The Morphology and Conductive Properties of Composite Material SiO2 – C
DOI:
https://doi.org/10.15330/pcss.16.4.700-705Keywords:
composite material SiO2 – C, turbostratic structure, specific surface, pore size distribution, specific conductivityAbstract
The article explores the structure, morphology and conductive properties of composite material SiO2 – C using XRD, SAXS, low-temperature nitrogen adsorption, and impedance spectroscopy methods. It is set that SiO2 – C composite obtained by thermolytic decomposition of D-lactose, previously chemisorbed on fumed silica nanoparticles surface, has an open porous structure, in which mesopores of 6-12 nm in size are dominate. At weight ratio SiO2/C = 5/1 nanocrystallites of carbon phase in form of lamellar sheets of 0,4 × 0,4 × 5,0 nm3 in size contact with entire silica surface that results in composite material conductivity is 49 Оhm-1·m-1.
References
A. I. Gusev, A. A. Rempel', Nanokristallicheskie materialy (Fizmatlit, Moskva, 2001).
A. I. Gusev, Uspehi fiz. nauk 168(1), 55 (1998).
Ju. I. Petrov, Fizika malyh chastic (Nauka, Moskva, 1982).
Z. Ogumi, M. Inaba, Carbon anodes, ed., (by W. van Schalkwijk and B. Scrosati, Kluwer Academic. Plenum publishers, 2002). R. 79.
P. Novak, D. Goers, M. E. Spahr, Carbons for electrochemical energy storage and conversion systems (CRC Press Taylor & Francis Group, 263, 2010).
U. Kasavajjula, C. Wang, A. J. Appleby, J. Power Sources. 163(2), 1003 (2007).
Cho, J. Mater. Chem. 20, 4009 (2010).
H. K. Liu, Z. P. Guo, J. Z. Wang, K. Konstantinov, J. Mater. Chem. 20, 10055 (2010).
S.-M. Paek, E. J. Yoo, I. Honma, Nano Lett. 9(1), 72 (2009).
C. Jianga, M. Weib, Z. Qib, T. Kudoa, I. Honmaa, H. Zhou, J. Power Sources 166(1), 239 (2007).
P. C. Wanga, H. P. Dinga, T. Barkb, C. H. Chen, Electrochim. Acta, 52(24), 6650 (2007).
І. F . Mironjuk, V. M. Ogenko, B. K. Ostafіjchuk, V. І. Mandzjuk, І. І. Grigorchak, Physics and Chemistry of Solid State 2(4), 661 (2001).
B. K. Ostafіjchuk, І. F. Mironjuk, V. O. Kocjubins'kij, V. І. Mandzjuk, Ju. V. Gavenchuk, Nanosistemi, nanomaterіali, nanotehnologії 4(3), 585 (2006).
V. І. Mandzjuk, І. F. Mironjuk, V. A. T'ortih, І. S. Berezovs'ka, V. V. Janishpol's'kij, Physics and Chemistry of Solid State 5(2), 679 (2010).
V. І. Mandzjuk, І. F. Mironjuk, B. K. Ostafіjchuk, І. І. Grigorchak, Physics and Chemistry of Solid State 5(4), 767 (2004).
І. F. Mironjuk, B. K. Ostafіjchuk, V. І. Mandzjuk, B. P. Bahmatjuk, І. І. Grigorchak, R. J. Rіpec'kij, Physics and Chemistry of Solid State 6(2), 212 (2005).
V. V. Bukatjuk, V. I. Mandzjuk, I. F. Mironjuk, III Vserossijskaja molodjozhnaja konferencija s jelementami nauchnoj shkoly “Funkcional'nye nanomaterialy i vysokochistye veshhestva” (IMET RAN RHTU im. D.I. Mendeleeva, Moskva, 2012), s. 95.
V. V. Gumenyak, I. F. Myronyuk, V. I. Mandzyuk, HІV mіzhnarodna konferencіja “Fіzika і tehnologіja tonkih plіvok ta nanosistem” (Vidavnictvo Prikarpats'kogo nacіonal'nogo unіversitetu іm. Vasilja Stefanika, Іvano-Frankіvs'k, 2013), s. 217.
S. Greg, K. Sing, Adsorbcija, udel'naja poverhnost', poristost' (Mir, Moskva, 1984).
S. Brunauer, P. H. Emmett, E. Teller, J. Amer. Chem. Soc. 60(2), 309 (1938).
D. Lozano-Castelló, F. Suárez-Garsía, D. Cazorla-Amorós, Á. Linares-Solano, Porous texture of carbons in Carbons for Electrochemical Energy Storage Systems. F. Béguin and E. Frackowiak, Eds. (CRC Press - Taylor and Francis Group, Boca Raton-New York, 2002).
A. V. Neimark, P. I. Ravikovitch, Micropor. Mesopor. Mater. 44/45, 697 (2001).
M. H. Abdullah, A. N. Yusoff. J. Alloy Compounds 233, 129 (1996).