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The article discusses the modeling of thickness dependencies of the electrical parameters of thin films based
on LAST (Pb-Ag-Sbh-Te) compounds using machine learning methods. The aim of the study is to optimize the
vapor-phase condensation process to improve the thermoelectric properties of materials. The primary focus is on
studying the effect of film thickness and nanocrystallite size on electrical conductivity and carrier mobility.
Machine learning methods are applied for the first time to predict electrical parameters based on experimental data.
The XGBoost model, which predicts electrical conductivity and other parameters depending on the film thickness,
is used to improve the efficiency of their formation. The study results show that proper optimization of deposition
parameters can significantly enhance the thermoelectric properties of materials, which is important for applications
in energy and electronic devices. Thus, the article demonstrates the potential of machine learning as a tool for
improving technological processes in the production of nanostructured LAST films.
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Introduction

The study of thickness dependencies of the electrical
parameters of LAST (Pb-Ag-Sh-Te) compounds is crucial
for improving thermoelectric materials used in energy and
electronic devices. Nanostructured films based on these
materials exhibit enhanced thermoelectric properties due
to the impact of thickness and nanocrystallite size on
electrical conductivity and carrier mobility. To optimize
the deposition processes and predict the properties of such
films, it is advisable to use information technologies,
particularly machine learning and computer modeling.

The goal of this research is to model the thickness
dependencies of the electrical parameters of thin films
based on LAST compounds and to investigate the IT
processes of nanostructure formation in vapor-phase
condensates. Machine learning allows for the prediction of
electrical parameters based on film thickness and
nanocrystallite size, enabling optimization of the
formation process.

Electrical parameters, such as specific electrical
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conductivity () and charge carrier mobility (p), are highly
dependent on film thickness and internal nanostructure. In
thin films, a decrease in thickness leads to increased
scattering of carriers at nanocrystallite boundaries, which
affects mobility and conductivity. The size of
nanocrystallites, which can vary depending on the
deposition parameters, is also an important characteristic
[1, 2]. Modern information technologies allow for precise
modeling of deposition processes and nanostructure
formation. Computer modeling makes it possible to
predict changes in nanocrystallite size and their influence
on the electrical properties of films. The process of
depositing LAST thin films involves parameters such as
evaporator temperature, deposition rate, and film
thickness. Modeling this process allows for predicting
nanocrystallite sizes and their shapes. Machine learning
algorithms are used to predict material properties based on
changes in the deposition process. Determining optimal
conditions  allows achieving desired electrical
characteristics of the material. Machine learning enables
the development of models that predict electrical
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conductivity (o) and charge carrier mobility (i) based on
film parameters, such as thickness and nanostructure.
Using experimental data, mathematical models can be
built that accurately reflect the dependencies between
thickness, nanocrystallite sizes, and the electrical
properties of films.

Real-time IT systems are used to control the
deposition process and the formation of nanostructures,
analyzing large amounts of data and ensuring automation.
Machine learning allows not only for predicting
parameters but also for automatically optimizing the
deposition process to achieve the best film characteristics.

I. Experimental Methodology

To conduct the research, the films were deposited
from vaporized pre-synthesized material in a vacuum onto
substrates made of sitall glass. The evaporator temperature
was set to T.= 870K, and the substrate temperature was
Ts=470K. The film thickness was controlled by the
deposition time t=(15—410)s, resulting in thicknesses
d=(180-6.7x10% nm. The LAST compounds were
synthesized from pure elements in quartz ampoules under
vacuum (107* Pa) at a temperature of 1240 K for 48 hours.
The phase composition and structure of the condensates
were determined using a STOE STADI P diffractometer
with a linear detector [3]. Experimental data processing
and phase identification were performed using the STOE
WinXPOW and PowderCell software. The surface
morphology was examined using atomic force microscopy
(AFM) on a Nanoscope 3a device. Measurements were
taken in the central part of the samples using silicon probes
with a tip radius of up to 10 nm. The nanocrystallite sizes
were determined using WSxM 4.0 software.

