CdTe Quantum Dots and Their Bioconjugate with Human Serum Albumin for Fluorescence Imaging

Authors

  • I. D. Stolyarchuk Ivan Franko Drohobych State Pedagogical University
  • R. Wojnarowska - Nowak University of Rzeszow
  • J. Polit University of Rzeszow
  • E. Sheregii University of Rzeszow
  • S. Nowak University of Rzeszow
  • M. Romerowicz - Misielak University of Rzeszow

DOI:

https://doi.org/10.15330/pcss.18.2.166-172

Keywords:

CdTe, quantum dot, nanoparticles, human serum albumin, fluorescence quenching, osteosarcoma cancer cell, bionanocomplex, bioconjugate, bioimaging

Abstract

The interaction between CdTe quantum dots (QDs) with human serum albumin (HSA) and human cell culture was studied by optical spectroscopy technique. Performed research explored the interaction between the CdTe QDs and HSA, and fluorescence imaging efficiency of the QD-HSA bioconjugates in comparison with colloidal QDs. The secondary structure of the HSA is similar to the native form, which suggests a biocompatibility of prepared bionanocomplex. The CdTe QD-HSA bionanoconjugate shows chemical stability in phosphate-buffered saline (PBS) under ambient conditions, furthermore, it is stable in the cytoplasm and suitable for cell labeling, tracking, and other bioimaging applications. The CdTe QDs located in an osteosarcoma cancer cells show a high luminescence intensity. The light emission of the CdTe QDs connected with albumin is less than the pure QDs, but it is still satisfactory, and additionally it is stable and has long photoluminescence lifetime. It suggests, that the CdTe NC-HSA bionanocomplex can be used as a fluorescent probe for cell labeling, tracking, and other bioimaging applications.

References

V.S. Saji, H.C. Choe, K.W.K. Yeung, Int.J. Nano- and Biomaterials 3(2), 119 (2010).

S.M. Moghimi, A.C. Hunter, J.C. Murray, FASEB J 19, 311 (2005).

Muye Li, Fang Li, Zhicong He, Junpei Zhang, Junbo Han, Peixiang Lu, J. Appl. Phys.116, 233106 (2014).

I. Fenoglio, B. Fubini, E.M. Ghibaudi, F.Turci, Adv. Drug Deliv. Rev.63, 1186 (2011).

J.B. Blanco-Canosa, M. Wu, K. Susumu, E.Petryayeva, T.L. Jennings, P.E. Dawson, W.R. Algar, I.L. Medintz, Coord. Chem. Rev.263- 264, 101 (2014).

Mingzhen Yao, Xing Zhang, Lun Ma, Wei Chen, Alan G. Joly, Jinsong Huang, Qingwu Wang, J. Appl. Phys.108, 103104 (2010).

M. Gao, C. Lesser, S. Kirstein, H.Möhwald, A.L. Rogach, H. Weller, J. Appl. Phys.87, 2297 (2000).

A.M. Derfus, W. Chan, S.N. Bhatia, Nano Lett. 4, 11 (2004).

Q. Xiao, S. Huang, Z.D. Qi, B. Zhou, Z.K. He, Y. Liu, BBA-Proteins Proteome 1784, 1020 (2008).

L.Shao, C.Dong, F.Sang, H.Qian, J.Ren, J. Fluoresc. 19, 151 (2009).

Q. Xiao, S. Huang, W. Su, P. Li, J. Ma, F. Luo and Y. Liu, Colloids and Surfaces B: Biointerfaces 102, 76(2013).

D. Wu, Z. Chen and X. Liu, Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy 84, 178 (2011).

J. Hemmateenejad and S. Yousefinejad, J. Molecular Structure 1037, 317 (2013).

E.A. Bhogale, N. Patel, J. Mariam, P.M. Dongre, A. Miotello, D.C. Kothari, Colloids and Surfaces B: Biointerfaces102, 257 (2013).

