Hydrothermal Synthesis of Nanodispersed Titanium Dioxide

Authors

  • M.G. Mizilevska South Ukrainian National Pedagogical University named after K.D. Ushynsky
  • O.Yu. Orenchyuk Vasyl Stefanyk Prekarpathian University
  • V.M. Sachko Vasyl Stefanyk Prekarpathian University
  • O.H. Tadeush South Ukrainian National Pedagogical University named after K.D. Ushynsk
  • V.O. Kotsyubynsky Vasyl Stefanyk Prekarpathian University

DOI:

https://doi.org/10.15330/pcss.17.1.98-107

Keywords:

titanium dioxide, hydrothermal method, morphology, anatase, brookite, rutile

Abstract

The paper is an overview of published data within the perspective method of hydrothermal synthesis of nanodispersed titanium dioxide. Organizing data allowed to capture the general trends of the relationships between the conditions of synthesis and structural morphological characteristics Nanodispersed titanium dioxide. Literature data are systematizated to select a universal method for revealing the relationship between the conditions of synthesis and structural, morphological properties of nanomaterials.

References

[1] S. M. Lam, J. C. Sin, A. R. Mohamed, Recent Pat. Chem. Eng. 1(3), 209 (2008).
[2] X. Сhen, S. S. Ma,. Chem. Rev. 107(7), 2891(2007).
[3] B. O’Regan, M. Grätzel, Nature. 353(6346), 737 (1991).
[4] R. Katoh, A. Furube, M. Kasuya, N. Fuke, N. Koide, L Han, J. Mater. Chem. 17(30), 3190 (2007).
[5] U. Bach, D. Lupo, P. Comte, F. Weissörtel, J. Salbeck, M.Grätzel, Nature. 395(6702), 583(1998).
[6] L. Ji, J. Rong, Z. Yang, Chem. Commun. 9, 1080 (2003).
[7] W. Dong, H. Bongard, B. Tesche, F. Marlow, Advanced Materials. 14(20), 1457 (2002).
[8] L. I. Halaoui, N. M. Abrams, T. E. Mallouk, J. Phys. Chem. B. 109(13), 6334 (2005).
[9] G. Hodes, Electrochemistry of Nanomaterials (Wiley-VCH, New York, 2001).
[10] K.-S. Ahn, S.J. Yoo, M.-S. Kang, J. W. Lee, Y. E. Sung, J. Power Sources. 168(2), 533 (2007).
[11] M. J. Chen, H. Shen, Acta Metall. Sin. (Engl. Lett.). 18(3), 275 (2005).
[12] P. I. Gouma, M. J. Mills, K. H. Sandhage, J. Am. Ceram. Soc. 83(4), 1007 (2000).
[13] E. Traversa, M. L. Di Vona, S. Licoccia, J. Sol-Gel Sci. Technol. 19(1-3), 193 (2000).
[14] M. Paulose, O.K. Varghese, G. K. Mor, C. A. Grimes, K. G. Ong, Nanotechnology. 17(2), 398 (2006).
[15] S. H. Lim, J. Luo, Z. Zhong, W. Ji, J.Lin, J. Inorg. Chem. 44(12), 4124 (2005).
[16] D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, F. C. Walsh, J. Phys. Chem. B. 109(41), 19422 (2005).
[17] X. Hu, B. O. Skadtchenko, M. Trudeau, D. M. Antonelli, J. Am. Chem. Soc., 128(36), 11740 (2006).
[18] R. Pitchai, M. Mack, The BIG batteries industry guide. 4 (2010).
[19] M. Hibino, K. Abe, M. Mochizuki, M. Miyayama, J. Power Sources. 126(1), 139 (2004).
[20] Y.-S. Hu, L. Kienle, Y.-G. Guo, J. Maier, Adv. Mater. 18(11), 421 (2006).
[21] R. F. de Farias, Quim. Nova. 25(6), 1027 (2002).
[22] P. Pookmanee, S. Phanichphant, J. Ceram. Process. Res. 10(2), 167(2009).
[23] A. Karam, J. Iran. Chem. Soc. 7(2), S154 (2010).
[24] M. Niederberger, M. H. Bartl, G. D. Stucky, Chem. Mater. 14(10), 4364 (2002).