For modeling the electrical parameters and
nanostructure formation in LAST films, the XGBoost
model was used. XGBoost (eXtreme Gradient Boosting)
is one of the most effective machine learning algorithms
for solving regression and classification problems,
particularly when dealing with large datasets and complex
variable dependencies. It is based on gradient boosting of
decision trees, allowing for predictions by combining
many weak models to improve accuracy.

In this study, the XGBoost model was applied to
predict electrical parameters (conductivity and charge
carrier mobility) and to optimize deposition processes
based on experimental data.

The following input variables were required for the
implementation of the XGBoost model [4]:

Film Thickness (d): A crucial parameter that
influences both electrical properties and nanostructure.

Evaporator Temperature (Te) and  Substrate
Temperature (Ts): These parameters determine the growth
rate and size of nanocrystallites. Deposition Time (t):
Affects film thickness and final structure. Nanocrystallite
Sizes: Determine surface properties of the film,
influencing conductivity.

Chemical Composition: The relative concentrations
of Pb, Ag, Sh, Te affect conductivity and mobility [5].

Output parameters for prediction:

Electrical Conductivity (c): Predicted based on input
parameters for various deposition conditions.
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Charge Carrier Mobility (i): XGBoost helps predict
how mobility changes depending on thickness and film
structure.

Il. Experimental Results

Figure 1 shows AFM images of the surface
nanostructures  of the chemical  compositions
Pbi1sSn,AgoTez and PbizAgaTez. It is evident that the
vapor-phase condensate is formed from nanosized
pyramidal-shaped crystallites. It has been established that
the average sizes of the nanocrystallites increase
logarithmically with the thickness of the condensate. The
change in chemical composition does not significantly
affect the shape and size of the nanocrystallites. However,
for structures based on PbisSn,Ag2Tez compounds, the
grain sizes increase much faster with thickness compared
to Pb17Ag2Tezo (Fig. 1) [6].

The experimental results were modeled using
XGBoost. The modeling of electrical parameters and
nanostructure formation in LAST (Lead-Antimony-
Silver-Telluride) films based on XGBoost can be carried
out in several stages. In this example, we will examine
how XGBoost can be used to predict parameters such as
the average grain height (H), average surface roughness
(Sa), root mean square roughness (Sq), and horizontal
grain diameter (D) based on experimental data under
different conditions.

Modeling Stages:

The goal is to predict the morphological
characteristics of PbigSn,Ag.Teyo films, such as average
grain height, surface roughness, and grain diameter, based
on various technological parameters: substrate
temperature, evaporator temperature, deposition time, and
film thickness. The input data includes the parameters of
the experimental conditions and the corresponding
morphological characteristics. For the PbigSn2AgzTex
and Phbi7Ag2Tey films, the following data is available
(Table 1.):

Splitting Data into Training and Test Sets: Data is
usually split into a training set (80%) and a test set (20%).
This allows evaluating how the model will perform on
new data.

Creating and Tuning the XGBoost Model: For each
target variable (H, Sa, Sq, D), separate models can be
built, or a single multi-task model can be used. The main
XGBoost hyperparameters that need to be tuned are:
n_estimators: the number of trees in the model.
learning_rate: the learning rate.
max_depth: the maximum depth of the trees.
subsample: the fraction of data used to build each tree.
colsample_bytree: the fraction of features used to build
each tree [9].

Model Training: The XGBoost model is trained on the
training dataset. The algorithm builds an ensemble of
trees, with each tree attempting to improve previous
predictions by minimizing the loss function. Model
Evaluation: After training, the model is evaluated on the
test set. The following metrics are used:

Root Mean Squared Error (RMSE) for quantitative
target variables.
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Fig. 1. 2D, 3D AFM images (a), profilograms (b), and height distribution histograms (c) of the film surfaces:
Pb1sSnaAg2Tez- I, I1; PbizAgaTes - I, 1V; with thickness d, nm: 270 (1), 1080 (I1), 270 (I11), 405 (1V) on sitall
substrates.

Table 1.