H.H. Luu, Q. Kang, J. Kyung Park, W. Si, Q. Luo, W. Jiang, H. Yin, A.G. Montag, M.A. Simon, T.D. Peabody, R.C. Haydon, C.W. Rinker-Schaeffer, T.-C. He, Clinical & Experimental Metastasis22, 319 (2005).

C. Cappadone, C. Stefanelli, E. Malucelli, M. Zini, C. Onofrillo, A. Locatelli, M. Rambaldi, A. Sargenti, L. Merolle, G. Farruggia, A. Graziadio, L. Montanaro, and S. Iotti, Biochem. Biophys. Res. Commun 467(2), 348(2015).

C. Wang , Q. Ma , W. Dou , S. Kanwal, G. Wang, P. Yuan, and X. Su, Talanta 77(4), 1358 (2009).

D.V. Korbytyak, S.M. Kalytchuk, I.I. Geru, J. Nanoelectronics and optoelectronics 4(1), 1 (2009).

A.I. Savchuk, I.D. Stolyarchuk, P.M. Grygoryshyn, O.P. Antonyuk, and T.A. Savchuk, Proc. of SPIE 9066, 906618(2013).

I.D. Stolyarchuk, O. A. Shporta, Physics and Chemistry of Solid State 17(4), 498 (2016).

J.N. Tian, J.Q. Liu, W.Y. He, Z.D. Hu, X.J. Yao, and X.G. Chen, Biomacromolecules 5, 1956 (2004).

J. Liang, Y. Cheng, and H. Han, J. Mol. Struct. 892, 116 (2008).

A. Barth and P.I. Haris (Eds.), Biological and Biomedical Infrared Spectroscopy (IOS Press, 2009).

A.I. Ivanov, R.G. Zhbankov, E.A. Korolenko, E.V. Korolik, L.A. Meleshchenko, M. Marchewka, and H. Ratajczak, J. Appl. Spectrosc. 60, 399 (1994).

J. Coates, Interpretation of Infrared Spectra, A Practical Approach in: R.A. Meyers (Ed.) Encyclopedia of Analytical Chemistry (John Wiley & Sons Ltd, Chichester, 2000).

J. Kong and S. Yu, Acta Biochim. Biophys. Sinica 39(8), 549 (2007).

C. Ota, S. Noguchi, and K. Tsumoto, Biopolymers 103(4),237 (2015).

S. Tabassum, W.M. Al-Asbahy, M. Afzal, and F. Arjmand, J. Photochem. Photobiol. B: Biology 114, 132(2012).

Q. Wang, P. Liu, X. Zhou, X. Zhang, T. Fang, P. Liu, X. Min, and X. Li, J. Photochem. Photobiol. A: Chemistry230, 23 (2012).

G. Walsh, Proteins: Biochemistry and Biotechnology (John Wiley & Sons, Chichester, 2002).

Li-wei Liu, Si-yi Hu, Ying Pan, Jia-qi Zhang, Yue-shuFeng, and Xi-he Zhang, Beilstein J. Nanotechnol5, 919 (2014).

Shen Zheng, Ji-Yao Chen, Jun-Yong Wang, Lu-Wei Zhou, and Qian Peng, J. Appl. Phys.110, 124701 (2011).

Y. Zheng, S. Gao, and J.Y. Ying, Adv. Mater. 19, 376 (2007).

A. Maureen Walling, J.A. Novak and J.R.E. Shepard, Int. J. Mol. Sci. 10, 441 (2009).

Downloads

Published

2017-06-27

How to Cite

Stolyarchuk, I. D., Wojnarowska - Nowak, R., Polit, J., Sheregii, E., Nowak, S., & Romerowicz - Misielak, M. (2017). CdTe Quantum Dots and Their Bioconjugate with Human Serum Albumin for Fluorescence Imaging. Physics and Chemistry of Solid State, 18(2), 166–172. https://doi.org/10.15330/pcss.18.2.166-172

Issue

Section

Scientific articles