[25] H. Parala, A.Devi, R. Bhakta, R.A. Fischer, J. Mater. Chem. 12(6), 1625 (2002).
[26] T. J. Trentler, T. E. Denler, J. F. Bertone, A. Agrawal, L. V. Colvin, J. Am. Chem. Soc. 121(7), 1613 (1999).
[27] K. M. Reddy, D. Guin, S. V. Manorama, J. Mater. Res. 19(9), 2567 (2004).
[28] X. Huang, C. Pan, J. Cryst. Growth. 306(1), 117 (2007).
[29] S.-J. Liu, J.-Y. Gong, B. Hu, and S.-H. Yu, Cryst. Growth Des. 9(1), 203 (2009).
[30] P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Nature 396(6707), 152 (1998).
[31] Y. Yue, Z. Gao, Chem. Commun. 18, 1755 (2000).
[32] H.-S. Yun, K. Miyazawa, H. Zhou, I. Honma, M. Kuwabara, Adv. Mat. 13(18), 1377 (2001).
[33] Z.-Y. Yan, W.-J. Zheng, Chin. J. Inorg. Chem. 22(9), 1679 (2006).
[34] B.-M. Wen, C.-Y. Liu, New J. Chem. 29(7), 969 (2005).
[35] S. W. Yang, L. Gao, Mater. Chem. Phys., 99(2), 437 (2006).
[36] G. L. Li, G. H. Wang, Nanostruct. Mater. 11 (5), 663 (1999).
[37] K. D. Kim, S. H. Kim, H. T. Kim, Colloids Surf. A. 254(1-3),99 (2005).
[38] K. T. Lim, H. S. Hwang, W. Ryoo, K. P. Johnston, Langmuir. 20(6), 2466 (2004).
[39] S. Seifried, M. Winterer, H. Hahn, Chem. Vap. Deposition. 6(5), 239 (2000).
[40] W. Huang, X. Tang, Y. Wang, Y. Koltypin, A. Gedanken, Chem. Commun. 15, 1415 (2000).
[41] Y. Zhu, H. Li, Y. Koltypin, Y. R. Hacohen, A. Gedanken, Chem. Commun. 14, 2616 (2001).
[42] J. C. Yu, L. Zhang, J. Yu, Chem. Mater. 14(11), 4647 (2002).
[43] A. B. Corradi, F. Bondioli, B. Focher, A. M. Ferrari, C. Grippo, E. Mariani, C. Villa, J. Am. Ceram. Soc. 88(9), 2639 (2005).
[44] E. Gressel-Michel, D. Chaumont, D. Stuerga, J. Colloid Interface Sci. 285(2), 674 (2005).
[45] Yamamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, S.Yanagida, Chem. Lett. 10, 964 (2002).
[46] K. L. Yeung, S. T. Yau, A. J. Maira, J. M. Coronado, J. Soria, P. L. Yue, J. Catal. 219, 107 (2003).
[47] H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7(4), 663 (1995).
[48] S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, W. I. Lee, Chem. Mater. 15(17), 3326 (2003).
[49] X. L. Li, Q. Peng, J. X. Yi, X. Wang, Y. D. Li, Chem. Eur. J. 12(8), 2383 (2006).
[50] J. Xu, J. P. Ge, Y. D. Li, J. Phys. Chem. B. 110(6), 2497 (2006).
[51] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature. 437(7055), 121 (2005).
[52] C. S. Kim, B. K. Moon, J. H. Park, S. T. Chung, S. M. Son, J. Cryst. Growth. 254(3-4), 405 (2003).
[53] J. W. Gao, H. Yang, Rare Metal Mat. Eng. 36, 303 (2007).
[54] K. Y. Jung, S. B. Park, J. Photochem. Photobiol. A: Chem. 127, 117 (1999).
[55] Q. Zhang, L. Gao, J. Guo, Appl. Catal. B: Environ. 26, 207 (2000).
[56] V. A. Yasir, P. N. Mohandas, K. K. M. Yusuff, Int. J. Inorg. Mater. 3, 593 (2001).
[57] A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem. 94, 829 (1990).
[58] N. R. C. F. Machado, V. S. Santana, Catal. Today. 107-108, 595 (2005).
[59] Y. Q. Zheng, E. W. Shi, S. X. Cui, W. J. Li, X. F. Hu, J. Am. Ceram. Soc. 83(10), 2634 (2000).
[60] Z. Yanqing, S. Erwei, C. Suxian, L. Wenjun, H. Xingfang, J. Mater. Scien. Lett. 19, 1445 (2000).