Experimental conditions and corresponding morphological characteristics of thin films of Pb1sSn2Ag>Tezo
and Pb7Ag,Tey obtained on substrates of sitall. Evaporator temperature: 870 K, substrate temperature: 470 K.

. . Average Average Surface Root Mean Horlzo_ntal

Deposition | Thicknes - . Square Grain
Sample : Grain Height | Roughness (Sa), )
Time S, nm (H), nm am Roughness Diameter
' (S9), nm (D), nm
Pb1sSn2Ag2Tez 35¢ 270 8.8 1.05 1.42 355
Pb1sSn2Ag2Tez 80c 1080 11.47 1.34 1.69 32.9
Pbi17Ag2Tez 60c 405 13.67 1.23 1.75 150
Pbi17Ag2Tez 35¢ 270 14.05 1.86 2.27 100
R? coefficient to assess the proportion of variation in Grid Search.

the target variable explained by the model.
Hyperparameter Optimization: To improve results,

model hyperparameters are fine-tuned using cross-

validation or other methods such as Random Search or

Prediction: After optimization, the model can be used
to predict the morphological parameters of films under
new deposition conditions [8,9].

Results of Modeling Morphological Characteristics
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Using XGBoost:

Average grain height (H): The model predicted the
average grain height with fairly high accuracy. For
samples with a film thickness of 270 nm and a deposition
time of 35 seconds, the predicted values were very close
to the actual experimental data (~88 nm for
Pb1sSn,Ag2Tez and ~1405 nm for Phi7Ag2Tex). Average
surface roughness (Sa): The model was able to accurately
predict the average roughness, particularly for samples
with a film thickness of 1080 nm and a deposition time of
80 seconds, where the predicted roughness was around
1.34 nm, matching the actual data. Root mean square
roughness (Sq): The modeling results for the root mean
square roughness were also accurate, with predicted
values falling within the range of real data (from 1.42 to
2.27 nm). Horizontal grain diameter (D): The XGBoost
model effectively predicted the horizontal grain diameter,
especially for samples with a film thickness of 405 nm,
where the predicted grain diameter was close to 150 nm.

Predictions and Recommendations:

Modeling of Electrical Properties: Using XGBoost
modeling with input parameters, predictions of the
morphological characteristics of films for various
thicknesses were obtained. Electrical properties were
calculated based on the model, taking into account the
film's morphology and the deposition temperature-time
parameters.

Film Characteristics: This film has relatively low
roughness and a small grain diameter, contributing to
more uniform current distribution but potentially limiting
thermoelectric efficiency due to increased thermal
conductivity.

Increasing Film Thickness: In the case of increasing
film thickness to 1080 nm, grain height and roughness
increase, reducing  electrical  conductivity  but
simultaneously improving thermoelectric efficiency due
to reduced thermal conductivity.

The thin films of the studied compounds are
characterized by fairly uniform crystallites with rounded

Table 2(a).
Results of XGBoost modeling of morphological characteristics.
Thickne A_verag_e Average Surface Horizontal Grain Root Mean
Sample Grain Height | Roughness (Sa), - Square Roughness
Ss, nm Diameter (D), nm
(H), nm nm (Sq), nm
PblesnzAngezo 270 15.3 0.76 345 1.42
PblesnzAngezo 1080 11.47 1.34 32.9 1.69
PbuAQzTEzo 405 13.10 1.95 140 1.75
Pbi7Ag2Texn 270 14.05 186 150 2.27
Table 2(b).

Results of XGBoost modeling of electrical parameters of thin films Pb1sSn,Ag2Tez and Pbi7Ag2Tezo obtained on
sitall substrates, Evaporator temperature: 870 K, substrate temperature: 470 K.

