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The theory of diffusion processes in solids has achieved significant results in recent decades, but the
development of methods for calculating diffusion in a multicomponent thermodynamic system is still an urgent
task. Problems of diffusion in solid and liquid solutions with small deviations from the equilibrium state, or
fluctuations, are of significant interest. The work develops a general methodology for calculating diffusion flows
in a multicomponent thermodynamic system for small deviations from the equilibrium state. A connection has been
established between the mechanical approach to the analysis of generalized systems and the phenomenological
equations of nonequilibrium thermodynamics. Examples are given of the use of the developed methodology for the

analysis of carbide transformations in chromium steel.
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Introduction

The mathematical apparatus of non-equilibrium
thermodynamics and phase-field modeling is usually used
to analyze diffusion processes in a complex
thermodynamic system [1-3].

In general, the thermodynamic equations of motion
have the form [1,3]:

Ji=YR=1 LyeXp (i=1,...N), (1)

Where J; are fluxes; Xk are thermodynamic forces;
Lik = Lk are Onsager kinetic coefficients; i,k are numbers
of charges (transfer substrates).

The main driving forces of diffusion in non-
equilibrium thermodynamics are gradients of chemical
potentials i system components [4-6]:

In accordance with the provisions developed in phase-
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field modeling, chemical potentials, in turn, are related to
the Gibbs energy G by equations [7]:

aG
Hi = B_Ci’ (3)

The theory of diffusion in metal alloys with a vacancy
mechanism of atomic migration was developed by Darken
[4]. The main limitations of this theory are associated with
the need for the diagonality of the Onsager matrix and the
equilibrium condition for the concentration of vacancies
[5, 6].

In [6], the kinetics of diffusion in a bimetallic system
was considered taking into account the off-diagonal
coefficients of the Onsager matrix. The thermodynamic
potential in this work was presented as:

;= 1 = RT Inln (y,C), 4)

Where C; — concentration of the i-element;
yi — activity coefficient of the i-th element, which is
considered dependent on the same concentration Ci.
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The equation for the diffusion fluxes of the system
contains generally unknown activity coefficients of
elements and vacancies and their derivatives with respect
to concentrations, which makes it extremely difficult to
find the values of direct and cross coefficients. In [6],
expressions for the cross coefficients for an ideal solid
solution were found.

Calculating fluxes in a system using the proposed
method is a very labor-intensive task with a large number
of unknown dependences of the activity coefficients of
elements on concentration. Similar difficulties arise in the
phase-field model [2, 7].

Very often in materials science there is a problem of
finding flows of elements in time in interacting phases. At
the same time, the distribution of concentrations in space
can be neglected, and the systems are considered as
composite [8-10]. When considering intermittent systems,
that is, systems that contain several phases, between which
flows of elements and vacancies pass, finite chemical
potential differences can be used as thermodynamic forces
(—Awi) [8-10].

In [8], the values of diffusion fluxes in the Fe — C —Cr
system were calculated taking into account cross
coefficients at the initial time. In [9], equations were
obtained that describe the kinetics of the diffusion process
in a system consisting of two phases and three elements.

The theory of diffusion processes in solids continues
to develop intensively in recent years, as can be seen from
works [10-19], however, the development of methods for
calculating diffusion in a multicomponent thermodynamic
system is still an urgent task.

Of particular interest are problems of diffusion in
solid and liquid solutions with small deviations from the
equilibrium state, or fluctuations [19, 20]

The purpose of this work is to obtain kinetic diffusion
equations for small deviations of a composite
thermodynamic system from the equilibrium state and to
use them to analyze the transformation of carbides in
chromium steel.

I. Kinetic equations of a
multicomponent thermodynamic
system

To describe our thermodynamic system, we use
elements of the theory of small oscillations of a
generalized mechanical system [21].

We define the equilibrium state of a thermodynamic
system as a state described by a set of generalized

coordinates g, for which

. 0
qk=0atqk=q,((), 5)
Moreover, all higher derivatives vanish. In this state,
entropy and Gibbs energy have extreme values.
This also means that if all coordinates of the system

are equal to the generalized coordinates g, = q,({o), then
the system is in equilibrium at given external parameters
of temperature and pressure, i.e. fulfillment of condition

(5) at t=to must result in respect for equalities q;, = q,ﬁo) at
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any subsequent time. It will also be assumed that
generalized coordinates are related to concentrations as
follows:
Qi = Cx — CY, (6)
Where C? - equilibrium value of the concentration of
the component in the selected part of the system.
The kinetics of diffusion in our multicomponent

thermodynamic system can be described by a system of
differential equations [2, 7, 11, 15]:

G =~V (o Lu? (G, ™
where V is the gradient.