[61] T. Nagase, T. Ebina, T. Iwasaki, K. Hayashi, Y. Onodera, M. Chatteijee, Chem. Lett. 9, 911 (1999).
[62] Ch. Wang, J. Y. Ying, Chem. Mater. 11, 3113 (1999).
[63] K. Yanagisawa, Y. Yamamoto, Q. Feng, N. Yamasaki, J. Mater. Res. 13(4), 825 (1998).
[64] V. A. Kuznetsov, Issledovanie processov kristalizacii (Nauka, Moskva, 1970).
[65] J. Ovenstone, K. Yanagisawa, J. Phys. Chem. B. 103(37), 7781 (1999).
[66] J. Ovenstone, K. Yanagisawa, Chem. Mater. 11, 2770 (1999).
[67] S. Ito, S. Yoshida, T. Watanabe, Chem. Lett. 1, 70 (2000).
[68] W. W. So, S. B. Park, K. J. Kim, S. J. Moon, J. Coll. Interf. Sei. 191, 398 (1997).
[69] K. Byrappa, K. M. Lokanatha Rai, M. Yoshimura, Environ. Technol. 21(10), 1085 (2000).
[70] Y. Li, N. H. Lee, D. S. Hwang, J. S. Song, E. G. Lee, S. J. Kim, Langmuir. 20(25), 10838 (2004).
[71] Q. D. Truong, T. H. Le, J.-Y. Liu, C.-C. Chung, Y.-C. Ling, Appl. Catal. A. 437, 28 (2012).
[72] A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali, M. D’Arienzo, S. Polizzi, R. Scotti, F. Morazzoni, J. Am. Chem. Soc. 129, 3564 (2007).
[73] B. Zhao, L. Lin, D. He, J. Mater. Chem. A. 1(5), 1659 (2013).
[74] R. Petryshyn, Z. Yaremko, M. Soltys, Bull. of Lviv University. Chemistry. 52, 322 (2011).
[75] Y. Zou, X. Tan, T. Yu, Y. Li, Q. Shang, W.Wang, Mater. Lett. 132, 182 (2014).
[76] Z. Sun, J. H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, S.X. Dou, J. Am. Chem. Soc. 133(48), 19314 (2011).
[77] M. Andersson, L. Österlund, S. Ljungstroem, A. Palmqvist, J. Phys. Chem. B. 106(41), 10674 (2002).
[78] T. P. Chou, Q. Zhang, G. Cao, J. Phys. Chem. C. 111(50), 18804 (2007).
[79] S. Nakade, Y.Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B. 107(33), 8607 (2003).
[80] Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, J. Phys. Chem. B. 102(52), 10871 (1998).
[81] Y. V. Kolen'ko, A. A. Burukhin, B. R. Churagulov, N. N. Oleinikov, Inorg. Mater. 40(8), 822 (2004).
[82] Y. V. Kolen'ko, A. A. Burukhin, B. R. Churagulov, N. N. Oleinikov, Mater. Lett. 57(5), 1124 (2003).
[83] S. Karvinen, R. J. Lamminmäki, Solid State Sci. 5(8), 1159 (2003).
[84] M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi, M. Toyoda, Int. J. Inorg. Mater. 3(7), 809 (2001).
[85] D. V. Bavykin, V. P. Dubovitskaya, A. V. Vorontsov, V. N. Parmon, Res. Chem. Intermed. 33, 449 (2007).
[86] B. Zhao, F. Chen, Y. Jiao, J. Zhang, J. Mater. Chem. 20(37), 7990 (2010).
[87] Y. Jiao, B. Zhao, F. Chen, J. Zhang, Cryst Eng Comm. 13(12), 4167 (2011).
[88] B. Zhao, F. Chen, Q. Huang, J. Zhang, Chem. Commun. 34, 5115 (2009).
[89] X. Shen, B. Tian, J. Zhang, Catal. Today. 201, 151 (2013).
[90] A. N. Kozyrev, T. J. Dougherty, R. K. Pandey, Chem. Commun. 4, 481 (1998).

Published

2016-03-15

How to Cite

Mizilevska, M., Orenchyuk, O., Sachko, V., Tadeush, O., & Kotsyubynsky, V. (2016). Hydrothermal Synthesis of Nanodispersed Titanium Dioxide. Physics and Chemistry of Solid State, 17(1), 98–107. https://doi.org/10.15330/pcss.17.1.98-107

Issue

Section

Scientific articles

Most read articles by the same author(s)

<< < 1 2