Water Clusterization in the Interparticle Space of Hydrophobic Nanosilica АМ-1

Authors

  • T.V. Krupskaya Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • V. M. Gun’ko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • L.S. Andriyko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • N.V. Yelahina Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • V.V. Turov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15330/pcss.22.1.24-30

Keywords:

1H NMR spectroscopy, hydrophobic silica, thixotropy, mechanical loads

Abstract

The processes occurring in hydrated powders and concentrated suspensions of hydrophobic silica were studied by 1H NMR spectroscopy. It is shown that a mixture of methyl silica and water with a hydration of less than 1 g / g is a wet powder, where water is in the form of submicron clusters filling the interparticle voids of nanosilica, and the interfacial energy is directly proportional to the amount of added water. It was found that at high water concentrations there is a spontaneous increase in the size of water structures, which is accompanied by a sharp decrease in interfacial energy, that may reflect the disappearance of narrow interparticle voids or their filling with air. It is shown that aqueous suspensions of AM-1 are easily mixed with a weakly polar organic solvent chloroform, forming a stable suspension with close the amounts both of water and chloroform. It was revealed that the aqueous suspension of methyl silica has high thixotropic properties, which depend on the time and the magnitude of the applied mechanical loads.

References

D.F. Evans, B.W. Ninham, J. Phys. Chem. 90(2), 226 (1986) (https://doi.org/10.1021/j100274a005).

F. Franks, In: Water: A comprehensive treatise. edited by F. Franks (Plenum, NY, 1975), V. 4.

C. Pangali, M. Rao, B.J. Berne, J. Chem. Phys. 71, 2975 (1979).

D.Y.C. Chan, D.J. Mitchell, B.W. Ninham, B.A. Pailthorpe, In: Water: A comprehensive tretise. edited by F. Franks, 6, 239 (Plenum, NY, 1979).

L.R. Pratt, D. Chandler, J. Chem. Phys. 67, 3683 (1977) (https://doi.org/10.1063/1.435308).

A.B. Kolomeisky, B.Widom, Faraday Discuss. 112, 81 (1999).

N.A.M. Besseling, J. Lyklema, J. Phys. Chem. B 101, 7604 (1997) (https://doi.org/10.1021/jp970474t).

N.A.M. Besseling, J. Lyklema, J. Phys. Chem. B 102(44) 8943 (1998) (https://doi.org/10.1021/jp000445+).

G.E. Yakubov, H.J. Butt, O.I. Vinogradova, J. Phys. Chem. B 104 (15), 3407 (2000).

E.A. Kirsanov, V.N. Matveenko, Non-Newtonian behavior of structured systems (TECHNOSPHERE, Moscow, 2016).

C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H. Anguemintsa, Int. J. Heat Fluid Flow 28(6), 1492 (2007) (https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004).

V.M. Gun’ko, V.V. Turov, E.V. Pakhlov, T.V. Krupska, M.V. Borysenko, M.T. Kartel, B. Charmas, Lengmuir 34(40), 12145 (2018) (https://doi.org/10.1021/acs.langmuir.8b03110).

V.M. Gun’ko, V.V. Turov, E.V. Pakhlov, E.M. Matkovsky, T.V. Krupska, M.T. Kartel, B. Charmas, J. Non-Crystalline Solids 500, 351 (2018) (https://doi.org/10.1016/j.jnoncrysol.2018.08.020).

T.V. Krupskaya, VV Turov, VM Gun'ko, M.T. Kartel, A method of converting a mixture of hydrophilic and hydrophobic silica into an aqueous medium by using high mechanical loads. (Patent of Ukraine 138023, 2019).

T.V. Krupskaya, VV Туров, М.Т. Kartel, A method of converting hydrophobic silica into an aqueous medium by using high mechanical loads (Patent of Ukraine 138129, 2019).

V.V. Turov, V.M. Gun’ko, Clustered Water and Ways of its use (Naukova Dumka, Kiev, 2011).

V.M. Gun’ko, V.V. Turov, P.P. Gorbik, Water at the Interface (Naukova Dumka, Kiev, 2009).

V.M. Gun’ko, V.V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (CRC Press Boca Raton, 2013).

V.M. Gun’ko, V.V. Turov, V.M. Bogatyrev, V.I. Zarko, R. Leboda, E.V. Goncharuk, A.A. Novza, A.V. Turov, A.A. Chuiko, Adv. Colloid Interface Sci. 118, 125 (2005) (https://doi.org/10.1016/j.cis.2005.07.003).

V.V. Turov, V.M. Gun’ko, E.V. Pakhlov, T.V. Krupska, M.D. Tsapko, B. Charmas, M.T. Kartel, Colloid and Surf. A 552, 39 (2018).

Thermodynamic properties of individual substances, Ed. V.P. Glushko, (Nauka, Moscow, 1978).

D.W. Aksnes, K. Forl, L. Kimtys, Phys. Chem. Chem. Phys. 3, 3203 (2001) (https://doi.org/10.1039/B103228N).

O.V. Petrov, I. Furó, Progr. NMR Spectroscopy 54(2), 97 (2009) (https://doi.org/10.1016/j.pnmrs.2008.06.001).

D.R. Kinney, I-S. Chaung, G.E. Maciel, J. Am. Chem Soc. 115, 6786 (1993) (https://doi.org/10.1021/ja00068a041).

V.M. Gun'ko, V.V. Turov, Langmuir 15, 6405 (1999) (https://doi.org/10.1021/la9809372).

Published

2021-01-26

How to Cite

Krupskaya, T., Gun’ko, V. M., Andriyko, L., Yelahina, N., & Turov, V. (2021). Water Clusterization in the Interparticle Space of Hydrophobic Nanosilica АМ-1. Physics and Chemistry of Solid State, 22(1), 24–30. https://doi.org/10.15330/pcss.22.1.24-30

Issue

Section

Scientific articles

Most read articles by the same author(s)