When simplifying the system to a discontinuous one,
we consider diffusion along one coordinate. Replacing
gradients with finite differences along one coordinate axis
A, equation (7) can be represented in the form

1
AxXAX

Gt = g B Ear LagmAG), (8)

where A is the chemical potential difference between two
parts of the system, Ax is the distance between two parts
of the system, Aj is the difference in fluxes between two
points, AX is the distance between two points of the
system for fluxes. In the general case, we assume that the

selected points for potentials and fluxes are different and,
accordingly, different distances between the points

(Fig. 1).
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Fig. 1. Diagram of a two-phase system.

In equation (8), we will put the sign of the difference
in chemical potentials in brackets, referring it to the
thermodynamic potential, and we will omit the sign of the
difference in fluxes, since the expression in brackets
already determines the difference in particle fluxes
between parts of the system.

From the equations of motion (8) we obtain the
following system of first-order differential equations that
describe the kinetics of a thermodynamic system for small
deviations from the equilibrium position:

1
AxXAX

0AG
ik aqx’

qi =1 L €)

From conditions (8), which determine the conditions
of equilibrium, and the equations of motion (9), it follows
that the necessary conditions of equilibrium are the

equalities:
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96 _ 0,atq, = q,io), k=1,...N.

e (10)

For a mechanical system in a state of stable
equilibrium, the value of the potential function has an
absolute minimum [21]. For a thermodynamic system in a
state of equilibrium, the value thermodynamic potential G

G

G(qr) = G(qro) + Xk (aTk

Taking into account equalities (10), and omitting all
terms of the third order and higher, we obtain the
following expression for the thermodynamic potential:

AG:%kaQsz' (12)
(226} _ (2m
where by, = <6qk6m)0 = (mn)o' (13)

Equations (9), taking into account (15), lead to the
following basic equations of motion of a multicomponent
thermodynamic system for small deviations from the
equilibrium position:

1

4=~ Fox k=1 Zit1 Lihuq, i=1,...N.  (14)
In equation (14) it is necessary to substitute the values
of the kinetic conductivity coefficients Lk and power
coefficients by.
As is known [1, 3], direct kinetic coefficients Li
related to the diffusion coefficients of the elements D;

ratio:

Li = CiDi /RT, (15)

Cross Onsager coefficients for a thermodynamic
system tending to equilibrium are found using the
formulas given in [8-10]:

Lig = Ly = +/Ly X Ly, 1,k=1...N (16)

Power coefficient values by in the general case, it
should be found using formula (13), taking into account
the dependence of the thermodynamic potential on
concentration of the form (4). This greatly complicates
calculations and requires a large amount of experimental
data to determine the dependence of activity coefficients
on concentration. However, in a system state close to
equilibrium, the following reasonable assumptions can be
made.

Firstly, we will assume that the interaction between
various elements of the system with a sufficient degree of
accuracy near equilibrium is determined by cross
coefficients (16), and the force coefficients

(17)

b = (%)0 = 0, izk.

This means that the dependence of chemical
potentials ui from the content of other elements in a state

)0 qx + %Zk,l (
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has an extremum [2].

Further we will consider small deviations from the
equilibrium state, then the values gx will be small and we
can use a series expansion in these quantities, limiting
ourselves to the first few terms. Then the expression for
the thermodynamic potential can be written as:

%G

0q9q; (11)

)0 qrq;+. .

close to equilibrium is insignificant.

Secondly, the dependence of the chemical potential i
from the element content near equilibrium is determined
by its expression for an ideal solution, and the difference
in chemical potentials is determined by the formula [1, 3]:

Wi = uio(T)+ RT InC;, (18)

Using (18) in equation (17), we find the values of the

direct force coefficients:

by = ’;—ﬁ (19)

Now the problem of finding Kkinetic diffusion
equations in a multicomponent system is completely
defined. Substituting expressions (15) — (19) into the
equation of motion (14), we obtain the following system
of differential equations:

/D-C-"D c?
N iti VL

k=1 0
G

1
AxxAX

q; = k- (20)

For a closed thermodynamic system, we must also

take into account the completeness condition for
concentrations:

Zg=1 Ce =1,
or, what is the same,

Z¥=1 qr = 0. (21)

One of the variables is not independent.

