Er-Cr-Ge Ternary System
DOI:
https://doi.org/10.15330/pcss.20.4.376-383Keywords:
intermetallics, ternary system, phase equilibria, crystal structureAbstract
The isothermal section of the phase diagram of the Er–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. The interaction between the elements in the Er−Cr−Ge system results in the formation of two ternary compounds: ErCr6Ge6 (MgFe6Ge6-type, space group P6/mmm, Pearson symbol hP13; a = 5.15149(3),
c = 8.26250(7) Ǻ; RBragg = 0.0493, RF = 0.0574) and ErCr1-хGe2 (CeNiSi2-type, space group Cmcm, Pearson symbol oS16, a = 4.10271(5), b = 15.66525(17), c = 3.99017(4) Ǻ; RBragg = 0.0473, RF = 0.0433) at investigated temperature. For the ErCr1-xGe2 compound, the homogeneity region was determined (ErCr0.28-0.38Ge2;
a = 4.10271(5)-4.1418(9), b = 15.6652(1)-15.7581(4), c = 3.99017(4)-3.9291(1) Ǻ).
References
O.I. Bodak, E.I. Gladyshevsky, Ternary systems containing rare earth metals. Lvov: Vyshcha shkola (1985).
J.H.V.J. Brabers, K.H.J. Buschow, F.R. de Boer, J. Alloys Compd. 77, 205 (1994) (https://doi.org/10.1016/0925-8388(94)90769-2).
P. Schobinger-Papamantelljsa, J. Rodriguez-Carvajalb, K.H.J. Buschow, J. Alloys Compd. 92, 256 (1997). (https://doi.org/S0925-8388(96)03109-X).
H. Bie, A. Tkachuk, A.Mar, J. Solid State Chemistry. 122, 182(1) (2009). (https://doi.org/10.1016/j.jssc.2008.10.013).
A. Gil, D. Kaczorowski, B. Penc, A. Hoser, A. Szytula, J. Solid State Chem. 227, 184(2) (2011). (https://doi.org/10.1016/j.jssc.2010.10.026/).
M. Konyk, L. Romaka, L. Orovčik, V.V. Romaka, Yu. Stadnyk, Visnyk Lviv Univ. Ser. Chem. Bul. 38, 60(1) (2019). (https://doi.org/10.30970/vch.6001.038).
L. Akselrud, Yu. Grin. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 47, 803 (2014). (https://doi.org/10.1107/S1600576714001058).
T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum. 378, 118 (2001).
T.B. Massalski, in: Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio (1990).
Okamoto H. Desk Handbook: Phase Diagrams for Binary Alloys, Materials Park (OH): American Society for Metals (2000).
G. Venturini, I. Ijjaali, B. Malaman, J. Alloys Compd. 183, 288 (1999). (https://doi.org/10.1016/S0925-8388(99)00088-2).
O. Oleksyn, P. Schobinger-Papamantellos, C. Ritter, C.H. Groot, K.H.J. Buschow, J. Alloys Compd. 53, 252 (1997). (https://doi.org/10.1016/S0925-8388(96)02714-4).
O.Ya. Oleksyn, O.I. Bodak, J. Alloys Compd. 19, 210 (1994). (https://doi.org/10.1016/0925-8388(94)90108-2).
G. Venturini, I. Ijjaali, B. Malaman, J. Alloys Compd. 262, 284 (1999). (https://doi.org/10.1016/S0925-8388(98)00958-X).
G.S. Smith, A.G. Tharp, Q. Johnson, J. Acta Crystallogr. 940, 22 (1967). (https://doi.org/10.1107/S0363110X67001902).
V.N. Eremenko, I.M. Obuschenko, Sov. Non-Ferrous Met. Res. 216, 9 (1981).
P. Schobinger-Papamantellos, K.H.J. Buschow, J. Less Common Met. 117, 111 (1985). (https://doi.org/10.1016/0022-5088(85)90177-8).
M. Kolenda, J. Stoch, A. Szytula, J. Magn. Magn. Mater. 99, 20 (1980). (https://doi.org/10.1016/0304-8853(80)90532-6)
B. Rawal, K.P. Gupta, J. Less Common Met. 65, 27 (1972). (https://doi.org/10.1016/0022-5088(72)90105-1).
T. Sato, E. Ohta, M. Sakata, J. Magn. Magn. Mater. 205, 61 (1986). (https://doi.org/10.1016/0304-8853(86)90085-5).
Jandl I., Richter K. W., J. Alloys Compd. L6, 500 (2010) (https://doi.org/10.1016/j.jallcom.2010.03.200).
M.B. Konyk, L.P. Romaka, V.V. Romaka, R.Ya. Serkiz, Phys. Chem. Solid State 956, 13(4) (2012).
M. Konyk, A. Horyn, R. Serkiz, Visnyk Lviv. Univ. Ser. Chem. 42, 53 (2012).
P.S. Salamakha, O.L. Sologub, O.I. Bodak, In: Gschneidner K. A. et al (Eds.), Ternary rare-earth germanium systems, Handbook on the Physics and Chemistry of Rare Earths, Vol 27 (The Netherlands, Amsterdam, 1999).
V.K. Pecharsky, O.Ya. Mruz, M.B. Konyk, P.S. Salamakha, P.K. Starodub, M.F. Fedyna, O.I. Bodak, J. Struct. Chem. 96, 30(5) (1989).
M. Francois, G. Venturini, B. Malaman, B. Roques, J. Less-Common Met. 160, 197 (1990). (https://doi.org/10.1016/0022-5088(90)90381-S).
R. Duraj, M. Konyk, J. Przewoznik, L. Romaka, A. Szytula, Solid State Sci. 11, 25 (2013). (https://dx.doi.org/10.1016/j.solidstatesciences.2013.07.019)
L. Romaka, M. Konyk, Yu. Stadnyk, V.V. Romaka, R. Serkiz, Phys. Chem. Solid State 64, 20(1) (2019). (https://doi.org/10.15330/pcss.20.1.69-76).
M. Konyk, L. Romaka, A. Horyn, N. German, R. Serkiz, Visnyk Lviv Univ. Ser. Chem. 56, 25 (2015).
M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, R. Serkiz, Visnyk Lviv Univ. Ser. Chem. 11, 59(1) (2018). (https://doi.org/10/30970/vch.5901.011).
H. Bie, O.Ya. Zelinska, A.V. Tkachuk, A. Mar, J. Mater. Chem. 4613, 19(18) (2007). (https://doi.org/10.1021/cm0727+).
H. Bie, A. Mar, J. Mater. Chem. 6225, 19 (2009) (https://doi.org/10.1039/B908781H).
A. V. Morozkin, Y. D. Seropegin, V. K. Portnoy, I. A. Sviridov, A. V. Leonov, Mater. Res. Bull. 903, 33 (1998). (https://doi.org/10.1016/S0025-5408(98)00051-8).
P.S. Salamakha, Yu.M. Prots, O.L. Sologub, O.I. Bodak, J. Alloys Compd. 51, 215(1994). (https://doi.org/10.1016/0925-8388(94)908817-6).