Solvothermal/Hydrothermal Manufacturing of Carbon Nanotubes for Hydrogen storage: A Comparative Study

Authors

  • R. Namitha Jain Deemed-to-be University
  • Karthik Kannan Qatar University
  • Devi Radhika Jain Deemed-to-be University
  • G. Krishnamurthy Bangalore University

DOI:

https://doi.org/10.15330/pcss.21.4.700-706

Keywords:

Solvothermal-Hydrothermal method, Carbon nanotubes, Hydrogen storage, Rechargeable batteries, Electrochemical method

Abstract

Investigation on the manufacturing of multi-walled carbon nanotubes (MWNTs) by solvothermal and hydrothermal procedure and the electrochemical behavior of these nanostructured electrode materials for hydrogen storage has been presented. The physical and morphological properties of prepared carbon nanotubes were studied by X-ray diffraction (XRD), Scanning, and Transmission electron microscopy (SEM and TEM). Furthermore, the electrochemical properties of MWCNTs were revealed by galvanostatic charge-discharge and measurement of cyclic voltammetry and the results revealed that both MWNTs exhibited higher electrochemical capacitance and stable cycling performance. Interestingly, MWNTs synthesized from hydrothermal procedure shows an extreme discharge capacity of 423 mAh/g, concerning hydrogen storage of ∼ 1.5 wt%, and MWNTs synthesized from solvothermal procedure shows a capacity of discharge 394.8 mAh/g. corresponds to ∼ 1.4 wt%, was attained reproducibly at 25 °C for about 100 mg of MWCNTs. This outcome infers that the MWNTs are extremely assuring electrochemical hydrogen storage materials for PEM fuel cells and rechargeable batteries.

References

H. Yu, Q. Zhang, J.B. Joo, N. Li, G.D. Moon, S. Tao, L. Wang and Y. Yin, J Mater Chem A 1(39), 12198 (2013). https://doi.org/10.1039/C3TA12722B.

X.-Q. Zhang, Q. Sun, W. Dong, D. Li, A.-H. Lu, J.-Q. Mu and W.-C. Li, J Mater Chem A. 1(33), 9449 (2013). https://doi.org/10.1039/C3TA10660H.

Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.-J. Chang, S.J. Baek, Y.S. Huh, Y. Tak, Y.W. Park, S. Park and

H.-J. Jin, Adv Mat. 25(14), 1993 (2013). https://doi.org/10.1002/adma.201204692.

Q. Cai, Z.-H. Huang, F. Kang and J.-B. Yang, Carbon 42(4), 775 (2004). https://doi.org/10.1016/j.carbon.2004.01.042.

T.-C. Chen, Adv Funct Mater. 23(40), 5066 (2013). https://doi.org/10.1002/adfm.201300614.

H. Kajiura, A. Nandyala and A. Bezryadin, Carbon 43(6), 1317 (2005). https://arxiv.org/abs/cond-mat/0505378v1.

G. Krishnamurthy and S. Agarwal, Bull. Korean Chem. Soc. 34(10), 3046 (2013). https://doi.org/10.5012/bkcs.2013.34.10.3046.

M. Yoshimura and K. Byrappa, Journal of material Science 43(7), 2085 (2008). https://doi.org/10.1007/s10853-007-1853-x.

T. Adschiri, K. Kanazawa and K. Arai, J. Am. Ceram. Soc. 75(9), 2615 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05625.x.

M. Bremholm, J. Becker-Christensen and B.B. Iversen. Adv. Mater. 21(35), 3572 (2009). https://doi.org/10.1002/adma.200803431.

C. Nützenadel, A. Züttel and D. Chartouni, Electrochem Solid-State Lett. 2(1), 30 (1999). https://doi.org/10.1149/1.1390724.

S.M. Lee, K.H. An, Y.H. Lee, G. Scifert and T-Frauenheim, J. Am. Chem. Soc. 123(21), 5059 (2001). https://doi.org/10.1021/ja003751+.

