Direct analogues of Wiman's inequality for analytic functions in the unit disc
Keywords:
Wiman's inequality, analytic function
Published online:
2010-06-30
Abstract
Let f(z)=∑∞n=0anzn be an analytic function on {z:|z|<1}, h∈H and Ωf(r)=∑∞n=0|an|rn. If βfh=lim_r→1lnlnΩf(r)lnh(r)=+∞, then Wiman's inequality Mf(r)≤μf(r)ln1/2+δμf(r) is true for all r∈(r0,1)∖E(δ), where h−meas E<+∞.
How to Cite
(1)
Skaskiv, O.; Kuryliak, A. Direct Analogues of Wiman’s Inequality for Analytic Functions in the Unit Disc. Carpathian Math. Publ. 2010, 2, 109-118.