Mechanical Activation of Mixtures SiO2/γ-Fe2O3 and its Impact on the Distribution of Valence Electrons
DOI:
https://doi.org/10.15330/pcss.16.1.55-61Keywords:
SiO2, γ-Fe2O3, state density, ultra-soft X-ray spectroscopy, mechanical activation, X-ray analysisAbstract
Crystalline and electronic structures of SiO2/γ-Fe2O3 mixtures have been analyzed using X-ray diffraction (XRD) and ultra-soft X-ray emission spectroscopy (USXES). The energy redistribution of Fesрd, Sisp and Op valence electrons due to changes in the mass ratio (0,2 SiO2 + 0,8 γ-Fe2O3 , 0,5 SiO2 + 0,5 γ-Fe2O3, 0,8 SiO2 + 0,2 γ-Fe2O3) of SiO2 and α-Fe2O3 in the mixtures has been studied. The FeLα, SiLα and OKα ultra-soft X-ray emission spectra of SiO2/α-Fe2O3 mixtures were compared with those of individual iron oxide and silica powders. In analyzing these bands were detected shape similarity and the presence of identical elements of fine structure in OKα and FeLα-emission spectra, it shows a high degree of hybridization and Op- Fe3d - electronic valence states. Expansion OKα and FeLα-emission bands in the low energy side is the result of additional splitting energy Op- and Fe3d - levels with increasing degree of hybridization in the mehanoaktyvatsiynoyi processing.
References
S.P. Gubin, Ju.A. Koksharov, G.B. Homutov, G.Ju. Jurkov, Uspehi himii 74(6), 539 (2005).
X. Zeng, Z.Wang, Y. Liu, M. Ji., Appl. Phys. A80, 581 (2005).
M.V. Reddy, Ting Yu, Chorng-Haur Sow, Ze Xiang Shen, Chwee Teck Lim, G.V. Subba Rao, B.V.R.., Adv. Funct. Mater. 17, 2792 (2007).
Seung-Jun Leea, Jong-Ryul Jeongb, Sung-Chul Shinb, Jin-Chul Kimc, Jong-Duk Kim, Journal of Magnetism and Magnetic Materials 282, 147 (2004).
Rollmann G.,Rohrbach A., Entel P. and Hafner J., Phys. RevB. 69(12), 128 (2004).
D.A. Donatti, A. Iban˜ez Ruiz, D.R. Vollet, Journal of Non-Crystalline Solids 351, 1226 (2005).
L. Esquivias, J. Zarzycki, in: J.D. Mackenzie, D.R. Ulrich (Eds.), Ultrastructure Processing of Advanced Ceramics (Wiley, New York, 1988).
B. Gilbert, B.H. Frazer, F. Naab,3 J. Fournelle, American Mineralogist 88, 763 (2003).
A.S. Shulakov, A. P. Brajko, S. V. Bukin, V. E. Drozd, Fizika tverdogo tela 10(46), 186 (2004).
V.M. Zajnullina, V.P. Zhukov, V.N. Krasil'nikov, M.Ju. Janchenko, L.Ju. Buldakova, E.V. Poljakov, Fizika tverdogo tela 52(2), 257 (2010).
V.M. Gun'ko, V.Ya. Ilkiv, Ya.V. Zaulychnyy ,V.I.Zarko ,E.M.Pakhlov, M.V. Karpetz, Journal of Non-Crystalline Solids 403, 30 (2014).
Ya.V. Zaulychnyy, V.Ya Ilkiv, V.I. Zarko, M.V. Karpetz, M.V. Pereginiak, S.S. Petrovska, V.M. Gun'ko, Chem. Phys. Technol. Surf. 5, 136 (2014).
Laurence A.J. Garvie, Peter Rez, Jose R. Alvarez, Peter R. Buseck, Alan J. Craven, and Rik Brydson, American Mineralogist 85, 732 (2000).
V.O. Kocjubins'kij, V.V. Mokljak, І.F. Mironjuk, V.L. Cheljadin, K.B. Ostafіjchuk, N.І. Nagіrna, І.V. Urubkov, Physics and Chemistry of Solid State 10(3), 565 (2009).
Yuzheng Guo, Stewart J Clark, John Robertson, J. Phys.: Condens. Matter 24, 8 (2012).
Ja. V. Zaulichnij, O. O. Foja, V. M. Gun'ko, V. І. Zarko, І. F. Mironjuk, T. V. Gergel', V. L. Cheljadin, Physics and Chemistry of Solid State 9(4), 767 (2008).
Ja. V. Zaulichnij, O. O. Foja, V. L. Bekenev, V. І. Zarko, M. Gun'ko, M. V. Karpec', Physics and Chemistry of Solid State 11(1), 113 (2010).
Ya.V. Zaulychnyj, O.O. Foya, V.M. Gun’ko, V.I. Zarko, I.F. Myronyuk, T.V. Gergel, V.L. Chelyadyn, Physics and Chemistry of Solid State 9(4), 767 (2008).