System of equations (20), taking into account
condition (21), makes it possible to calculate the diffusion
kinetics of elements of a composite multicomponent
thermodynamic system for small deviations from the
equilibrium state, primarily fluctuations or small external
influences. The condition for small deviations can be
written as an inequality:

ai < C° (22)

Below we will consider a non-trivial example of

constructing kinetic equations for model steel.

I1. Kinetics of carbide transformation in
a three-component system Fe — C —
Cr

As an example, we will find solutions to the kinetic
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equations for model steel Fe — C — Cr with 0.15% C and
5% Cr, previously used in [8, 9]. The initial state of this
steel is chromium with a concentration C2 = 0.05 and
carbon with concentration C?: = 0.007, iron concentration
C? = 0.943.

This steel is subjected to hardening from 900°C
followed by high tempering at a temperature of 600°C. At
the first stage, the formation of cementite-type carbides
occurs as a result of the rapid diffusion of carbon from the
solid solution; this process was described earlier in the
work [9].

Let's calculate the Kinetics carbide transformation
(Fesx, Crx)C — (Fesx, Cra+x)Cs happening in such steel at
a temperature of 600°C [9, 16, 22]. We will assume that in
the solid a-solution after the completion of the stage of
rapid diffusion of carbon, chromium is found with a
concentration C3; = 0.05 and carbon with concentration
Cic 0.002, iron concentration is C?== 0.948. In
cementite type carbide there is chromium with a mass
fraction of ~5% (concentration 0.05) and carbon with a
concentration Cc = 0.25, iron concentration in carbide

DE, =20x10"%e

D& =3.0x 10" 4expexp[

84000

D¢

= 8.0 x 10~ exp [~

For our thermodynamic system, we must also take
into account the completeness condition for
concentrations in the solid solution (21), which we write
in the form (we neglect the change in vacancy
concentration):

Qre + gc+ ger=0. (25)

At the second stage of diffusion in our system, carbon
can diffuse only when the concentration of chromium in
the carbide increases simultaneously with it, i.e. slowly.
We will assume, introducing one more additional
condition, that the fluxes of carbon and chromium are
consistent, and change carbon concentration in solid

solution proportional to the change chromium
concentrations:
. _ qc
qc_qo qCT (26)
Cr

This is the second stage of diffusion in our system -
the stage of slow diffusion of carbon, but fast diffusion of
chromium and iron.

At this stage, the concentrations of carbon, chromium

QFe

= —(1.0 X 105Gy, + 2.0 X 1078g,, + 4.5 X 1073q,),

—(1.0 X 107%q, + 5.0 X 1077qp, + 2.3 X 107%qy).

Cre= 0.7. In total, 0.005 at. units carbon, the amount of
cementite-type carbides was correspondingly 0.02 at.
Units. This carbide at a temperature of 600°C gradually
transforms into a special carbide (Fesx, Crsx) Cs with
concentration Ccr = 0.4 and carbon with Cc = 0.3, iron
concentration in carbide is Cee= 0.3 [9, 22]. In this case,
the concentrations of elements in the solid solution change
to  their  equilibrium  value  for  chromium
C%¢r = 0.040 (ger = 0,01), C*% = 0.959 (gre = 0.011) and
carbon with concentration C%c = 0.001 (gc = 0.001).

Diffusion of iron in a solid solution occurs in the
direction of increasing its concentration, i.e. forced [8, 9].

As you can see, the conditions for small deviations for
our system (22) are satisfied for chromium and iron and
are not satisfied for carbon. Therefore, we cannot
construct a kinetic equation for carbon. Below we will
show how to get around this difficulty.

The temperature dependences of the diffusion
coefficients of chromium and carbon in chromium-alloyed
ferrite are: m?/s:

[ 221000] [23] (23)
3064—00] [23] (24)
] +22% 10" exp[ 123“"0] [24] (24)

and iron tend to their equilibrium concentrations in the
carbide and solid solution.
The kinetic equations of our thermodynamic system

take the form:
. _ Dre
qre = _qu +
DFeCPoDcrCe DFeCPoDcC 97
scg, qcr + scg, qc, (27)
/D c2,DcrCE /D c2.pccl
. Dcr FetFeYCricr Crtcr¥ctc
der = _QCr sc9 qre + scQ qc (28)
Cr Cr

The system of equations (27)-(28) is consistent and
allows one to find the change in concentrations in steel

over time.
At a temperature of 600°C:
D1 = D% = 1.0-10 19m2/s D, = D?cr =1.0- 10'23m2/s;

D3 = D% =~ 2.0-10*m?/s.