X. Qin, X.P. Gao and H.T. Yuan, Electrochem Solid-State Lett. 3(12), 532 (2000). https://doi.org/10.1149/1.1391200.

M.M. Shaijumon, S. Ramaprabhu, Chem. Phy. Lett. 374 (5–6) 513 (2003). https://doi.org/10.1016/S0009-2614(03)00741-3.

T.C. Dinadayalane, A. Kaczmarek, J. Łukaszewicz and J. Leszczynski, J Phys Chem C. 111(20), 7376 (2007).

Y. Mi, Y. Liu, D. Yuan, J. Zhang and Y. Xiao, Journal of Materials science 40(14), 3635 (2005).

Y. Liu, C. Pan and J. Wang, J. Mater. Sci 39(3) 1091 (2004). https://doi.org/10.1021/jp066469j.

X. Zhao, Y. Ando, L.C. Qin, H. Kataura, Y. Maniwa and R. Saito, Physica B, 323(1-4), 265 (2002).

K. Kannan, M.H. Sliem, A.M. Abdullah, K.K. Sadasivuni, B. Kumar, Catalysts 10, 549 (2020) (https://doi.org/10.3390/catal10050549).

K. Kannan, K.K. Sadasivuni, A.M. Abdullah, B. Kumar, Catalysts 10, 495 (2020) (https://doi.org/10.3390/catal10050495).

Karthik Kannan, D. Radhika, A.S. Nesaraj, Mohammed Wasee Ahmed & R. Namitha, Materials Research Innovations, 24(7), 414 (2020) (https://doi.org/10.1080/14328917.2019.1706032).

K. Pradeeswari, A. Venkatesan, P. Pandi, K. Guru Prasad, K. Karthik, T. Maiyalagan, R. Mohan Kumar, Ionics 26, 905 (2020) (https://doi.org/10.1007/s11581-019-03259-z).

Karthik Kannan, D. Radhika, A.S. Nesaraj, Kishor Kumar Sadasivuni, L. Sivarama Krishna, Inorganic Chemistry Communications 122, 108307 (2020). https://doi.org/10.1016/j.inoche.2020.108307.

M. Ibrahim, K. Kannan, H. Parangusan, S. Eldeib, O. Shehata, M. Ismail, R. Zarandah, K.K. Sadasivuni, Coatings 10, 783 (2020) (https://doi.org/10.3390/coatings10080783).

K. Pradeeswari, A. Venkatesan, P. Pandi, K. Karthik, K.V. Hari, Krishna, R. Mohan Kumar, Mater. Res. Express 6(10), 5525 (2019). https://doi.org/10.1088/2053-1591/ab3cae.

J. Theerthagiri, G. Durai, T. Tatarchuk, M. Sumathi, P. Kuppusami, Jiaqian Qin, Myong Yong Choi, Ionics 26(4), 2051 (2020) (https://doi.org/10.1007/s11581-019-03330-9).

T. Rajesh Kumar, P. Prabukanthan, G. Harichandran, J. Theerthagiri, T. Tatarchuk, T Maiyalagan, Gilberto Maia, M. Bououdina, Journal of Solid State Electrochemistry 22(4),1197 (2018) (https://doi.org/10.1007/s10008-017-3865-z).

T. Rajesh Kumar, P. Prabukanthan, G. Harichandran, J. Theerthagiri, A. Meera Moydeen, G. Durai,

P. Kuppusami, T. Tatarchuk, Journal of Materials Science: Materials in Electronics 29(7), 5638 (2018). https://doi.org/10.1007/s10854-018-8533-2.

Downloads

Published

2020-12-31

How to Cite

Namitha, R., Kannan, K. ., Radhika, D., & Krishnamurthy, G. (2020). Solvothermal/Hydrothermal Manufacturing of Carbon Nanotubes for Hydrogen storage: A Comparative Study. Physics and Chemistry of Solid State, 21(4), 700–706. https://doi.org/10.15330/pcss.21.4.700-706

Issue

Section

Scientific articles

Most read articles by the same author(s)