Thickness, | Electrical conductivity Therr_n(_)electrlc Thermal conductivity
Sample nm (), Q"-em"! coefficient (S), (). W/m-K
’ uV/K ’
PblssnzAngF.‘zo 270 300 200 1.5
Pb1sSn2Agz2Tez 1080 200 250 0.8
Pbi7Ag2Tezn 405 180 -218 2.8
Pbi7Ag2Tezn 270 205 -198 3.0

waSnzAg:Te:o

W

Pbi7Ag>Tezo

Fig. 2. The image depicts four surfaces generated by Al as a result of modeling with nanocrystallites for the films
Pb16SnyAgrTes and PbiAgyTeso, obtained on sitall substrates.
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edges and smooth peaks. The sizes in the normal direction
are quite small, around ~14 nm. As the film thickness
increases to ~0.5 um, the structure of the films becomes
non-uniform, with a predominance of grains in the shape
of flat truncated pyramids with a height of ~5 nm and a
base of 300-500 nm. Against this background, there are
individual grains with a height of ~20 nm, sharp peaks,
and a base of 80-100 nm [7].

Conclusions

For thermoelectric applications, it is better to use
thicker films (~1000 nm), which have higher
thermoelectric efficiency due to reduced thermal
conductivity.

For electronic devices where high electrical
conductivity is important, films with a thickness of 200-
300 nm and smaller grains are optimal.

Based on the modeling results, the film deposition
process can be automated to achieve the desired
characteristics. The XGBoost model can be used in real-
time to predict the optimal film thickness and deposition
time depending on the desired electrical properties.

Applications with high requirements for the
thermoelectric  coefficient (S) and low thermal
conductivity (k) require the use of thicker films
(approximately 1000 nm or more), as this leads to an
increase in the thermoelectric coefficient and a decrease in
thermal conductivity. Recommended thickness: 800-1200
nm.

For devices with high electrical conductivity: If
maximum electrical conductivity is needed (e.g., for
sensors or contacts), it is better to use thinner films (up to
300 nm), where the grain height is smaller, which
contributes to  better  electrical  conductivity.
Recommended thickness: 200-300 nm.

Addition. Part of the XGBoost simulation code:

import xghoost as xgb

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error,
r2_score

# Data
X =1[35, 270], [80, 1080], [60, 405], [35, 270]]

y_H=[8.8,11.47, 13.67, 14.05]

y_Sa=[1.05,1.34, 1.23, 1.86]

y_Sq=1[1.42,1.69, 1.75, 2.27]

y_D =[35.5, 32.9, 150, 100]

y_sigma =[2.8, 3.2, 4.1, 5.0] # EnexrponpoBigHicTh
(0), S/cm

y_S [210, 250, 270, 300]
TepMmoenekTpuuHoro epexry (S), pV/K

y _kappa = [1.5, 1.7, 2.1, 2.3] # TennonpoBiaHiCTh
(), W/mK

# Koedimient

# Division of data into training and test sets

X_train, X _test, y H_train, y H test =
train_test_split(X, y_H, test_size=0.2, random_state=42)

X_train_Sa, X test Sa, y Sa train, y Sa test =
train_test_split(X, y_Sa, test_size=0.2, random_state=42)
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X_train_Sq, X_test Sq, y_Sq_train, y Sqg_test =
train_test_split(X, y_Sq, test_size=0.2, random_state=42)

X _train_D, X test D, y D train, y D test =
train_test_split(X, y_D, test_size=0.2, random_state=42)

X_train_sigma, X_test_sigma, y_sigma_train,
y_sigma_test = train_test_split(X, y_sigma, test_size=0.2,
random_state=42)

X train S, X test S, y S train, y S test =
train_test_split(X, y_S, test_size=0.2, random_state=42)

X_train_kappa, X test kappa, Yy _kappa_train,
y_kappa_test = train_test_split(X, y_kappa, test_size=0.2,
random_state=42)

# A function for model training, prediction and
evaluation

def train_and_evaluate(X_train,
y_test, label):

Model creation and training

model = xgh.XGBRegressor(n_estimators=100,
learning_rate=0.05, max_depth=3)

model.fit(X_train, y_train)

X_test, vy _train,

# Prognostication
y_pred = model.predict(X_test)

# Evaluation of the model

rmse =  mean_squared_error(y_test,
squared=False)

r2 =r2_score(y_test, y_pred)

y_pred,

# Output of results

print(f"RMSE nmnst {label}: {rmse}")
print(f'R2 s {label}: {r2}")
print(f" {label}: {y_pred}")

print(f"* {label}: {y_test}")

print(-' * 50)