For numerical assessment we also use the values
AX=Ax=1.0x10"" m.

Finally, we get:

(29)

(30)
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Fig. 2. Calculated change in the concentrations of elements in the solid solution:
a —at the value g. = 0.08qc,, b — at the value gc = 0.1,
Fe is represented blue diamonds, Cr is shown red squares, C is represented blue triangles.

Numerical calculations show that noticeable diffusion
of chromium (63% o) at a distance of
1.0x107 m with the size of the resulting carbide particles
~1.0x107 m occurs in ~10 hours (Fig. 2).

If relation (26) is not satisfied, but there is another
proportionality coefficient, then this leads to equilibrium
of the system with other parameters of component
variations. Thus, variations in the concentrations of Fe and
Crat gc = 0.14.,, tend to values of -0.002, i.e. the initial
variations of these concentrations acquire values of 0.011
for Fe and 0.09 for Cr. The diffusion of chromium is
significantly accelerated in comparison with the diffusion
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equation (24), due to the cross coefficient in equations (28)
and (30), and is practically completed in about 50 hours.
The diffusion of carbon in our case is slow, accompanying
the diffusion of chromium, and the diffusion of iron,
generally speaking, is forced, because it occurs in the
direction of increasing iron concentration.

Conclusions

1. A general method of calculating diffusion
flows in a multicomponent thermodynamic system with
small deviations from the equilibrium state has been
developed.
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2. The connection between the mechanical
approach to the analysis of generalized systems and the
phenomenological  equations  of  non-equilibrium
thermodynamics is established.

3. Examples of the use of the developed
methodology for the analysis of carbide transformations in
chromium steel are given.

4. Numerical calculations show that noticeable
diffusion of chromium in steel at a temperature of 600°C
with the size of the obtained carbide particles of 10 um
occurs in about 10 hours.
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C. Bo6ups!, 1. Onksict?

KineTnka qu@ysii B 0araToKOMNOHEHTHIN TepMOAMHAMIYHIN cucTeMI IpH
MAaJIMX BiIXWJIEHHSAX BiJl piBHOBA’KHOI0 CTAHY

3.1 Incmumym wopnoi memanypeii im. 3.1. Hexpacosa HAHY, m. luinpo, Ykpaina, svbobyr07 @gmail.com
2Koponiecvruii mexnonoziunuii incmumym KTH, Cmoxzonom, Ileeyisn, odgvist@kth.se

Teopist qu¢y3iiHAX MPOLECIB y TBEPAMX TijaX 3a OCTaHHI ACCSATHIITTS JOCSIa 3HAYHUX Pe3yJIbTATIB, aie
po3poOka MeTomiB po3paxyHKy audysii B 0araTOKOMIOHEHTHIi TEPMOJMHAMIYHIN CHCTEMi 3aJMIIAETHCS
aKTyaJbHOK 3ajJa4ycto. 3HAUHWK iHTEepec MPelNCTaBIAOTh Mpodiemu Au(dy3ii B TBEpAMX 1 PIIKHX PO3YMHAX 3
MQJIMMH BIIXWJICHHSMH BiJl CTaHy piBHOBaru, abo Qiykryauismu. Y poOoTi po3poOieHo 3arajgbHy METOIUKY
PpOo3paxyHKy qudy3iiHUX TOTOKIB y 0araTOKOMIIOHEHTHIH TEPMOIUHAMIYHII CHCTEMI IPU MaNX BiIXUICHHAX BiJ
PIBHOBaXXHOTO CTaHy. BCTaHOBIIEHO 3B'S30K MiXK MEXaHIYHHM HiIXOJOM [0 aHAi3y y3aralbHEHUX CHCTEM i
(CHOMECHOJIOTIYHUMY  PIBHSHHSIMH HEpPIBHOBXHOI TepMoOIuHaMikd. HaBeoeHo NpHKIagM BHUKOPHUCTAHHS
Ppo3p0o0IIeHOT METOIUKH IS aHAITI3y KapOiqHUX MepeTBOPEHb Y XPOMUCTIH cTaIi.

KorodoBi ciioBa: HepiBHOBa)KHa TepMOAMHAMIKA, BapialliiHi IPHHIMIH, 1U]y3iiHI MOTOKY, PIBHSIHHS PYXY,
KapOiIHi IepEeTBOPEHHS, XPOMHUCTA CTaJIb.
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