 ypaXyBaHHSM IT €30€JIEKTPHYHOrO 3B’ 3Ky 31 3CYBHOIO
AeopMALIE0 g LOCIIIKCHO NiCNCKTPUYHMUI BIALYK CETHETOCNCKTPHUKIB Ta AHTHCETHETOCNCKTPHKIB CiM'T

KH,PO,. Po3paxoBaHi 4acToTH II' €30€JIEKTPUYHOTIO PE30HAHCY NPSIMOKYTHHX TOHKHX IUIACTUH TAKUX KPHUCTAJIB,

Bupizanux B mionmHi (001) (OOZ-nepepi3H) JI0Ope Y3rOo/DKYIOTHCS 3 eKCIIEPUMEHTAIBHIME JaHUMH.
Kuro4ogi cjioBa: ceraeroeneKTpuku, KH,PO,, I’ e30eeKTpHuHHil pe3oHaHC.
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