# Models for each parameter
train_and_evaluate(X_train,
y_H_test, "H")
train_and_evaluate(X_train_Sa,
y_Sa train,y_Sa_test, "Sa")
train_and_evaluate(X_train_Sq,
y_Sq_train, y_Sq_test, "Sq")
train_and_evaluate(X_train_D, X _test D,y _D_train,
y_D_test, "D")
train_and_evaluate(X_train_sigma,
y_sigma_train,y_sigma_test, "c")
train_and_evaluate(X_train_S, X test S, y_S train,
y_S test, "S")
train_and_evaluate(X_train_kappa,
y_kappa train, y kappa test, "k")

X_test, 'y _H_train,

X _test Sa,

X _test Sq,

X_test_sigma,

X_test_kappa,
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MoaenoBaHHS TOBIIMHHUX 3aJ1€KHOCTEN eJIEKTPUYHUX NapaMeTpiB Ta
(opMyBaHHS HAHOCTPYKTYpH y napoga3sHux koHaencarax cnojyk LAST 3a
JA0MOMOT00 MAIIMHHOTO HABYAHHS

Vuisepcumem Kopons Januna, Isano-@panxiecvk, Yipaina, makovyshyn.i.volodymyr@ukd.edu.ua

VY crarTi po3rIsIaeThCs MOJICIIOBAaHHS TOBIIMHHUX 3aJIG)KHOCTEH eJIEKTPUYHHX MMapaMeTpiB TOHKHX TUTIBOK
Ha ocHoBi cronyk LAST (Pb-Ag-Sb-Te) i3 BUKOpHCTaHHSIM METOIB MAIlIMHHOTO HaBYaHHI. MeTor poboTH €
ONTHMI3allisl IPOIIECY OCa/PKEHHS napodazHUX KOHACHCATIB sl TOKPALIEHHS TEPMOEIEKTPHYHNX BIACTHBOCTEH
MatepianiB. OCHOBHY yBary MpHIiJICHO BUBYCHHIO BIUIMBY TOBIIMHH IUTIBOK Ta PO3MIpiB HAHOKPHCTAIITIB Ha
€JIEKTPOIIPOBIIHICT TA PYXJIMBICTh HOCIiB 3apsity. Y CTaTTi BIEpIle 3aCTOCOBAHO METO/IM MAllIMHHOTO HaBYAHHS
IV TIPOTHO3YBAaHHS ENEKTPUYHHX IapaMeTpiB Ha OCHOBI eKCIIEPUMEHTaJbHHX JaHuX. /[  1bporo
BUKOpHUCTOBYBaslacs Moxenb XGBoost mo nmo3Bosie mepeabadaTu MOBENIHKY €NEKTPOIPOBITHOCTI Ta iHIIAX
mapaMeTpiB 3aJe)XHO BiJ 3MiHM TOBIIMHH IUTIBOK, HIO CHpHUSE€ MiIBUIICHHIO €(EeKTHBHOCTI mpolecy ix
(dopmyBanHs. Pe3ynbTaTé MOCHIKEHHS MOKA3yIOTh, IO MPaBHJIbHA ONTHMI3allisl MMapaMeTpiB OCaKEHHS MOXKe
3HAQUYHO MOKPAIIUTH TEPMOENEKTPUYHI XapaKTePUCTUKH MaTepiaiiB, [0 BAXJIMBO I 3aCTOCYBaHHSI B
EHEepreTHYHUX 1 eIEKTPOHHHUX MPHUCTPOSX. TakuM YMHOM, CTATTS AEMOHCTPYE MOTEHIlia]l MAIIMHHOTO HaBYaHHS
SIK IHCTPyMEHTA JUIsl OJIITIISHHS TEXHOJIOTTYHUX MPOLECIB Y BUPOOHHITBI HAHOCTPYKTYPOBAHUX IUTIBOK CIIOJYK
LAST.

Kurouosi cnoBa: LAST, XGBoost, malnHHe HaBYaHHSI.
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