Direct analogues of Wiman's inequality for analytic functions in the unit disc

Authors

  • O.B. Skaskiv Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine https://orcid.org/0000-0001-5217-8394
  • A.O. Kuryliak Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine

Keywords:

Wiman's inequality, analytic function
Published online: 2010-06-30

Abstract

Let f(z)=n=0anzn be an analytic function on {z:|z|<1}, hH and Ωf(r)=n=0|an|rn. If βfh=lim_r1lnlnΩf(r)lnh(r)=+, then Wiman's inequality Mf(r)μf(r)ln1/2+δμf(r) is true for all r(r0,1)E(δ), where hmeas E<+.

How to Cite
(1)
Skaskiv, O.; Kuryliak, A. Direct Analogues of Wiman’s Inequality for Analytic Functions in the Unit Disc. Carpathian Math. Publ. 2010, 2, 109-118.

Most read articles by the same author(s)