Edge Absorption of thin Films –Ga2O3
DOI:
https://doi.org/10.15330/pcss.16.2.302-306Keywords:
gallium oxide, thin films, fundamental absorption edgeAbstract
Fundamental absorption edge of b–Ga2O3 thin films, obtained by radio-frequency ion-plasmous sputtering, was investigated, using the method of optical spectroscopy. It was ascertained that the optical band gap Eg increases from 4.60 to 4.65 eV after the heat treatment films in argon atmosphere and to 5.20 eV after the reduction of annealed films in a hydrogen atmosphere. Consolidated effective mass of free charge carriers in b–Ga2O3 films after annealing and after reduction in hydrogen was estimated. It was found that the concentration of charge carriers after heat treatment in argon atmosphere is 7.30´1017 cm–3 and after reduction in hydrogen, is 2.62´1019 cm–3, which is typical for degenerated semiconductors. It was shown that the shift of fundamental absorption edge in thin films b–Ga2O3 after reduction in hydrogen is caused by Burstein-Moss effect.
References
[2] J.-T. Yan, C.-T. Lee, Sensors and Actuators B 143 (1), 192 (2009).
[3] M. Passlack, M. Hong, E. F. Schubert, J. R. Kwo, J. P. Mannaerts, S. N. G. Chu, N. Moriya, F. A. Thiel, Appl. Phys. Lett. 66 (5), 625 (1995) .
[4] J.-G. Zhao, Z.-X. Zhang, Z.-W. Ma, H.-G. Duan, X.-S. Guo, E.-Q. Xie, Chinese Phys. Lett. 25 (10), 3787 (2008).
[5] K. Shimamura, E. G. Víllora, T. Ujiie, K. Aoki, Appl. Phys. Lett. 92 (20), 201914 (2008).
[6] P. Wellenius, A. Suresh, J. V. Foreman, H. O. Everitt, J. F. Muth, Mater. Sci. Eng. B 146, 252 (2008).
[7] T. Minami, T. Shirai, T. Nakatani, T. Miyata, Jpn. J. Appl. Phys. 39 (6A), L524 (2000).
[8] T. Miyata, T. Nakatani, T. Minami, Thin Sol. Films 373 (1–2), 145 (2000).
[9] A. Ortiz, J. C. Alonso, E. Andrade, C. Urbiola, J. Electrochem. Soc. 148 (2), F26 (2001).
[10] Z. Ji, J. Du, J. Fan, W. Wang, Opt. Mater. 28 (4), 415 (2006).
[11] M. F. Al-Kuhaili, S. M. A. Durrani, E. E. Khawaja, Appl. Phys. Lett. 83 (22), 4533 (2003).
[12] H. W. Kim, N. H. Kim, Appl. Surf. Sci. 230 (1–4), 301 (2004).
[13] V. M. Kalygina, A. N. Zarubin, V. A. Novikov, Y. S. Petrova, O. P. Tolbanov, A. V. Tyazhev, S. Y. Tsupyy, T. M. Yaskevich, FTP 47 (5),
598 (2013).
[14] R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983).
[15] A. S. Valeev, Opt. and Spectr. 15 (4), 500 (1963).
[16] I.M. Tsydilkovskiy, Band structure of semiconductors (Nauka, M., 1978).
[17] Zh. Pankov, Optical processes in semiconductors (Mir, M., 1973).
[18] H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish. Semiconducting Transparent Thin Films (Bristol, Institute of Physics Publishing, 1995).
[19] T. P. McLean, Prog. Semicond. 5, 53 (1960).
[20] B. F. Ormont, Introduction to physical chemistry and crystal chemistry of semiconnductors (Vysshaya shkola, M., 1973).
[21] N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 71 (4), 933 (1997).
[22] M. J. Gadre, T. L. Alford, Appl. Phys. Lett. 99, 051901 (2011).