Optical Properties of Materials for Solar Energy Based on Cadmium Chalcogenides Thin Films
DOI:
https://doi.org/10.15330/pcss.20.4.367-371Keywords:
thin films, solar energy, optical gap, optical functions, transmission, reflection index, dielectric functionsAbstract
The optical constants and thickness of cadmium chalcogenides (CdX, X= S, Se and Te) thin films prepared by quasi close-space sublimation and high-frequency magnetron sputtering method are determined. The optical constants and the band gap of the films under study have been determined. Optical properties (refractive index n(λ), extinction coefficient k(λ) and dielectric functions ε(λ)) of thin films and thickness d can be determined from the transmission spectrum. The dispersion of the refractive index was explained using a single oscillator model. Single oscillator energy and dispersion energy are obtained from fitting. The material optical parameter such as normalized integrated transmission, zero and high-frequency dielectric constant, density of state effective mass ratio was also calculated.
References
N. Romeo, A. Bosio, R. Tedeschi, V. Canevari, Mater. Chem. Phys. 66(2), 201 (2000).
B.M. Basola, B. McCandless , J. Photon. Energy 4(1), 040996 (2014).
N. Romeo, A. Bosio, V. Canevari, A. Podest`a, Sol. Energy 77(6), 795 (2014).
N.R. Paudel, C. Xiao, Y. Yan, J. Mater. Sci.: Mater. Electron. 25(4),1991 (2014).
S.V. Averin, P.I. Kuznetsov, V.A. Zhitov, N.V. Alkeev, V.M. Kotov, L.Y. Zakharov, N.B. Gladysheva, Tech. Phys. 57(11), 1514 (2012).
R.N. Bhattacharya, M.A. Contreras, B. Egaas, R.N. Noufi, A. Kanevce, J.R. Sites, Appl. Phys. Lett. 89(25), 253503 (2006).
I.O. ladeji, L. Chow, Thin Solid Films 474(1-2), 77 (2005).
W. Mahmood, J. Ali, I. Zahid, A. Thomas, A. Haq, Optik 158, 1558 (2018).
A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Prog. Cryst. Growth Charact. Mater. 52(4), 247 (2006).
B.E. McCandless, K.D. Dobson, Sol. Energy 77(6), 839 (2004).
R.Yu. Petrus, H.A. Ilchuk, A.I. Kashuba, I.V. Semkiv, E.O. Zmiiovska, Optics and Spectroscopy 126(3), 220 (2019).
G.A. Il’chuk, I.V. Kurilo, R.Y. Petrus, V.V. Kus’nezh, Inorg. Mater. 50(6), 559 (2014).
G.A. Il’chuk, I.V. Kurilo, V.V. Kus’nezh, R.Y. Petrus, I.T. Kogut, T.N. Stan’ko, Inorg. Mater. 49(4), 329 (2013).
H.A. Ilchuk, R.Y. Petrus, A.I. Kashuba, I.V. Semkiv, E.O. Zmiiovska, Nanosistemi, Nanomater. Nanotehnologii 16(3), 519 (2018).
H.A. Ilchuk, R.Yu. Petrus, A.I. Kashuba, IV Semkiv, EO Zmievskaya, Optics and spectroscopy 128(1), 50 (2020).
S.H. Wemple, M. DiDomenico, Phys. Rev. B. 3, 1338 (1971).
L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P. Potera, Optical Materials 92, 319 (2019).
A.Y. Fasasi, B.D. Ngom , J.B. Kana-Kana, R. Bucher, M. Maaza, C. Theron, U. Buttner, Journal of Physics and Chemistry of Solids 70(10), 1322 (2009).